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Abstract

The reflection capacity of Large Language
Model (LLM) has garnered extensive atten-
tion. A post-hoc prompting strategy, e.g., re-
flexion and self-refine, refines LLM’s response
based on self-evaluated or external feedback.
However, recent research indicates without
external feedback, LLM’s intrinsic reflection
is unstable. Our investigation unveils that
the key bottleneck is the quality of the self-
evaluated feedback. We find LLMs often ex-
hibit overconfidence or high randomness when
self-evaluate, offering stubborn or inconsistent
feedback, which causes poor reflection. To rem-
edy this, we advocate Self-Contrast: It adap-
tively explores diverse solving perspectives tai-
lored to the request, contrasts the differences,
and summarizes these discrepancies into a
checklist which could be used to re-examine
and eliminate discrepancies. Our method pro-
vides LLM with diverse perspectives to allevi-
ate stubborn biases. Moreover, their discrepan-
cies indicate potential errors or inherent uncer-
tainties that LLM often overlooks. Reflecting
upon these can prompt more accurate and stable
reflection. Experiments conducted on a series
of reasoning and translation tasks with differ-
ent LLMs serve to underscore the effectiveness
and generality of our strategy.

1 Introduction

Mastering reasoning and decision-making capabili-
ties is of utmost importance to paving the way for
artificial general intelligence. Recently, large lan-
guage models (LLMs) (Brown et al., 2020; Chowd-
hery et al., 2022; Zhang et al., 2022a; Zeng et al.,
2023; Touvron et al., 2023a; OpenAI, 2022, 2023;
Touvron et al., 2023b) and applications built on
them (Schick et al., 2023; Wu et al., 2023a; Shen
et al., 2023; Zhang et al., 2023a) demonstrate im-
pressive capabilities in various domains, especially
combined with Chain-of-Thought (Wei et al., 2022;

†Corresponding author.

Request Initial Response RevisionSelf-Evaluate

Overconfident Feedback:
I think previous solution is correct

Differences Between Solution1 and Solution2 :
Two solutions solve different goals. The solution1 solve for …., but solution2 solve for another…
Besides, for step2, both solutions have the same solving process, but the answers are different ….

0.70%

6.90%

45.70%

46.70%

Inconsistent

Overconfident

Correctly Identify Error

Other

Feedback Statistic

Inconsistent Feedback
When repeatedly generating multiple times
1st: Step1 is correct …
2nd: Step1 is wrong …
3rd:Step2 contains an error …

Checklist:
p Please re-examine the intent

of the question ….
p Please check for calculation 

errors in response 1..

Prompt1

Prompt2

PromptN

Solution1

Solution2

SolutionN

…

Difference

Difference

Difference

Checklist Revision

Re
qu
es
t

…

Explore Diverse Solving Perspectives Contrast Difference Summarize Checklist Reflection

…

Error->Right Cases

Error -> Error

15.1%

For Incorrect Initial Response:

Standard Self-Reflection

Self-Contrast

Figure 1: LLMs evaluate the initial response and pro-
vide feedback for revision. However, most erroneous
responses remain uncorrected after reflection as the feed-
back is either overconfident (46.7%) or inconsistent
(45.7%). Bottom: Self-Contrast explores multiple solv-
ing perspectives, and contrast their differences, and sum-
marize them into insightful checklist for self-correction.

Kojima et al., 2022), ReAct (Yao et al., 2022), Tree-
of-Thought (Yao et al., 2023) and other prompting
techniques (Gao et al., 2022; Wang et al., 2023d;
Zhou et al., 2022; Besta et al., 2023).

Despite these advancements, LLMs are not en-
tirely reliable (Zheng et al., 2023c; Frieder et al.,
2023; Yuan et al., 2023b) since they frequently pro-
duce inaccuracies results, such as misunderstand-
ing a key concept, overlooking some crucial details.
A post-hoc prompting strategy, e.g., self-reflection,
garnered considerable attention (Shinn et al., 2023;
Madaan et al., 2023; Paul et al., 2023). It first gen-
erates an initial response (Initial Response), then
gathers external feedback or self-evaluated feed-
back (Evaluation Phase) to refine prior response
(Revision) (Welleck et al., 2022; Kadavath et al.,
2022; Chen et al., 2023d; Liang et al., 2023; Kim
et al., 2023; Zheng et al., 2023a; Du et al., 2023; Xi
et al., 2023; Ganguli et al., 2023; Pan et al., 2023).
Numerous studies proclaim this three-stage strategy
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(Initial Response→Evaluation→Revision), can en-
dow LLMs with the potential to self-correct pre-
vious imperfect responses. For a time, this belief
appeared to dominate the community.

However, recent studies (Huang et al., 2023b;
Stechly et al., 2023; Liang et al., 2023; Valmeekam
et al., 2023) have cast doubt on LLM’s inherent re-
flection capability. Their research indicates that
without external feedback, LLMs have difficul-
ties in amending prior responses. It implies self-
correction is unreliable when relying only on LLM
itself and simple post-hoc prompting strategies.

We are also intrigued by LLM’s internal reflec-
tion ability, as external feedback is not available
in most scenarios. Our initial experiments (§ 2.1)
indicate that intrinsic reflection has limited effect.
Across various LLMs and tasks, the performance
gains from reflection are not significant, and oc-
casionally detrimental. In cases of incorrect ini-
tial responses, only 15.1% of incorrect responses
are corrected through reflection. To ascertain the
reasons for that, we further analyze the feedback
generated by the self-evaluate process. As shown
in Figure 1, LLMs often provide two unexpected
feedback: 1) Overconfidence (46.7%): Stubbornly
insisting that the previous solution is correct. 2) In-
consistency (45.7%): The feedback is highly incon-
sistent when self-evaluating the same response mul-
tiple times. These two feedbacks seriously under-
mine the effectiveness of reflection. It reveals that
such a simple self-evaluate strategy faces difficulty
in accurately identifying errors and consistently
generating high-quality feedback for reflection.

As a remedy, we propose a contrastive strategy
as an alternative to the direct evaluation: we ex-
amine the differences among multiple responses
and draw inspiration to derive feedbacks from their
disparities for reflection. The insight is that while
generating accurate feedback directly may be chal-
lenging, identifying contrasts between various re-
sponses is often more feasible. More importantly,
these discrepancies often indicate some potential
errors, easily overlooked details or pitfalls. As
shown in Figure 1, by contrasting two solutions,
LLM finds they have different solving objectives,
and suggests re-examining the intent of the orig-
inal request in the checklist. This contrasting
paradigm can also be seen in some contempora-
neous work (Wan et al., 2023; Yuan et al., 2024).

Embracing this philosophy, we advocate Self-
Contrast, which steers LLM to autonomously cre-
ate diverse solving perspectives by self-curated

prompts and then select different results with sig-
nificant discrepancies for comparison. Then LLM
reflects on the reasons behind these discrepancies
and generates multiple re-examining instructions,
i.e., checklist, for reflection. Our experiments show
that by creating diverse perspectives adaptively,
Self-Contrast can mitigate biases introduced by
specific prompts. Moreover, contrasting the dis-
crepancies between perspectives inspires deeper
reflection, thereby enhancing the likelihood of ac-
curate self-correction.

Our contributions can be summarized as:

• Our comprehensive experiments unveil that
the bottleneck for poor reflection performance
lies in the LLM’s inability to accurately evalu-
ate prior responses. It often manifests as over-
confident or inconsistent feedback, hindering
the effectiveness of self-reflection.

• We advocate Self-Contrast: the LLMs create
multiple solving perspectives for diverse re-
sults, mitigating overconfident biases of a sin-
gular prompt. Then drawing inspiration from
contrasting different perspectives, the LLMs
summarize more accurate checking instruc-
tions to resolve discrepancies and enhance
reflection.

• Empirically, compared with vanilla reflection,
Self-Contrast shows significant improvements
and stability in both mathematical reasoning
and challenging translation scenarios.

2 Evaluation of Intrinsic Reflection

We first comprehensively investigate the intrinsic
reflection capability of LLMs, i.e., LLMs self-
evaluate the initial response without external feed-
back and then refine it. Subsequently, we methodi-
cally investigate the factors influencing reflection.

2.1 Performance Pre- and Post-Reflection
We evaluate the reflection capabilities of multiple
LLMs across a variety of benchmarks, including
math reasoning and creative translation tasks. We
report average accuracy for math reasoning and
the BLEURT score between predicted sentences
and references for the translation task (see § 4.1
for detail). Each result is evaluated multiple times
on different prompts. Besides, we also report the
significance level (one-tailed t-test) of the accuracy
change pre- and post-reflection.

As shown in Table 1, we observe no significant
accuracy changes before and after reflection. For
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Math Reasoning Translation
GSM8K SVAMP CommonMT

GPT4 93.9⇒95.1 93.0⇒91.5 70.1⇒69.8
P for ∆ > 0 0.1933 0.5846 0.5426
GPT3.5 76.6⇒75.8 79.8⇒80.5 69.1⇒69.3
P for ∆ > 0 0.6613 0.4306 0.4420
davinci-003 51.1⇒49.6 63⇒63.5 62.4⇒63.8
P for ∆ > 0 0.6988 0.4729 0.2009
Llama2-70B 52.6⇒49.3 66⇒63.0 63.2⇒62.2
P for ∆ > 0 0.8416 0.9521 0.7723
Llama2-13B 28.3⇒29.8 42.2⇒42.5 62.5⇒61.5
P for ∆ > 0 0.3855 0.2508 0.4690
Llama2-7B 19.8⇒17.0 37.5⇒36.1 53.7⇒48.8
P for ∆ > 0 0.9578 0.5770 0.7492

Table 1: We calculate the average accuracy of the ten ex-
periments for pre- and post-reflection: Pre Acc. ⇒ Post
Acc. We also report the accuracy change’s significance
level (P-value) for ten trials, where ∆=Post−Pre. A
larger P indicates a less significant improvement.

instance, the performance of GPT-3.5 on GSM8K
and SVAMP exhibit marginal changes of -0.8% and
+0.7% after reflection respectively, both statistically
insignificant. This negligible performance fluctu-
ation can be validated across multiple LLMs and
various benchmarks, far from expectations. Specif-
ically, most reasoning cases suffer from a slight
decrease, while the translation task shows little
impact. Additionally, smaller LLMs (e.g., Llama2-
7B) demonstrate poorer reflection ability, occasion-
ally even exhibiting negative impacts. These exper-
iments collectively suggest that LLMs appear to be
incapable of self-correction through reflection.

2.2 Feedback Analysis

To investigate the reasons behind the failure of re-
flection, we further analyze the feedback generated
during the self-evaluate process. We classify all
samples in GSM8K into four categories based on
their correctness of the pre- and post-reflection: 1)
Invalid Reflection (✗⇒✗) means the results before
and after reflection are both incorrect. 2) Valid
Reflection (✗⇒✓) means a wrong solution is re-
vised to correct through reflection. 3) Toxic Reflec-
tion (✓⇒✗) represents that an originally correct
response is changed to incorrect after reflection.
4) Others counts the number of correct ⇒ correct.
Automatic statistics for the reflection category.

Step 1: We categorize the reflection into the
above four categories. This process can be auto-
mated for mathematical benchmarks by comparing
whether the answers are correct before and after
reflection. For the translation task, we leverage
GPT-4 along with annotated answers to evaluate

the accuracy of translation results before and after
reflection. Step 2: We manually assess the qual-
ity of the feedback generated in each reflection
case (Invalid, Valid, and Toxic). Based on the cor-
rectness and consistency of these feedbacks, we
categorize them into four cases (inconsistent, over-
confident, etc.). The detailed results are as follows:

Fail to Correct the Wrong Initial Response.
As shown in Table 2, we observe the number of
Toxic Reflection (✓⇒✗: 52) and Valid Reflection
(✗⇒✓: 48) are nearly similar. This explains why
there is no discernible difference in performance
pre- and post-reflection. Besides, considering the
scenario when the initial response is erroneous, we
observe the number of Invalid Reflection (✗⇒✗:
269) is significantly larger than Valid Reflection
(✗⇒✓: 48), which indicates LLM fails to correct
errors in the initial responses for most cases.

Often Provide Overconfident or Inconsistent
Feedback. We examine whether LLMs could gen-
erate feedback accurately and consistently. For
each sample, we instruct the LLM to evaluate its
initial response multiple times and record multiple
feedbacks. We manually assess the consistency and
correctness of these feedbacks and then summarize
each sample into 4 cases: I. Accurately identifies
errors: In multiple repeated evaluations, the LLM
identifies errors and provides accurate and consis-
tent feedback. II. Stubbornly offers erroneous feed-
back: The majority of evaluations provide incorrect
feedback with specific errors. III. Can not output
consistent feedback: Unable to assess consistently,
as most feedback is different and quite random for
a same initial response. V. Overconfidence, no revi-
sion required: LLM is overconfident and believes
no revision is necessary. The detailed evaluation
criteria are provided in Appendix A.1.

As shown in Table 2, for the majority of Invalid
Reflection, their feedback is either overconfident
(53.5%) or highly inconsistent (45.3%), making it
difficult to prompt reliable reflection. Similarly, in
Toxic Reflection scenarios, 65.4% of the evaluation
processes are highly inconsistent, leading to many
correct answers being erroneously modified.

2.3 From Self-Evaluate to Self-Contrast
The aforementioned experiments indicate that feed-
back generated by the self-evaluate process is either
highly random or excessively confident. This unsta-
ble self-evaluate may severely impact the reflection
performance of LLMs.

As a remedy, we propose a contrastive strategy
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#Invalid: 269
#Valid: 48
#Toxic: 52

Reflection Behavior
Invalid

✗⇒✗

Valid
✗⇒✓

Toxic
✓⇒✗

Feedback
Type

I. Accurately
identifies errors 0.4% 43.3% 0%

II. Stubbornly offers
erroneous feedback 0.8% 0% 31.1%

III. Can not output
consistent feedback 45.3% 47.5% 65.4%

IV. Overconfidence
No revision required 53.5% 9.2% 3.5%

Table 2: We consider three reflection behaviors based on
the correctness of the pre- and post-reflection: Invalid,
Valid, and Toxic. Besides, we summarize each sample’s
feedback into four categories when self-evaluation.

Strategy GSM8K SVAMP CommonMT
Self-Evaluate w/ top-1 -0.8 0.7 0.2
P for ∆>0 0.6613 0.4306 0.4420
Self-Evaluate w/ top-2 0.12 0.8 0.16
P for ∆>0 0.4192 0.3457 0.3745
Self-Contrast w/ top-2 0.9 2.5 0.45
P for ∆>0 0.0933 0.0118 0.0457

Table 3: We report the accuracy change (∆) between
post- and pre-reflection for 3 settings and t-test value
for ∆>0. Self-evaluate: Directly evaluate the initial
response. Self-contrast: Contrast the difference between
two responses and generate a checklist for reflection.

for reflection. Instead of directly evaluating a re-
sponse, which can be challenging and inconsistent,
we instruct the LLM to initially contrast the dif-
ferences between various solutions, and identify
their discrepancies and the reasons behind them.
As shown in Figure 1 (bottom), we sample Top-2
responses from LLM and then prompt LLM to con-
trast their differences in detail, rethink the reasons
that caused the discrepancies, and summarize the
checklist for re-examining and resolving the dis-
crepancy. As shown in Table 3, we compare three
scenarios: self-evaluate w/ top-1 response, self-
evaluate w/ top-2 responses, and self-contrast w/
top-2. Our new strategy achieves a modest improve-
ment over standard reflection using self-evaluate.
Notably, it significantly enhances the significance
levels (p-value: 0.6613 to 0.0933), suggesting it
can greatly mitigate the self-evaluation process’s
uncertainty.

In this section, we validate the concept of con-
trastive evaluation. For the next section, we ex-
pand this contrastive concept into full-version self-
contrast, which involves creating multiple perspec-
tives, and contrasting their differences, summariz-
ing the checklist for deeper reflection.

3 Self-Contrast

Prior sections illustrate the challenges LLMs en-
counter in accurately evaluating previous solutions,
often resulting in overconfident or inconsistent
feedback. Concurrently, we observe that leveraging
the discrepancies between two different solutions
can inspire a more efficacious reflection, notably re-
ducing the uncertainty during the reflection. Build-
ing upon this insight, we propose a more diverse
inter-perspective Self-Contrast, facilitating more
reliable self-reflection.

Self-Contrast consists of three procedures: Cre-
ate Diverse Perspectives, Contrast Inter-Perspective
Discrepancies, and Eliminate Discrepancies. In
Create Diverse Perspectives (§ 3.1), we encour-
age LLMs to autonomously create a variety of
prompts tailored to the user’s request, each of-
fering a unique perspective for problem-solving,
e.g., different thinking styles, diverse identities,
personalities, or preferences. These diverse per-
spectives prompt the LLM to generate different re-
sponses. In the second stage (§ 3.2), LLM contrasts
the differences between each pair of responses.
Lastly (§ 3.3), to eliminate discrepancies, we ab-
stract these differences into a detailed checklist for
re-examining. This checklist guides the LLM to
meticulously examine the causes of discrepancies,
including random errors or intrinsic biases, which
result in inconsistent results among perspectives.

As shown in Figure 2, LLM designs five different
prompts and their translation results based on the
user’s request ("这个计划被枪毙") . From a literal
perspective, the phrase "被枪毙" is translated as
"shot to death". This rigid translation fails to grasp
the metaphor embedded in the military term. Con-
versely, from a liberal perspective, it is translated
as "This plan was axed". After contrasting two
different translations, LLMs believe they should
scrutinize the source sentence for metaphors and
ensure the translation aligns with the conventions
of English expression.

3.1 Create Diverse Perspectives

Self-Curated Prompts First, it is imperative to de-
fine the concept of "solving perspective". It refers
to deliberate prompting with a unique role, person-
ality, thought style, etc., which prompts LLMs to
solve user requests from a specific perspective. Di-
verse solving perspectives can endow LLMs with
a broader range of thoughts for problem-solving,
e.g., different angles and methodologies, thereby
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Checklist:
p Please verify whether the term "枪毙" in the original text is metaphorical and if the translation accurately conveys this meaning.
p Please evaluate which term is more idiomatic in this context, "axed" or "aborted" to express the forced termination of a plan.
p Please assess whether "this" or "the" is more appropriate to convey "这个" from the original text.

Reflection:
Resut1: This plan was shot to death
Resut2: This plan was axed
Resut5: The plan was aborted

Literal Perspective: 
Prompt: You are a rigorous translator, 
skilled in literal translation and very 
attentive to details. When translating 
you emphasize the exact expression 
of the original text.

Result1: This plan was shot to death

Liberal Perspective:
Prompt: You are a creative 
translator, your translation style is 
flexible and liberal, and you like to 
reinterpret the meaning of the 
original text using your language.

Result2: This plan was axed

Cultural Perspective:
Prompt: You are a native of China 
and have a great understanding of 
local idioms. You specialize in 
translating Chinese slang into 
contextualized English expressions.

Result5: The plan was aborted

Selecting From All Candidates:

Contrasting

Math Reasoning Task
User Request: A family of 6 (2 adults and 4 kids) are to divide a watermelon such that each adult gets a slice that is twice as big as that of
each kid. What percentage of the watermelon does each adult get?

Top-down Perspective: 
Please solve the problem with a top-down 
approach. First, you need to solve for what 
proportion of all adults share in total. Then you 
should calculate what proportion of each adult's

Analogical Perspective :
Think of this problem like dividing money in 
an estate. Suppose you have $100 to 
distribute.…. It can help you intuitively 
understand how to divide the the watermelon.

Bottom-up Perspective: :
Using a bottom-up approach, you should focus on the 
relations between each number and then construct the 
entire calculation. For this problem, assume that each 
child gets a share of x. Then, …as 2x ….

Result1: The answer is 25%. Adults and children each get half of the watermelon (50%). Then two adults get a total of 50% and one adult gets 25%.
Result2: The answer is 12.5%. Let’s denote the size of each kid gets as x.…, watermelon is divided into 4x (kids’ portion)+4x (adults) =100. x=12.5%.
Difference: Node1 calculates the adult’s share is 25%. Node2 calculates each kid’s share is 12.5%, which actually represents kid's share. 
Checklist: Please verify the intention in the question: is it to determine the share for each adult or for the children?

Please check whether the figure 12.5% obtained in Result 2 represents the share for adults or for children.

...

Military Perspective:
Prompt: The source sentence 
involves some military 
terminology. Please interpret 
the underlying meaning from a 
military perspective….

Result3: The plan was chopped

This plan was aborted
This plan was aborted
This plan was aborted

Difference For Result1 and Result2:
The phrase "shot to death" could be misinterpreted 
as hyperbolic or excessively dramatic in English, 
possibly detracting from the seriousness of the 
situation. "Axed" however, clearly communicates 
the end of the plan without the risk of being taken 
too literally or causing undue alarm.

Difference For Result2 and Result5:
Both “axed” and “aborted” are common 
idioms…. However, "axed" is often used in 
more dramatic or serious contexts, while 
“aborted ” can be perceived as more neutral 
or mundane. Besides, There is a slight 
difference in the meanings of "this" and "the”.

Difference For Result1 and Result5:
The phrase “shot to death” may carry a more 
dramatic and violent connotation, potentially 
overemphasizing the original sentiment and 
seems to be more akin to a metaphor. "Aborted" is 
a common English idiom for discarding plans, 
more closely aligning with English expressions.

Result1 Result5Result2

Stage 2 Contrast Discrepancies

Stage 1 Create Diverse Perspectives 

Stage 3 Eliminate Discrepancies

Creative Translation Task
User Request:这个计划被枪毙了

Figure 2: Self-Contrast designs diverse prompts for different solving perspectives and generates corresponding
results. Then we filter out similar results and select those that are significantly different. To inspire reflection, we
contrast the differences between selected results and prompt LLM to summarize a checklist. This checklist can be
used to re-examine and eliminate discrepancies. Lastly, LLM revises each response to achieve a consistent result.

mitigating biases introduced by singular prompts.

To achieve this, we adopt a self-curated prompt
strategy, where the LLM itself adaptively generates
multiple different prompts for each request, each
signifying a tailored perspective, then samples cor-
responding responses based on these prompts. It
is noteworthy that the number of perspectives to
be created, and the design of each perspective are
entirely determined by LLMs, endowing them with
more flexibility to address complex tasks. The de-
tails of the prompt are provided in Appendix D.1.
In Figure 3, we present statistics on the number of
prompts generated in self-curated prompt process.

3.2 Contrast Inter-Perspective Discrepancies

The LLM generates diverse responses based on self-
curated prompts, each representing a specific per-
spective. Considering that some responses may be
highly similar or even identical, we first filter these
similar responses. Then, we select the responses
with significant discrepancies for comparison.

Selecting To filter out similar responses, we em-
ploy the K-Medoids clustering algorithm based
on their semantic similarity. We categorize all re-
sponses into k clusters, each encompassing a set
of similar results. Then we select the centroids of
each cluster as representative responses and discard
the remaining ones. It ensures the selected results
exhibit substantial differences from each other.
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Contrasting After selecting k responses from all
candidates, we feed these responses concurrently
into LLM and then instruct LLM to autonomously
contrast the differences for each pair of responses
in a single pass. When contrasting, LLMs need
to explicitly answer these questions: Whether the
two responses are different, Where the differences
lie, and Which factors contributed to these incon-
sistent results. These questions guide the LLM to
methodically explore the underlying reasons be-
hind discrepancies, identifying potential errors and
often overlooked details. As shown in Figure 2, for
translation tasks, the LLM compares results 1, 2,
and 5, and identifies that their primary differences
lie in the use of different verbs to express "被枪毙".
The detailed prompts are shown in Appendix D.2.

3.3 Eliminate Discrepancies

We abstract insightful checklists from these pair-
wise contrastive differences and then use them to
resolve the inconsistencies across various perspec-
tives for a consensus.

Summarizing Checklist To ascertain the truth
and resolve discrepancies, the LLM is encouraged
to summarize a detailed checklist for re-examining
the user’s request and candidate responses. This
checklist contains multiple specialized checking
instructions, such as verifying alignment with the
user’s intent, identifying contradictions in LLM’s
responses, checking for miscalculations, etc. It ex-
plicitly points out some potential issues, e.g., pre-
viously overlooked details, logical pitfalls, or un-
reasonable steps, and compels LLM to re-examine
them. Compared to conventional reflection instruc-
tion, e.g., Please check your previous response, our
checklist is more precise and informative.

Reflection For Consensus Lastly, we employ
the checklist and identified discrepancies to prompt
reflection. LLM can revise the inconsistent per-
spectives and output k consistent responses.

Concretely, we use a JSON format for the
revision prompt: Request: {{request}}, Candi-
date: {{result1}, {result2}, {result3}..}, Discrep-
ancy: {{difference1-2}, {difference1-3}..}, Check-
list: {{instruction1},{instruction2},..}. To elimi-
nate discrepancies, we instruct LLM to revise the
inconsistent steps of each candidate and output k
revised responses with consistent answers. When
revising, LLM should require careful and compre-
hensive consideration, as any minor modifications
may lead to new discrepancies with others.

4 Experiments

4.1 Settings

Benchmarks We evaluate our method within two
testbeds: mathematical reasoning and translation
using GSM8K, SVAMP, and CommonMT bench-
marks. Please see Appendix B.1 for details.

Evaluation Metrics For mathematical reason-
ing, we evaluate the precision of the final answer
after their step-by-step reasoning, similar to the
previous methodologies. For the translation task,
we employ BLEURT1 score as automatic metrics.

LLM Models and Prompts We conduct experi-
ments using the GPT-3.5-Turbo-0613 and GPT-4-
0613, alongside the Llama2-Chat model with three
parameter scales (7B, 13B, and 70B). To make a
fair comparison, we uniformly set the temperature
to 0.2 for all experiments. For standard prompts
and self-reflection baseline, we evaluate them 10
times using different prompts and average their re-
sults under zero-shot scenes. Prompts and other
details can be found in Appendices B.2, C and D.

4.2 Baselines

We compare Self-Contrast with the following base-
lines: Standard CoT Prompt (Kojima et al., 2022).
Self-Reflection (Shinn et al., 2023). Multi-Agent
Debate (Du et al., 2023; Liang et al., 2023; He
et al., 2020). ExpertPrompt (Xu et al., 2023a). Hint-
Prompt (Zheng et al., 2023a). Math-Prompt (Imani
et al., 2023). Moreover, for various task scenarios,
we consider three forms of Self-Consistency (Wang
et al., 2023d; Chen et al., 2023c): SC-Vote: The
original Self-Consistency version, which samples
K decoding results, followed by a voting process.
SC-Select: Instead of voting, LLM also samples
Top-K responses but then selects the most appro-
priate answer from K candidates by itself. SC-
Reflect: After sampling Top-K responses, LLM
reflects on these candidates and regenerates a new
response as the final answer.

4.3 Main Results

In Tables 4 and 5, we report the accuracy and the
average number of API/LLM calls (#Call), which
serves as a proxy for the computational cost.

Consistent improvement over vanilla reflec-
tion. Compared to vanilla reflection, Self-Contrast
brings significant and stable improvement. For

1https://github.com/google-research/bleurt,
BLEURT-20
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GSM8K SVAMP #Call
Avg.GPT3.5 GPT4 L-7B L-13B L-70B GPT3.5 GPT4 L-7b L-13B L-70B

CoT Prompt 76.6 93.9 19.8 28.3 52.6 79.8 93.0 37.5 40.2 66 1
ExpertPrompt 77.3 ↑0.7 93.8 ↓0.1 21.6 ↑1.8 30.5 ↑2.2 53.1 ↑0.5 80.2 ↑0.4 93.3 ↑0.3 37.7 ↑0.2 41.9 ↑1.7 65.6 ↑0.4 2
Self-Reflection 75.8 ↓0.8 95.1 ↑1.2 17.0 ↓2.8 31.8 ↑3.5 49.3 ↓3.3 80.5 ↑0.7 91.5 ↓1.5 36.1 ↓1.4 42.5 ↑2.3 63.0 ↓3 3
Self-Consistency
– SC-Vote 83.5 ↑6.9 94.2 ↑0.3 21.4 ↑1.6 37.6 ↑9.3 61.1 ↑8.5 84.6 ↑4.8 92.5 ↓0.5 45.2 ↑7.7 53.7 ↑13.5 72 ↑6 8
– SC-Select 76.3 ↓0.3 93.1 ↓0.8 16.2 ↓3.6 28.6 ↑0.3 54.6 ↑2.0 81.2 ↑1.4 93.2 ↑0.2 35.1 ↓2.4 38.9 ↓1.3 66.5 ↑0.5 9
– SC-Reflect 75.8 ↓0.8 93.3 ↓0.6 19.2 ↓0.6 29.1 ↓0.8 53.7 ↑1.1 81.1 ↑1.3 93.4 ↑0.4 32.5 ↓5 34.2 ↓6 67.5 ↑1.5 9
Multi-Agent 83.8 ↑7.2 93.5 ↓0.4 23.8 ↑4 34.9 ↑6.6 59.6 ↑7.0 84.1 ↑4.3 93.2 ↑0.2 42.5 ↑5 49.2 ↑9.0 70.1 ↑4.1 9
Hint-Prompt 78.8 ↑2.2 93.7 ↓0.2 18.3 ↓1.5 27.8 ↓0.5 59.6 ↑7 79.3 ↓0.5 93.1 ↑0.1 38.8 ↑1.3 40.6 ↑0.4 67.6 ↑1.6 6.7
Math-Prompt 79.6 ↑3.0 93.9 ↓0.0 19.5 ↓0.3 30.6 ↑2.3 59.8 ↑7.2 81.2 ↑1.4 93.6 ↑0.6 37.2 ↓0.3 41.5 ↑1.3 68.7 ↑0.5 4.5
Self-Contrast 84.4 ↑7.8 95.4 ↑1.5 20.5 ↑0.7 42.3 ↑9.2 64.2 ↑11.6 89.0 ↑9.2 94.0 ↑1 44.5 ↑7 54.6 ↑14.4 75.3 ↑9.3 7.8

Table 4: The performance on mathematical reasoning. Self-Consistency (SC-Vote, -Select, -Reflect) samples eight
responses and then performs voting, selecting, or reflection. For the Multi-Agent, we configure three agents to
engage in a three-round debate. ↑ and ↓ means accuracy changes over the CoT prompt. L- denotes Llama2-chat.

GPT3.5 L-7B L-13B L-70B
CoT Prompt 69.1 53.7 62.5 63.2
ExpertPrompt 69.6 ↑0.5 53.8 ↑0.1 62.9 ↑0.4 63.4 ↑0.2

Self-Reflection 69.3 ↑0.2 48.8 ↓4.9 61.5 ↓1.0 62.2 ↓1.0

Self-Consistency
– SC-Vote – – – –
– SC-Select 68.6 ↓0.5 52.1 ↓1.6 62.8 ↑0.3 63.0 ↓0.2

– SC-Reflect 69.0 ↓0.1 54.0 ↑0.3 62.2 ↓0.3 63.2 ↑0

Multi-Agent 69.9 ↑0.8 51.9 ↓1.8 63.1 ↑0.6 65.8 ↑2.6

Hint-Prompt 69.6 ↑0.5 54.2 ↑0.5 62.5 ↑0 64.6 ↑1.4

Self-Contrast 70.7 ↑1.6 52.1 ↓1.6 62.8 ↑0.3 66.7 ↑3.5

Table 5: The performance on Creative Translation.

mathematical reasoning, we achieve an average im-
provement of +7.2%. In contrast, the original self-
reflection shows no clear improvement (-0.51%). A
similar phenomenon is observed in creative trans-
lation, where Self-Contrast achieves a +0.95 im-
provement, whereas self-reflection results in a de-
crease of -1.6. Besides, compared to multi-agent
and ensemble baselines, our improvement is also
pronounced and consistent.

Better generality across different LLMs and
tasks. From commercial LLMs (e.g., GPT4) to
open-source models (Llama-2), and from reason-
ing to generative tasks, our strategy exhibits robust
generalizability. Concretely, from the perspective
of LLM, Self-Contrast achieves the best results on
most models except Llama-2-7B. For instance, for
GPT-3.5, the improvements are 7.8% on GSM8K
and 9.2% on SVAMP, while for Llama-2-70B, the
improvements are 11.6% and 9.3% respectively. As
for Llama-2-7B, our performance is slightly lower
than Self-consistency and Multi-Agent. This might
be due to the weaker instruction-following capabil-
ities of the Llama2-7B, making it challenging to
contrast two inconsistent solutions. Besides task-

wise, Self-Contrast applies to various task types,
demonstrating high versatility. In contrast, Self-
Consistency can not handle non-numerical tasks
directly, e.g., translation, due to its voting mech-
anism (Table 5). Its variant strategies, SC-Select
and SC-Reflect, lag significantly behind ours.

Fewer manual efforts and more reasonable
call overheads. Compared to the multi-agent de-
bate, Self-Contrast gains more significant improve-
ments with less call overhead (>10% reduction).
From a unified perspective, it can be viewed as
a multi-agent contrastive mechanism. Instead of
a free-form debate among multiple agents, our
strategy fosters a more explicit and purposeful de-
bate by contrasting the differences between agents
and summarizing the reasons for their disagree-
ments. Moreover, Self-Contrast is flexible, dynam-
ically designing multiple perspectives tailored to
user requests, without the need for manually pre-
configuring agent roles and quantities.

5 The Effect of the Different Components

The above results show that Self-Contrast inspires
reflection more accurately and stably than direct
evaluation. It encompasses a self-curated prompt
process, which fosters diverse solving perspectives
to mitigate self-evaluation biases. Besides, it in-
volves a checklist generation process to facilitate
re-examination. We analyze their effect as follows:

Self-curated Prompt Vs. Sampling Multiple
Responses. Instead of self-curated prompt process,
we directly sample multiple responses from LLMs
for subsequent contrast and reflection. Figure A2
shows that the final accuracy improves as the num-
ber of sampled responses increases, yet it is still
lower than Self-Contrast with self-curated prompts
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LLMs Strategy Invalid ✗⇒✗
Cases ↓

Toxic ✓⇒✗
Cases ↓

GPT3.5
Self-Reflection 269 52
SC-Reflect 245 73
Self-Contrast 186 ↓30.8% 11 ↓78.9%

L-70B
Self-Reflection 528 140
SC-Reflect 468 127
Self-Contrast 401 ↓24.8% 71 ↓49.2%

Table 6: Self-Contrast is evaluated on two cases.

process, where full strategy achieves 84.4% com-
pared to the maximum of 81.8% when sampling
5 responses. We find that the top-n responses are
sometimes strikingly similar, diminishing the effec-
tiveness of the contrastive strategy.

Reflection Without Checklist. We eliminate
the checklist generation process, i.e., directly in-
struct the LLM to reflect on the differences among
perspectives. In Table A1, it brings a significant
impact on mathematical reasoning (-3.5%), but a
slight impact on translation (-0.1%), since trans-
lation tasks tend to focus more on local features.
Even without a checklist, the LLM also can reflect
based on the comparisons of lexical, syntactic.

6 Analysis

6.1 Reducing Invalid and Toxic Reflections
As mentioned in Table 2, due to overly confident or
highly random in the self-evaluate process, vanilla
self-reflection contains a large amount of invalid
(✗→ ✗: 20.3%) or toxic reflections (✓→ ✗: 4%).
Therefore we investigate how Self-Contrast im-
proves these two scenarios on GSM8K. As shown
in Table 6, we observe that with Self-Contrast, the
occurrences of invalid and toxic cases significantly
reduced. In particular toxic cases decreased by
78.9% and invalid cases by 30.8% using GPT3.5.
In contrast, the SC-Reflect does not significantly
mitigate either of these scenarios.

The results indicate that through exploration,
comparison, and summarization, the uncertainty in
the reflection process is greatly reduced, thereby en-
hancing the error-correction capability of the LLM.

6.2 Contrasting Incorrect Solutions is also
Instructive

Self-Contrast inspires reflection by contrasting the
differences. An intuitive explanation is that the
errors in different responses are dissimilar or ran-
domized, so they can be used to compare with each
other and eliminate uncertainties or biases. To ver-
ify this, we sample 200 questions from GSM8K,

Strategy Acc.(%)
Self-Evaluate - An Incorrect Solution 70.1
Self-Contrast
- A Correct and an Incorrect Solutions 83.6
- Two Incorrect Solutions with Similar Error 70.9
- Two Incorrect Solutions with Different Error 75.5

Table 7: We conduct comparisons across four cases on a
subset of GSM8K. LLM self-evaluates or self-contrasts
different initial responses and reflects on their results.

Figure 3: Left: The distribution of the prompt number
generated when Self-curated. Right: We visualize the
top-20 keywords and frequencies in the prompt name.

each manually annotated with a correct solution,
two incorrect solutions with similar errors (e.g.,
Error1), and an incorrect solution with a differ-
ent error (Error2). We design four experiments:
1. Self-evaluate one incorrect solution followed
by reflection. 2. Self-Contrast a correct and an
incorrect solution. 3. Self-Contrast two similar in-
correct solutions. 4. Self-Contrast two dissimilar
incorrect solutions. Table 7 shows that contrasting
a correct and an erroneous solution, or contrasting
two incorrect solutions with different errors both
yield significant enhancements of 13.5% and 5.4%.
In contrast, comparing two solutions with similar
errors does not result in perceptible changes.

This result aptly explains that the improvement
of Self-Contrast stems from contrasting the dif-
ferences between dissimilar solutions. Therefore,
even if candidate solutions are both incorrect, as
long as their errors are different, Self-Contrast has
the potential to eliminate errors. In other words,
Self-Contrast can mitigate the random errors aris-
ing from the inherent uncertainty of the LLM.

6.3 Diverse Solving Perspectives Maximize
Contrast Effect

Prior analysis indicates that only contrasting dis-
similar solutions can foster reflection. Reviewing
our strategy, we employ a self-curated prompt pro-
cess to create multiple solving perspectives (§ 3.1),
thereby providing diverse solutions for subsequent
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comparison. Here, we analyze the distribution of
perspectives generated by this process in Figure 3.
For most requests, the LLM generates four prompts.
We also analyze the frequency of keywords within
these perspective’s names. For mathematical rea-
soning, the LLM indeed adaptively designs numer-
ous unique solving perspectives, then generating
a variety of results. These dissimilar results can
maximize the efficacy of our contrastive strategy.

7 Discussions

Self-contrast switches the critique objective
into a contrastive task. We transform the self-
evaluation into a process of comparing differences,
explicitly altering the attention distribution of the
LLM. The LLM is required only to identify the
differences between two solutions, without judging
right or wrong. This process is less influenced by
the biases inherent in LLMs, as the objective is
contrasting rather than evaluation. Besides, in Ta-
ble 7, LLMs are instructed to contrast two incorrect
solutions with different errors which also improves
reflection results.

The results in Section 2.3 also precisely verify
this conjecture. By simply transforming from di-
rect evaluation to contrastive evaluation, we en-
hance the effectiveness of reflection (75.8 to 77.5
on GSM8K), with more significant results (0.66 to
0.09). In Tables 4 and 5, our self-contrast approach
achieved more significant improvements.

Contrasting results can help LLMs notice
overlooked details and biases. After contrasting
the differences between the two solutions, we sum-
marize these differences into a checklist, thereby
explicitly prompting the LLM to focus on the log-
ical pitfalls and other issues underlying these dif-
ferences. This allows LLMs to engage in reflection
more clearly and purposefully.

As shown in Figure 2, LLM generates differ-
ent translations for the user’s request: "This plan
was shot to death", and "This plan was axed". The
former is a rigid translation that fails to grasp the
metaphor embedded in the military term. After
contrasting two different translations, LLMs be-
lieve they should scrutinize the source sentence for
metaphors and ensure the translation aligns with
the conventions of English expression.

8 Conclusion

We conduct a comprehensive investigation into the
inherent reflection capabilities of LLMs. Our find-

ings reveal a notable challenge: in the absence of
external feedback, LLMs struggle to correct errors
in previous responses on their own. After analyzing
their self-evaluate process, we discover that LLMs
are unable to accurately evaluate prior solutions and
often provide overconfident or inconsistent feed-
back, which impedes reflection. To mitigate this,
we introduce Self-Contrast, a contrastive strategy
that inspires reflection by contrasting the differ-
ences between multiple perspectives, providing an
informative checklist for reflection. Our experi-
ments show that Self-Contrast performs well across
a variety of scenarios and with different LLMs.

Limitations

For some smaller-scale LLMs, their instruction-
following capability is weaker, hindering their po-
tential to conduct precise comparisons and reflec-
tion. In such scenarios, the effectiveness of Self-
Contrast might be slightly inferior to ensemble
strategies. For instance, the performance of Self-
Contrast with Llama2-7B is marginally lower than
self-consistency. A viable approach is to utilize an
external tool to compare differences between mul-
tiple perspectives, rather than LLM itself. For in-
stance, we explore utilizing sequences comparison
library difflib2 to contrast two generated equations
(e.g., differ.compare(a+b÷c, a-b÷c)) or some rule-
based strategy to compare two responses. It can
provide us with more accurate and flexible compar-
isons at different granularity (e.g., character level).
We leave this as future work.
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Appendix

A Complementary Experiments

A.1 Detail For Manual Feedback Evaluation
We provide the details of manual evaluation in Ta-
ble 2. Specifically, we categorize reflection results
into four categories: Invalid (wrong -> wrong),
Valid (wrong -> right), Toxic (right -> wrong),
and Other (right -> right) based on their answer.
Subsequently, we manually assess the quality of
feedback within each reflection category. For in-
stance, for a Toxic reflection case, we devise ten
self-evaluation prompts, prompting LLMs to con-
duct a self-evaluation on their initial response, gen-
erating ten feedbacks. These feedbacks are manu-
ally checked for correctness and consistency. The
criteria for classification are as follows:

• If more than seven feedbacks accurately iden-
tify the errors in the initial response, we clas-
sify it into the first category: I. Accurately
Identifies Errors. Please note that the feed-
back only needs to accurately identify the er-
rors without necessarily correcting them.

• If more than seven feedbacks indicate that the
initial response has no errors, we categorize it
into the fourth category: IV. Overconfidence -
No Revision Required.

• If, among the ten feedbacks, there are more
than three different opinions, e.g., the first
feedback suggesting there are no errors, an-
other identifying error-1, and yet another
pointing out error-2.... For this scenario, we
classify it into the third category: III. Can-
not Output Consistent Feedback. In this sce-
nario, self-evaluation exhibits significant ran-
domness.

• The remaining cases are classified into the sec-
ond category: II. Stubbornly Offers Erroneous
Feedback.

The entire human evaluation process is con-
ducted by two senior PhD students. One is respon-
sible for categorization, while the other verifies the
categorization again.

A.2 LLM is More Likely to Trust Previous
Response

We investigate whether LLMs are prone to uncriti-
cally trusting previous responses during reflection,

rather than meticulously examining and rectify-
ing errors. Typically, self-reflection often contains
three stages, i.e., initial response, self-evaluate,
and revision stage. We employ different LLMs
to provide a poorer quality response as the initial
response for the subsequent two stages. We observe
whether this affects the results of the reflection, e.g.,
we replace gpt3.5→gpt3.5→gpt3.5 with Llama-2-
70b→gpt3.5→gpt3.5. If LLMs tend to place undue
trust in prior responses, the efficacy of the final re-
flective process will be adversely impacted.

However, as shown in Figure A1, the reflection
results are severely impacted by the quality of the
initial response. E.g., compared with using gpt3.5
for three phases, Llama2-70b→gpt3.5→gpt3.5 ex-
hibits a marked decrease (-8.4% for GSM8K). Fur-
thermore, we also observe the weaker the LLM
replaced, the poorer the performance after reflec-
tion. It suggests that LLMs tend to trust the initial
solution rather than detect and revise the errors
during the self-evaluate phase.
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Figure A1: The Reflection Accuracy with Different
LLM for Initial Response. Left: different LLMs provide
initial responses when GPT3.5 is utilized for Evaluation
and Revision. Center: different LLMs provide initial
responses when Llama2-70B is utilized for Evaluation
and Revision. Right: different LLMs provide initial
responses when Llama2-13B is utilized for Evaluation
and Revision. The results indicate that LLMs are easily
influenced during reflection. LLM is predisposed to
trust previous responses over diligently examining and
correcting errors.

A.3 Self-Evaluate Vs. Self-Contrast
Self-Contrast inspires reflection by contrasting the
differences, rather than evaluating directly. The
underlying assumption is contrast is more accurate
and stable than direct evaluation for LLM. To val-
idate this, we conduct an experiment using 200
samples from GSM8K, each containing a correct
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Figure A2: We replace the self-curated prompt pro-
cess with a simple strategy: directly sampling top-n
responses for contrast. We observe that as N increases,
the performance also improves, yet it still remains lower
than self-contrast with the self-curated prompts. All
results are conducted on GSM8K using GPT-3.5.

Strategy GSM8K CommonMT
Self-reflection 75.8 69.3
Self-Contrast 84.4 70.7
- w/o Checklist Generation 80.9 ↓3.5 70.6 ↓0.1
Selecting Strategies
- Random Selecting 76.4 ↓8 69.5 ↓1.2
- Clustering + Random Selecting 81.2 ↓3.2 69.7 ↓1.0
- Clustering + LLM Selecting 82.6 ↓1.8 69.9 ↓0.8
- Clustering + Negative Perspective 83.9 ↓0.5 70.8 ↑0.1

Table A1: We eliminate the checklist generation process,
instructing the LLM to directly reflect on the differences
from contrasting multiple perspectives. Besides, we also
analyze the impact of different selecting strategies.

and an incorrect solution. We design two tasks:
Taks 1: Contrasting two solutions. Task 2: Eval-
uating the incorrect solution. We manually check
the results of two tasks, i.e., whether LLM can per-
form contrast or evaluate correctly. As shown in
Figure A3, we observe contrasting is more accu-
rate than direct evaluating (171 correct Vs. 140
incorrect).

Further, we divide all samples into four cases:
1. both tasks are correct. 2. Contrasting: correct,
Evaluating: wrong. 3. Contrasting: wrong, Evalu-
ating: correct. 4. Both are wrong. In Figure A3, the
results show that when LLM can correctly evaluate
a solution, it is often able to contrast correctly, with
few exceptions (only 8 samples for Evaluating Cor-
rect Only). Notably, in 39 cases, the LLM fails in
direct evaluation but succeeds in contrast. These re-
sults indicate that contrasting two solutions is more
accurate and stable than direct evaluation, leading
to more reliable results.

Both Correct:
132 Samples

Contrasting
Correct Only:
39 Samples

Both Incorrect:
21 Samples

Evaluating Correct Only:
8 Samples

Contrasting Result:
171(Correct) 29(Incorrect)

Evaluating Result:
140(Correct) 60(Incorrect)

Figure A3: We compare the results of the Evaluating
and Contrasting using two pie charts. It shows Contrast-
ing is more accurate and stable than direct Evaluating.

A.4 Ablation Study For Selection Strategy

As introduced in Section 3.2, we cluster multiple
responses generated by the self-curated process and
then select the cluster center from each category for
contrast. We design four different selection strate-
gies. 1) Random Selecting: We randomly choose K
responses from all candidates. 2) Clustering + Ran-
dom Selecting: We first cluster all responses into
k categories, then randomly select one from each
category. 3) Clustering + LLM Selecting: Simi-
larly, we first cluster all responses into k categories,
then instruct the LLM to choose a potentially cor-
rect response from each category. 4) Clustering +
Negative Perspective: We first instruct the LLM
to consider what are common errors for the user
request. Then LLM should intentionally generate
an imperfect solution based on these common er-
rors. Finally, we instruct the LLM to select one
response from each category that is least similar to
the intentionally generated imperfect solution. As
shown in Table A1, we observe that compared to
Self-Contrast, the performance of several selection
strategies experiences a certain degree of decline.

B Experiments Details

B.1 Benchmarks

Mathematical Reasoning: We leverage multi-
ple datasets with different complexity and lan-
guages, including GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021) as benchmarks to evalu-
ate performance. Notably, GSM8K presents higher
levels of difficulty, encompassing complex mathe-
matical operations, while SVAMP is slightly sim-
pler and consists of combinations of addition, sub-
traction, multiplication, and division.

Creative Translation In addition to mathemat-
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ical reasoning tasks, we introduce a generation
task: creative translation. We utilize the Com-
monMT (He et al., 2020), which includes a vast
body of Chinese-to-English pair examples. Un-
like conventional translations, most samples con-
tain non-standard expressions such as idioms and
metaphors, necessitating an understanding of local
cultural and linguistic habits for accurate transla-
tion. Following the Multi-agent debate (Liang et al.,
2023), we adopt the samples with "hard" categories
from CommonMT as testing benchmarks.

B.2 Other Details

In the Self-Curated Prompt phase, we limit LLMs
to design at least two different prompts and a max-
imum of nine prompts for each request. In se-
lecting stage (Section 3.2), we set k to 3, which
means that all perspective results are divided into
three categories, and then we select a result from
each category. We instruct LLM sequentially out-
put comparisons among three results, subsequently
synthesizing these differences into a comprehen-
sive checklist in a single pass, eliminating the need
for multiple prompts. Besides, due to the diversity
of translation tasks, we also introduce a negative
perspective for translation. Specifically, we instruct
LLMs to consider what common errors might be
made for the user request, then actively adopt a
careless persona to generate an incorrect response
with some common mistakes. The result of this
negative perspective serves as a negative demon-
stration for subsequent selection and reflection.

C Baseline Prompts

Standard Prompt We use a simple prompt for
CoT Prompt and self-consistency baselines. For
each experiment, we run 10 times and averaged
their results.

Math Reasoning: You are a math teacher.
Let us solve the math question step by
step. The question is {input}.

Creative Translation: You are an expert
translator , please translate Chinese
into English accurately. The Chinese
sentence is {input}.

Reflection Prompts We designed 10 prompts for
the self-reflection baseline. Each experiment fol-
lows Initial response-Evaluation-Revision pattern.
The prompt for the Initial response remains consis-
tent with previous experiments (Standard Prompt).

1:

Evaluation: Please carefully examine the
previous responses for correctness , and
provide detailed feedback.

Revision: Please refine the previous
response based on the feedback.
2:
Evaluation: Please review your previous
responses for any errors , and provide
detailed feedback.

Revision: Please refine the previous
response based on the feedback. If there
are no questions , you can repeat the

previous solution
3:
Evaluation: Do you think the previous
response is correct or not , and if not
please point out where is wrong.

Revision: Please refine the previous
response.
4:
Evaluation: Please carefully evaluate the
quality of the previous response and
point out if you feel something is not
appropriate

Revision: Please carefully consider the
comments in the feedback and re-generate
the answer.

5:
Evaluation: Please double -check the
previous response for any errors. If
there are any errors , please point them
out.

Revision: Please read the feedback
carefully , and improve your answer.
6:
Evaluation: There may have been some
mistakes with your previous response , so
please double -check and find out the

mistake. If you think there are no
errors at all , please just reply , "
Exactly correct ".

Revision: Please refine your response. If
you think it’s acceptable , then just

repeat your last response.
7:
Evaluation: Please check that your
previous response matches the question.
Please point out if it does not fit

Revision: Please refine your response
based on the feedback. If the feedback
points out something that is not perfect
please fix it!

8:
Evaluation: Please consider whether your
response addresses the problem. If not
or if there is an error please point it
out

Revision: Please reflect based on the
feedback and improve your response.
9:
Evaluation: Please assess in detail
whether your previous response solves
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the problem and provide feedback.

Revision: Please refine your response
based on the feedback.
10:
Evaluation: Please check your previous
response for correctness and whether it
can be further enhanced.

Revision: Please further refine your
response based on the feedback. If you
don ’t feel it is necessary then restate
the previous response

D Our Prompt

D.1 Prompt for Self-Curated Process
Different requests may require some unique solving
perspectives. We design a self-curated prompts
process, enabling LLMs to design their prompts
based on specific user requests. The prompt for the
self-curated process is as follows:
Translation Task:
You are a translation specialist who
specializes in translating from diverse
perspectives. Given a Chinese source
sentence , you need to carefully analyze
the source sentence and dynamically
generate several useful prompt
instructions. These prompt instructions
should be diverse and also relevant to
the source sentence. These prompt
instructions are used to guide the
language model to think in different
ways , attention to different emphases ,
and reason from different perspectives
for a more accurate translation.

For instance , you can design different
translation styles , different
expressions of emotion , different
emphases , and different tones for input
sentences in prompt instruction. Besides
you can create different knowledge

backgrounds , identities , personalities ,
different concerns , etc for more
relevant translation.

Here are some guidance rules for Prompt
Generation:
1. Tone Requirement: Please generate
prompt instructions in the third person.
2. Content Requirement: Each prompt
instruction should be different , and
include at least three parts:
translation styles , attention emphasis ,
and tones and emotion design. Please do
not state them separately.
3. Number Requirement: Dynamically
generate the most valuable 2 to 9 prompt
instructions based on the input Chinese
source sentences.

4. Format Requirement: Each prompt
instruction should start with ###.
5. Others: Prompt should focus on
translation. So don ’t ask any other
irrelevant questions in the prompt.

Here is an example:

The input Chinese sentence is: 他想拉同村

的干部一起下水去贩毒. Please generate the
most suitable prompts.
Output:
Literal Perspective: ### You are a
meticulous translator , proficient in
direct translation , and highly focused
on specifics. Your translation approach
prioritizes precise replication of the
original text ’s expression.

Liberal Perspective: ### You are an
inventive translator , characterized by a
dynamic and liberal translation

approach , often reimagining the original
text ’s meaning in your own linguistic

style.

The input Chinese sentence is {input}.
Please generate the most suitable
prompts:

Reasoning Task:
You are a math specialist who
specializes in math solving from diverse
perspectives. Given a math question ,

you need to carefully analyze the
question and dynamically generate
several useful prompt instructions.
These prompt instructions should be
diverse and also useful for math -solving
. These prompt instructions are used to
guide the language model to think in
different ways , attention to different
emphases , and reason from different
perspectives for more accurate math
solving.

For instance , you can adopt multi -
faceted thinking (logical thinking ,
lateral thinking , analogical thinking ,
etc.), different reasoning perspectives
(e.g., top -down , bottom -up, step -by-step
), and different emphases of concern , (
entity words , numbers , units ,
percentages , math knowledge , etc) for
input question in prompt instruction.

Here are some guidance rules for Prompt
Generation:
1. Tone Requirement: Please generate
prompt instructions in the third person.
2. Content Requirement: Each prompt
instruction should adopt a different way
of thinking , or focus on a different

perspective , or different emphases to
solve the question.
3. Number Requirement: Dynamically
generate the most valuable 2 to 9 prompt
instructions based on the input math

question.
4. Format Requirement: Each prompt
instruction should start with ### and
end with @@@.
5. Others: Prompt instructions should
focus on math solving. So don ’t ask any
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other irrelevant questions in the prompt
.

Here is an example: The math question is
: Mark works at his job for 8 hours a
day for 5 days a week. He used to make
$10 an hour but they raised his pay by
$2 per hour. How much does he make a
week?

Output:
bottom -up perspective: ###As a
mathematician , you have to solve the
given problem from a bottom -up
perspective. Please focus initially on
the foundational elements of the problem
. Start with the simplest parts and
their interrelations. Progressively
build upon these foundational components
, joining them together until a complete
solution emerges

The input math question is {input}.
Please generate the most suitable
prompts:

D.2 Prompt for Contrasting Process

Translation Task:
You are an expert translator. Given some
candidate English translations for a

Chinese source sentence , you should
carefully compare the difference between
each two translations in terms of

semantics , syntax , words (e.g., nouns
and verbs), and any other aspects.

When you compare , you need to consider
the following questions:
1: Are there differences between the two
translations?

2: Where are the differences?
3: What causes these differences?

After contrasting , you should generate a
checklist based on these differences

between candidate translations. You
should carefully consider each
discrepancy and the reasons behind it ,
summarizing them into a few checking
instructions in the checklist. This
checklist can guide others to re-examine
the input sentence and these candidate

translations to eliminate these
discrepancies.

Input Format:
The Chinese sentence is {Chinese sentence}.
All Results: {Result1},{Result2}, {
Result3} ,....

Output Format:
For Result1 and Result2: {Difference1}.
For Result1 and Result3: {Difference2}
For Result2 and Result3: {Difference3}
Checklist: {Directive1, Directive2, ...}
....

Reasoning Task:
You are a math specialist who
specializes in math solving. Given some
candidate solutions for a math question ,
you should carefully compare the

difference for each two solutions in
their solving steps.

When you compare , you need to consider
the following questions:
1: Are the two solutions have different
final answers and mathematical
expressions?
2: Where are the differences in their
solution steps and mathematical
expressions?
3: Why are the answers of the two
solutions different?

After contrasting , you should generate a
checklist based on these differences

between candidate solutions. You should
carefully consider each discrepancy and
the reasons behind it, summarizing them
into a few checking instructions in the
checklist. This checklist can guide
others to re-examine the input question
and these candidate solutions to
eliminate these discrepancies.

Input Format:
The math question is {Question}.
All solutions: {Solution1}, {Solution2}, {
Solution3}, ....

Output Format:
For Solution1 and Solution2: {Difference1}
For Solution1 and Solution3: {Difference2}
For Solution2 and Solution3: {Difference3}
Checklist: {Directive1, Directive2, ...}

D.3 Prompt For Reflection Stage

We record all candidate responses, their differences,
and the checklist in a JSON format. The whole
prompt for math reasoning is as follows:

Reflection Instruction:
Given a math question , multiple
inconsistent solutions , their
differences in their solving processes ,
and a checklist. You should revise the
inconsistent solving step for each
solution , eliminate the differences , and
output a new solving process for each

solution.

Guidance Rules for Reflection:

1. Please check carefully according to
the requirements on the checklist. It
helps you to resolve conflicts between
different solutions.
2. When you finish revising inconsistent
solutions , please ensure all revised

solutions should have the same answer.
If not , please revise again until all
inconsistencies are removed , and all

3620



candidates are consistent.
3. Please output all revised solutions
in JSON format as input , without any
other text.

The math question is {question}.
The candidate solutions and their
discrepancy are as follows:
{

"Candidate ": {
"result_1 ": {

"answer ": "{answer1}",
"solution ": "{solution1}"},

"result_2 ": {
"answer ": "{answer2}",
"solution ": "{solution2}"},

"result_3 ": {
"answer ": "{answer3}",
"solution ": "{solution3}"},

....
},
"Discrepancy ": {

"difference_1_2 ": {
"source ": "result_1",
"target ": "result_2",
"relation ": "{difference}"
},

"difference_1_3 ": {
"source ": "result_1",
"target ": "result_3",
"relation ": "{difference}"
},

"difference_2_3 ": {
"source ": "result_2",
"target ": "result_3",
"relation ": "{difference}"
},

....
}

}
Checklist: {Directive1, Directive2,....}
Please revise each inconsistent solution
.

E Related Works

E.1 Self-correction Ability of LLM

Recently, one exciting discovery is that LLMs ap-
pear to possess advanced cognitive intelligence:
self-correction, where LLMs can refine their pre-
vious responses based on feedback (Shinn et al.,
2023; Madaan et al., 2023; Paul et al., 2023). This
capacity endows LLMs to harness external feed-
back, or even self-evaluated feedback to refine the
prior responses (Welleck et al., 2022; Kadavath
et al., 2022; Chen et al., 2023d; Kim et al., 2023;
Xi et al., 2023; Ganguli et al., 2023; Pan et al., 2023;
Nathani et al., 2023). This capacity, particularly
when it is solely reliant on inherent reflection, has
generated significant interest in the academic com-
munity. It appears that a simple iterative prompt
strategy could facilitate self-correction in an LLM-

based system. However, recent studies (Huang
et al., 2023b; Stechly et al., 2023; Liang et al., 2023;
Valmeekam et al., 2023) have cast doubt on LLM’s
inherent reflection capability. Their research indi-
cates that without external feedback, LLMs have
difficulties in amending prior responses.

E.2 Prompting for Better Problem-Solving

Drawing on cognitive science, human reasoning
involves two different reasoning patterns: breadth
reasoning, i.e., exploring various reasoning per-
spectives, and depth reasoning, which involves
continually refining ideas and minimizing errors.
Based on this concept, we can view previous
prompting strategies as either breadth or depth rea-
soning. Self-consistency and some contempora-
neous works (Wang et al., 2023d; Huang et al.,
2022; Yoran et al., 2023; Jain et al., 2023; Chen
et al., 2023c) mimic breadth reasoning by sampling
diverse reasoning processes and voting the final
answer, while self-reflection, abstraction reason-
ing strategies (Shinn et al., 2023; Madaan et al.,
2023; Paul et al., 2023; Zheng et al., 2023a; Wang
et al., 2023a; Yoran et al., 2023; Zheng et al.,
2023b; Xu et al., 2023b; Shridhar et al., 2023) rep-
resent depth reasoning, refining reasoning through
iterative prompting strategy. Except for these,
Self-Verification (Weng et al., 2022) designs a re-
verse generation from the answer to given condi-
tions, which is widely used in machine transla-
tion (Edunov et al., 2018). Cohen et al. (2023);
Mündler et al. (2023) propose a method for de-
tecting self-contradictions or factual errors in re-
sponses to enhance quality. However, our Self-
Contrast combines both breadth and depth reason-
ing. It creates multiple perspectives to enhance the
breadth of reasoning and also reflects on the dif-
ferences for better depth reasoning, offering more
reliable problem-solving.

E.3 Agent-based Methods

Recent studies (Li et al., 2023; Deshpande et al.,
2023; Xu et al., 2023a; Du et al., 2023; Xiong
et al., 2023) have found that when an LLM is
assigned a specific role personas, it can gener-
ate higher-quality responses. This suggests that
LLMs are powerful enough, and the appropriate
prompt can elicit this capability. Moreover, recent
works (Wang et al., 2023e; Fu et al., 2023; Liang
et al., 2023; Schick et al., 2022; Dong et al., 2023;
Park et al., 2023; Liu et al., 2023) have utilized a
multi-role dialogue to collaborate or debate with
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each other for a more comprehensive response. Fur-
thermore, some studies (Chen et al., 2023b; Chan
et al., 2023; Huang et al., 2023a; Chen et al., 2023a;
Hong et al., 2023; Wu et al., 2023b) have integrated
this concept with complex tasks such as code gener-
ation by decomposing a complex task into several
sub-tasks and employing multiple agents with dif-
ferent identities for each sub-task. However, most
agent-based approaches necessitate careful manual
design of each agent’s role and pattern of interac-
tion. Our approach, in contrast, does not require
pre-defined agents’ roles and numbers by humans,
as it is entirely designed by the LLMs based on the
user request, offering greater flexibility.

E.4 Learning Mathematical Reasoning
Mathematical reasoning is the key to achieving
embodied intelligence (Zhang et al., 2021, 2022c).
In recent years, mathematical reasoning has be-
come a significant benchmark (Cobbe et al., 2021;
Hendrycks et al., 2021) to evaluate the capabili-
ties of artificial intelligence models. Within the
paradigm of supervised learning, a vast amount of
research (Xie and Sun, 2019; Patel et al., 2021;
Jie et al., 2022; Zhang et al., 2022b, 2023b) has
been dedicated to translating human language into
mathematical equations. In the era of LLMs, the
advent of Chain-of-Thought and other prompting
strategies have notably augmented the reasoning
capabilities (Zhu et al., 2023; Yuan et al., 2023b;
Frieder et al., 2023; Zhou et al., 2022).

Prompting Method PAL and Program-of-
Thoughts (Gao et al., 2022; Chen et al., 2022) sep-
arate the computation and reasoning process using
code as the intermediate process. Mathprompter,
Auto-Model (Imani et al., 2023; Zhao et al., 2023)
encourage LLMs to generate diverse reasoning
paths in different forms simultaneously, including
text (CoT), code (PAL), and symbols (Equation)
for a higher confidence answer. Automatic-CoT,
Complexity-CoT, Synthetic Prompt and Boosted
Prompt (Zhang et al., 2022d; Fu et al., 2022; Shao
et al., 2023; Pitis et al., 2023) enhance reasoning
performance by optimizing the selection of demon-
strations within the prompt. Tree-of-thought and
Self-Evaluation (Yao et al., 2023; Xie et al., 2023)
extend the CoT into a search tree, obtaining more
accurate answers through self-evaluation.

Finetuning-based Method Another domain of
study involves methods based on finetuning. These
approaches involve finetuning open-source models,
such as LLaMA, by incorporating insights from

sophisticated closed-source LLMs. The fine-tuning
approaches(Yuan et al., 2023a; Luo et al., 2023;
Yue et al., 2023; Wang et al., 2023b; Yu et al.,
2023; Gou et al., 2023) also have the potential
to improve the mathematical reasoning capabili-
ties of LLMs. The essence of fine-tuning is cen-
tered around the development of quality datasets
comprising question-response pairs. Addition-
ally, process-supervised training methods Light-
man et al. (2023); Wang et al. (2023c) can also
enhance the reasoning abilities of the LLMs.
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