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Abstract

End-to-end automatic speech recognition
(ASR) systems have made significant progress
in general scenarios. However, it remains chal-
lenging to transcribe contextual named entities
(NEs) in the contextual ASR scenario. Previous
approaches have attempted to address this by
utilizing the NE dictionary. These approaches
treat entities as individual tokens and gener-
ate them token-by-token, which may result in
incomplete transcriptions of entities. In this pa-
per, we treat entities as indivisible wholes and
introduce the idea of copying into ASR. We de-
sign a systematic mechanism called CopyNE,
which can copy entities from the NE dictio-
nary. By copying all tokens of an entity at once,
we can reduce errors during entity transcrip-
tion, ensuring the completeness of the entity.
Experiments demonstrate that CopyNE consis-
tently improves the accuracy of transcribing en-
tities compared to previous approaches. Even
when based on the strong Whisper, CopyNE
still achieves notable improvements.

1 Introduction

End-to-end automatic speech recognition (ASR)
systems have achieved impressive performance in
general scenarios (Chan et al., 2016; Rao et al.,
2017; Gulati et al., 2020; Boulianne, 2022). How-
ever, in the contextual ASR scenario where speech
often contains numerous contextual entities, it re-
mains a challenge for ASR systems to get accurate
transcriptions (Alon et al., 2019; Jayanthi et al.,
2023). For instance, when utilizing personal voice
assistants like Siri or Alexa, it is common to en-
counter contextual entities such as personal names,
place names, and organization names. ASR models
trained solely on speech-text data often struggle to
transcribe these personalized entities due to their in-
frequent occurrence in the training set (Sathyendra
et al., 2022). Since contextual entities always cover

∗ Corresponding author

input audio

ASR System

安 徽 铜 铃自来他Output:

ānzìláitā huı̄ língtóngPinyin:
他 来 自 安 徽 铜 陵Gold:

He comes from An hui Tong lingEnglish:

铜陵

铜...铜

NE dictionary

Figure 1: An example with homophonic errors. Pinyin
is the Mandarin pronunciation of each token. The red
text indicates the wrongly predicted token.

a wealth of semantic information. It is important
to improve the accuracy of transcribing entities for
downstream natural language processing tasks such
as information retrieval and spoken language un-
derstanding (Ganesan et al., 2021; Wu et al., 2022).

Recently, researchers have started leveraging the
information of textual modality as additional con-
textual knowledge to help contextual ASR. The
most typical approach, premised on the assump-
tion that entities are already known before, use a
contextual named entity (NE) dictionary as con-
textual knowledge (Chen et al., 2019; Jain et al.,
2020; Han et al., 2021; Huber et al., 2021; Fu et al.,
2023). Two representative approaches are “contex-
tual listen, attend and spell” (CLAS) (Pundak et al.,
2018) and contextual bias attention (CBA) (Zhang
and Zhou, 2022). CLAS employs the knowledge
of the dictionary to aid the prediction of each to-
ken. They use dictionary representation as extra
inputs for token prediction in the decoder. The
decoder attends to each entity, and the dictionary
representation is an aggregated representation of
all entities, weighted by the attention scores. CBA
extends CLAS and uses an extra training loss. The
loss explicitly makes use of the attention scores
and force the model attend to a proper entity in the
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dictionary if the token to be predicted is related
with the entity.

Previous methods have achieved considerable
improvements, especially in transcribing entities.
However, they all treat entities as individual tokens.
These models utilize contextual knowledge to aid in
predicting independent tokens without considering
the role of these tokens in constituting a complete
entity. In other words, a multi-token entity is bro-
ken into isolated tokens during decoding. We argue
that this is problematic. For instance, model may
erroneously generate the subsequent tokens of an
entity, despite correctly producing the preceding to-
kens. As shown in Figure 1, when transcribing the
speech “他来自安徽铜陵” (He comes from Anhui
Tongling), an incorrect output of “他来自安徽铜
铃” (He comes from Anhui copper bell) is obtained.
Despite the model’s awareness of the location en-
tity “铜陵” in the NE dictionary and its accurate
prediction of the first token “铜”, it mistakenly tran-
scribes “陵” (ling) as “铃” (bell) during the token-
level prediction process. This occurs because the
model predicts tokens independently, neglecting
the integrity of the token span as a complete entity.
Furthermore, “陵” and “铃” share the same pronun-
ciation “líng”, with “铃” being a more frequently
occurring token in the training data. Consequently,
the model tends to generate the wrong token “铃”.

In this paper, we propose a new approach for
contextual ASR called CopyNE. Unlike previous
approaches, we view entities as indivisible wholes.
To the best of our knowledge, we are the first to
introduce the idea of copying into ASR. We design
a systematic and effective mechanism to copy enti-
ties from a dictionary. Specifically, CopyNE uses
a copy loss that guides the model to copy the cor-
rect entity from the dictionary. During inference,
our CopyNE has the flexibility to either predict a
token from the token vocabulary or copy an entity
from the NE dictionary at each decoding step. By
copying multiple tokens simultaneously, we can
alleviate errors within the entity, thus ensuring the
token span as a complete entity.

Experiments on Chinese Aishell (Bu et al.,
2017), ST-cmds1, and English Eng (Yadav et al.,
2020) datasets show that our CopyNE achieves sig-
nificant improvements across all scenarios, partic-
ularly in the contextual ASR scenario. Compared
to previous methods using dictionary, CopyNE
achieves relative reductions in CER of 13.5% and

1https://www.openslr.org/38/

20.8% on Aishell and ST-cmds in the contextual
scenario. Notably, CopyNE shows more remark-
able improvements when it comes to transcrib-
ing entities, with relative reductions of 55.4% and
53.9% in the NE-CER metric on Aishell and ST-
cmds. Moreover, when based on Whisper (Rad-
ford et al., 2022) and evaluated in its domain of
expertise, Eng dataset, CopyNE still achieves an
impressive 6.4% and 16.8% relative reductions in
WER and NE-WER. We will release our codes,
configurations, and models at https://github.
com/zsLin177/CopyNE.

2 The CTC-Transformer Model

In this work, we build our proposed approach on
the end-to-end CTC-Transformer model, since it
is the most widely used and achieves competitive
performance in the ASR field (Hori et al., 2017;
Kim et al., 2017; Miao et al., 2020; Omachi et al.,
2021; Gong et al., 2022). However, it is worth
noting that our idea can be applied to other ASR
approaches as well.

The CTC-Transformer is built upon the seq-to-
seq Transformer (Vaswani et al., 2017), with a
connectionist temporal classification (CTC) layer
added after the audio encoder. As shown in Fig-
ure 2, it takes a sequence of acoustic frames
X = (x1, ...,xT ) as input and generates the cor-
responding transcription text y = (y1, ..., yU ) as
output. The model consists of two main compo-
nents: an encoder and a decoder. First, the en-
coder encodes the acoustic frames X into hidden
states H = (h1, ...,hT ). Then, the decoder pre-
dicts the target sequence y in an auto-regressive
manner. At each decoding step u, the decoder
predicts the next target token yu+1 based on the en-
coder’s output H and the previously predicted to-
kens y≤u = (y1, ..., yu). This process is expressed
as follows:

H = AudioEncoder(X) (1)

du = Decoder(y≤u,H) (2)

P (yu+1|y≤u) = softmax(Wdu + b) (3)

Here, du ∈ Rd denotes the hidden state at step
u, and P (yu+1|y≤u) is the posterior distribution
of predicting token yu+1. W ∈ R|V|×d and b ∈
R|V| are learned parameters, where V is the token
vocabulary, and |V| is the size of the vocabulary.
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Figure 2: The CTC-Transformer model.
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Figure 3: Our CopyNE model.

The loss of Transformer, Ltrans(y), comes from
minimizing the negative log probability of y.

Ltrans(y) = −
U−1∑

u=0

logP (yu+1|y≤u) (4)

As commonly used in previous works, the CTC
loss is also applied here. CTC aligns each acous-
tic frame with a token from left to right. For a
given target sequence y, there may be multiple
valid alignments. The CTC loss is derived from
maximizing the sum of these valid alignments, and
has been proved to be able to enhance the represen-
tational capacity of the audio encoder (Kim et al.,
2017). Finally, the overall loss is the a weighted
sum of the Ltrans(y) and Lctc(y), as follows:

L(y) = λLtrans(y) + (1− λ)Lctc(y) (5)

where λ is a hyper-parameter that determines the
relative weight of each loss term.

In inference, the model selects the most probable
transcription using beam search as follows:

ŷ = argmax
y

(
∑

u

logP (yu+1|y≤u)) (6)

Here, there are many ways to use scores in de-
coding, such as combining CTC scores and Trans-
former scores as in training, or using CTC-prefix
beam search followed by re-scoring with Trans-
former to select the optimal result. To compare
with most previous works, we use the simplest de-
coding strategy, as shown in Equation 6.

3 Our CopyNE Model

This section describes our proposed CopyNE
model. The basic idea is that the model incorpo-
rates a contextual NE dictionary as external knowl-
edge and can choose to directly copy NEs from
the dictionary. We design a systematic framework

to implement the idea. During training, a copy
loss is designed to encourage the model to copy
corresponding entities from the dictionary. During
inference, at each generation step, the model can
either predict a single token from token vocabulary
or directly copy a entity from the given dictionary.

3.1 The Model Framework
Figure 3 illustrates the framework of our CopyNE
model, which shares the same encoder as the CTC-
Transformer model, but with a distinct decoder. In
the decoder, we introduce an extra NE encoder that
takes the NE dictionary as input and encodes it into
NE representations. Then, we use a dot-product at-
tention module to compute copy probabilities based
on the obtained NE representations, which are then
aggregated to form the overall dictionary (Dict) rep-
resentation. The decoder can not only utilize copy
probabilities to select entities for copying but also
leverage the Dict representation to aid in predicting
the next token.

NE Representation. We denote an NE dictionary
as E = (e0, e1, ..., eN ). We use e0 = ∅ as a
pseudo entity to handle the case where the text to
be transcribed has no relation to any entity and the
model should not copy any entity at current step.

For each entity ei, we apply a multi-layer LSTM
as the NE encoder to encode the token sequence
and use the last hidden state of the NE encoder as
the entity representation. It is a popular practice
in previous contextual ASR works (Pundak et al.,
2018; Zhang and Zhou, 2022).

zi = LSTM(ei) (7)

After that, we get entity representations Z =
(z0, z1, ...,zN ), where Z ∈ RN×d.

Copy Probability. Once the NE representations
are obtained, the copy probability is computed by
a dot-product attention mechanism. It is used to
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determine which entity to copy. First, we compute
the attention score aeiu for entity ei at step u as
follows:

aeiu =
(Wqdu)

⊤(Wkzi)√
d

(8)

where Wq,Wk ∈ Rda×d are two learned pa-
rameters. da denotes the dimension of the atten-
tion. After that we obtain the attention probability
Pc(ei|y≤u) for entity ei by softmax.

Pc(ei|y≤u) =
exp(aeiu )∑

ej∈E exp(a
ej
u )

(9)

Here, Pc(ei|y≤u) not only represents the attention
probability of ei but also naturally serves as the
copy probability for the entity. During inference,
we use the copy probabilities to select the entities
for copying.

Dict Representation. With copy (attention) prob-
abilities, we can obtain the Dict representation ru
at decoding step u. It is used to help the predic-
tion of subsequent tokens. Specifically, ru ∈ Rd is
computed by weighted summing the entity repre-
sentations with the copy (attention) probabilities.

ru =
∑

ei∈E
Pc(ei|y≤u)zi (10)

Dict-enhanced Prediction. Finally, we get the
overall Dict representation and copy probabilities.
Following Pundak et al. (2018), the Dict represen-
tation is applied to help the generation of the next
token. So Equation 3 is extended as follows:

P (yu+1|y≤u, E) = softmax(W [du, ru] + b)
(11)

3.2 Training

During training, to guide the model in selecting
correct entities from the NE dictionary for copying,
we introduce an additional copy loss Lcopy. First,
based on the ground truth transcription y and the
NE dictionary, we construct a copy target σu+1 for
each decoding step u, telling the model whether
to copy an entity from the dictionary or not, and
which one to copy. Then we compute the copy loss
Lcopy according to the copy target σu+1 and the
copy probability Pc(σu+1|y≤u).

The Computation of Copy Loss. Provided that
we have an NE dictionary Eb, we construct a copy
target, denoted as σu+1, for decoding step u. In
order to build the copy target, we perform maxi-
mum matching on the transcription text y from left
to right based on the dictionary Eb. If the token
span yi,j = (yi, ..., yj) matches the k-th entity ek
in Eb, then we set the copy target σi = ek, and
σi+1∼j = ∅. This indicates that the model can
copy the k-th entity from the dictionary at decod-
ing step i − 1, but cannot copy any entity from
decoding step i to j − 1. When it comes to a span
of length 1, i.e., i = j, during the left-to-right
maximum matching process, we also set σi to ∅2.

For example, in the instance shown in Figure
3, the span “安徽” (An hui) matches the second
entity in the dictionary, and the span “铜陵” (Tong
ling) matches the first entity in the dictionary. This
means that at steps 0 and 2, the model can choose
to copy the second and first entities from the dictio-
nary, respectively. Therefore, σ1 = e2 and σ3 = e1,
while σ2 = ∅ and σ4 = ∅.

After constructing all the copy targets σ =
(σ1, ..., σU ), we can compute the copy loss as fol-
lows:

Lcopy(σ) = −
U−1∑

u=0

logPc(σu+1|y≤u) (12)

where Pc(σu+1|y≤u) is the copy probability com-
puted in Equation 9, meaning the probability of
copying entity σu+1 at decoding step u. It is worth
noting that the copy loss and the bias loss in CBA
have fundamental differences. The bias loss in
CBA provides information to each token, including
tokens within entities, about which entity to attend
to. In contrast, our copy loss solely instructs the
model to copy the entity from the dictionary at the
first token of the entity.

Finally, the loss in our CopyNE model is formed
as follows:

L = λLtrans(y) + (1− λ)Lctc(y) + Lcopy(σ)
(13)

Dictionary Construction. To construct the copy
target and compute the copy loss, we should first
build a contextual NE dictionary for training. Pro-
vided that the entities have been labeled in the

2Please note that in this paper, we primarily focus on en-
tities with a length greater than 1, and therefore only retain
such entities in our dictionary.
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dataset, we build a NE dictionary Eb for each data
batch following previous works.

Firstly, to construct Eb, we extract all entities
in the instances of this batch and add them to the
dictionary. For instances that do not contain any
entities, in order to ensure an adequate number of
positive examples, we randomly select one or two
substrings of length 2 or 3 from the transcription
and include them in the dictionary as pseudo en-
tities. In order to improve the ability of copying
the correct entity from a wide range of entities, we
also extract additional negative entities from the
training set. We analyze the influence of the quan-
tity of negative entities on the model. Due to page
constraints, we have included this section in §C.

3.3 Inference
During inference, unlike previous token-level ap-
proaches, our model has the flexibility to predict
either a token from the vocabulary or an entity from
the NE dictionary. By copying the tokens of an en-
tity at once, our CopyNE model can avoid errors
that occur when predicting multiple tokens sepa-
rately. As shown in Figure 3, our CopyNE model
can directly copy the two entities “安徽” and “铜
陵” from the dictionary.

Specifically, at step u, our prediction is based
on both the model’s probability for a token v, i.e.,
P (v|ŷ≤ u,E), and the copy probability for an en-
tity e, i.e., Pc(e|ŷ≤u). The former represents the
probability of predicting a token v from the token
vocabulary, while the latter is normalized on all
entities, originally indicating the attention proba-
bility over entity e, which can be naturally inter-
preted as the probability of copying entity e from
the dictionary. To consider both probabilities on
the same scale, we devise an elegant decoding strat-
egy by taking use of the copy probability of ∅, i.e.,
Pc(∅|ŷ≤u), and re-normalize the probabilities to
create an unified searching space Q.

Q(i|ŷ≤u) =

{
Pc(∅|ŷ≤u)P (i|ŷ≤u, E), i ∈ V
Pc(i|ŷ≤u), i ∈ E, i ̸= ∅

(14)
Here, to ensure the sum of the probabilities of all

elements is 1, we use Pc(∅|ŷ≤u) as a prior proba-
bility, representing the probability of the text to be
transcribed has no relation with the entities in the
dictionary and the text should be generated from
the token vocabulary. If the element is from the
token vocabulary V , we obtain the probability by
multiplying the prior probability and the model’s

probability for the token. Otherwise, we use the
copy probability directly.

However, in our experiments, we observe that
the model occasionally selects irrelevant entities
for copying. To enhance the quality of copying,
we introduce a confidence threshold γ during de-
coding to filter out low-confidence copies. Specif-
ically, we set Pc(i|ŷ≤u) = 0, i ∈ E, i ̸= ∅, and
Pc(∅|ŷ≤u) = 1 when max{Pc(i|ŷ≤u)|i ∈ E, i ̸=
∅} < γ. This means that if the model’s maximum
copy probability over real entities is less than γ, it
is prevented from copying entities from the dictio-
nary and instead generates tokens from the token
vocabulary. In section 4.2, we discuss the influence
of the γ in detail.

Finally, we use beam search to select the best
element at each step to form the final prediction3.

ŷ = argmax
y

(
∑

u

logQ(i|y≤u)) (15)

4 Experiments

4.1 Experimental Setup
Datasets. Experiments on Chinese Mandarin are
conducted on two widely used datasets, Aishell
(Bu et al., 2017) and ST-cmds4. We use the Eng
dataset released by Yadav et al. (2020) to perform
experiments on English. Furthermore, to compare
the performance of different methods in contextual
ASR scenarios where speeches contain entities, we
extract instances containing entities from the dev
and test sets, forming the corresponding “∗-NE”
datasets. Detailed introduction about the datasets
can be found in §A.

NE Dictionary. Aishell and ST-cmds were re-
leased without entity annotations. In contrast, the
Eng dataset was simultaneously released with au-
dio, transcribed text, and corresponding entity an-
notations. Chen et al. (2022) further annotated enti-
ties for Aishell. So, in our experiments with Aishell
and Eng, we use the releated entities to build the
NE dictionary. For ST-cmds, we use HanLP5 to
get three types of entities: person, location, and
organization.

Evaluation Metrics. Character error rate (CER)
and word error rate (WER) are used to assess the
overall performance of models in Mandarin and

3It has to be noted that the partially predicted ŷ is still
encoded at token-level.

4https://www.openslr.org/38/
5https://github.com/hankcs/HanLP
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Figure 4: Effect of the Confidence Threshold γ.

English ASR tasks. In this paper, to evaluate the
model’s entity transcription accuracy, we also em-
ploy NE-CER and NE-WER metrics (Han et al.,
2021). We align the predicted hypothesis and ref-
erence using the minimum edit distance algorithm,
and subsequently calculate NE-C(W)ER by mea-
suring the C(W)ER between the entity text in the
reference and its counterpart in the hypothesis.

Parameter Setting. The parameter setting in our
work is the same as that in most previous works,
and the detailed descriptions can be found in §B. To
ensure a fair comparison with prior works, we care-
fully reproduced the CLAS (Pundak et al., 2018)
and CBA (Zhang and Zhou, 2022). Moreover, to
verify the effectiveness of our approach on pre-
trained large models, we also conducted experi-
ments on OpenAI Whisper (Radford et al., 2022).
Specifically, we use the Whisper model as our trans-
former encoder and decoder. We choose seeds ran-
domly to run models for 3 times and report the
average results.

4.2 Results
Analysis about γ. We first investigate the in-
fluence of the copy threshold γ during inference.
Figure 4 illustrates how the CER changed on the
Aishell dev and Aishell-NE dev with different γ
values. Our findings reveal that when the threshold
is low, the CER is high, indicating that copying
results in more errors when the model copies en-
tities with low confidence. As we increase the γ,
the CER decreases, indicating improved reliability
of our CopyNE when the model had higher confi-
dence. However, when the threshold becomes too
high (above 0.9), the model has fewer opportuni-
ties to choose to copy entities, resulting in a higher
CER. This happens because it becomes more diffi-
cult for the model to trigger the copy mechanism.
So, we set γ to 0.9 for all experiments and discus-
sions to enhance the robustness of our model.

Results on Chinese. Table 1 and 2 show the CER
and NE-CER of different models on the Chinese
dataset. In Table 1, we note that while our pri-
mary focus is improving transcription of NEs, we
also achieve significant improvements in overall
text transcription. Without Whisper, our CopyNE
model outperforms the previous CBA approach
with a 3.2% relative CER reduction on the Aishell
Test and 7.7% on the ST-cmds Test. In contex-
tual ASR scenarios, the improvements are even
more pronounced, with a 13.5% relative CER re-
duction on the Aishell-NE Test and 20.8% on the
ST-cmds-NE Test. Even with the powerful Whis-
per, our CopyNE consistently excels, especially on
the ST-cmds dataset, with relative reductions of
8.6% and 15.7% on the two test sets, respectively.
Additionally, we observed that CLAS performs
well on Aishell, closely matching CopyNE, but its
performance on ST-cmds is comparatively weaker,
sometimes even worse than the Whisper baseline,
a reverse pattern also seen with CBA. In contrast,
CopyNE consistently performs well across differ-
ent datasets, demonstrating its better adaptability.

We also present an improved model, i.e.
CopyNE†, which features a more powerful con-
former encoder. The results show that CopyNE†

can achieve further improvements compared to
CopyNE.

In this paper, our main goal is improving the tran-
scription of NEs. From the results presented in Ta-
ble 2, it is evident that our approach exhibits signifi-
cant improvements in entity transcription compared
to previous methods. When not using Whisper, our
CopyNE model achieves an impressive relative NE-
CER reduction of 55.4% on the Aishell-NE Test
and 53.9% on the ST-cmds-NE Test. Even based
on the powerful Whisper model, our CopyNE con-
tinues to achieve remarkable improvements, with a
relative NE-CER reduction of 25.4% and 26.7% on
the two test sets. This demonstrates that copying
entities from the dictionary significantly improves
the accuracy of transcribing entities.

Results on English. Whisper (Radford et al.,
2022) has shown strong performance in English, so
we directly use it as our baseline for experiments
on English. As seen in Table 3, CopyNE still out-
performs other methods, achieving a 5.2% relative
WER reduction compared to CLAS in the general
scenario on the Eng test dataset. In contextual sce-
narios, CopyNE demonstrates 6.4% relative WER
reductions and 16.8% relative NE-WER reductions.
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Model
Aishell Aishell-NE ST-cmds ST-cmds-NE

Dev Test Dev Test Dev Test Dev Test
Joint CTC-Transformer 06.12 06.70 07.36 09.00 10.63 10.56 13.67 13.63
CLAS (Pundak et al., 2018) 06.04 06.72 07.06 08.73 10.10 10.09 12.64 12.85
CBA (Zhang and Zhou, 2022) 06.11 06.56 06.73 08.00 10.73 10.72 12.69 12.43
CopyNE 05.59 06.35 05.36 06.92 09.76 09.89 09.90 09.84
CopyNE† 04.49 05.03 04.31 05.05 07.78 07.80 07.71 07.40
Whisper 5.28 5.97 6.32 7.68 9.14 9.06 12.22 12.35
xxx+ CLAS 4.50 5.23 5.30 6.72 9.10 9.20 12.12 12.25
xxx+ CBA 5.41 6.06 6.13 7.60 7.96 7.87 10.03 9.96
xxx+ CopyNE 4.71 5.10 5.40 6.42 7.35 7.19 8.98 8.40

Table 1: CER on Chinese datasets in general scenarios (Aishell, ST-cmds) and contextual scenarios (Aishell-NE,
ST-cmds-NE). † means the model with an improved 12-layer Conformer (Gulati et al., 2020) encoder and averages
the parameters of the best 10 epochs when decoding.

Model Aishell-NE ST-cmds-NE
Dev Test Dev Test

Joint CTC-Transformer 11.64 14.03 21.63 21.41
CLAS (Pundak et al., 2018) 11.24 13.12 19.70 20.10
CBA (Zhang and Zhou, 2022) 07.78 09.44 15.72 15.92
CopyNE 03.00 04.21 07.60 07.34
x w/o Dict repr ru 04.05 05.27 09.35 09.21
Whisper 10.31 12.24 21.30 21.83
xxx+ CLAS 08.97 11.64 20.82 21.07
xxx+ CBA 09.13 11.79 15.91 15.41
xxx+ CopyNE 06.74 08.79 11.93 11.29

Table 2: NE-CER (%) on the Chinese datasets.

Model Eng.W Eng-NE.W Eng-NE.NW

Dev Test Dev Test Dev Test
Whisper 8.54 8.73 8.53 8.71 28.16 26.61
xx+ CLAS 7.90 8.28 7.86 8.31 27.23 26.55
xx+ CBA 9.17 9.52 9.21 9.49 30.01 30.82
xx+ CopyNE 7.47 7.85 7.42 7.78 23.29 22.09

Table 3: Results on the English datasets. W and NW
denote WER and NE-WER respectively.

Additionally, we observed that CBA lags behind
the Whisper baseline. We suspect that this might
be due to its approach of encouraging the model
to generate entity tokens by modifying Whisper’s
output logits, which can disrupt the model’s overall
probability distribution, especially given Whisper’s
strong fit on English data. On the contrary, our
CopyNE is more stable.

4.3 Impact of the NE dictionary

Following previous works (Pundak et al., 2018;
Han et al., 2021), we report the main results using
exact NE dictionaries from the test sets. However,
when collecting dictionaries in real scenarios, to
ensure the coverage, many unrelated noisy NEs
are inevitably added to the dictionary. To analyze

Dict size Dev Test
CER NE-CER CER NE-CER

×0.85 05.65 04.27 7.29 05.83
×0.90 05.56 03.90 7.15 05.26
×0.95 05.44 03.37 7.01 04.68
×1 05.36 03.00 6.92 04.21
×2 05.61 03.50 7.12 04.82
×3 05.85 03.92 7.39 05.18
×4 06.02 04.09 7.66 05.56

Table 4: The impact of the NE dictionary.

the impact of noisy entities on CopyNE, we extract
entities from the training set that are not included in
the test set as noisy NEs. From the corresponding
×2, ×3, and ×4 rows in Table 4, we can see that
the introduction of noisy NEs results in a reduction
in the model’s performance. Nevertheless, even
with the addition of 6k noisy NEs, resulting in the
dictionary size being quadrupled (×4), CopyNE
continues to outperform CLAS and CBA, despite
their reliance on the precise dictionary.

In the more rare cases where some NEs are out
of the dictionary (OOD), to analyze CopyNE’s per-
formance in OOD scenarios, we designate some
low-frequency NEs from the original dictionary as
OOD NEs. These NEs are removed, and decoding
is performed using the remaining NEs. From the
relevant rows in Table 4, it can be observed that
this primarily impacts NE-CER since CopyNE can-
not copy missing NEs. However, even when the
OOD proportion reaches 15% (Dict size = ×0.85),
CopyNE still shows commendable performance.

4.4 Qualitative Analysis

CopyNE demonstrates significant improvements.
To gain further insight into CopyNE’s performance,
we conduct a qualitative analysis of its generations.
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Transcriptions Dictionary
English A company in Yangluo...

阳逻
(Yangluo)

杨丙卿
(Yang
Bingqing)

冈山
(Gangshan)

桃太郎体
育馆
(Taotailang
gym)

Gold 阳逻的一家公司...
CLAS 扬罗的一家公司...
CBA 阳罗的一家公司...
CopyNE [阳逻]的一家公司...
English Yang Bingqing served as manager...
Gold 杨丙卿担任经理...
CLAS 杨澄清担任经理...
CBA 杨炳卿担任经理...
CopyNE

[
杨丙卿

]
担任经理...

English The Taotailang gym in Gangshan.
Gold 冈山的桃太郎体育馆
CLAS 冈山的淘汰郎体育馆
CBA 刚山的淘汰狼体育馆
CopyNE [冈山]的

[
桃太郎体育馆

]

Table 5: Generations of different models. Red text
indicates errors, while text enclosed in square brackets
represents entities that were copied from the dictionary.

Table 5 shows examples of transcriptions from dif-
ferent ASR models. We can see that in the second
example, where CBA successfully identified the
correct person entity “杨丙卿” from the dictionary
and produced a transcription that is close to gold,
it still made a mistake by transcribing “炳” instead
of “丙” due to the same pronunciation (bı̌ng). In
contrast, CopyNE can copy all the tokens of the
entity from the NE dictioanry. For example, in the
third example “冈山的桃太郎体育馆” (The Tao-
tailang gym in Gangshan), CopyNE directly copies
the location entity “冈山” (Gangshan) and the orga-
nization entity “桃太郎体育馆” (Taotailang gym),
achieving a completely correct transcription.

5 Related Works

Contextual ASR. Researchers have explored var-
ious approaches to help models in the contextual
ASR scenario, with the primary approaches being
the utilization of external dictionaries and language
models (LMs). CLAS (Pundak et al., 2018) was
the first to introduce the use of dictionary to aid
in prediction. Alon et al. (2019) extend CLAS by
adding phonetically similar alternative terms to the
dictionary as negative examples, aiming to improve
the model’s ability to distinguish entities with sim-
ilar pronunciations. Huber et al. (2021) propose
to utilize the representation of a single entry in the
dictionary that is most relevant to the current de-
coding status. Fu et al. (2023) propose to apply
the character-based NE encoder to better capture
acoustic features useful for transcribing rare enti-
ties. Different from our CopyNE, these methods
all treat entities as individual tokens, which may

result in incomplete NE transcriptions.
LMs trained on large-scale text data can learn

rich linguistic and contextual knowledge, and thus
can be used to assist contextual ASR. There are
typically two approaches to leverage LMs for con-
textual ASR. The first approach involves using the
dedicated LM to encourage the generation of entity
tokens during decoding. (Novak et al., 2012; Alek-
sic et al., 2015; Zhao et al., 2019a). The second
approach is multi-modal pre-training. Researchers
have explored joint pre-training of speech and text
models, aiming to leverage information from both
modalities, and have achieved promising results
(Chung et al., 2021; Ao et al., 2022; Zhang et al.,
2022). However, compared to using contextual dic-
tionaries, models that rely on LMs tend to have
much more parameters, which means that train-
ing and deploying require more time and computa-
tional resources.

The Copy Mechanism. The copy mechanism
can be traced back to the pointer network (Vinyals
et al., 2015), which can predict output sequences
from the input. The copy mechanism (Gu et al.,
2016) extends the pointer network by enabling the
model to generate sequences that are not present in
the input. According to the source of copying, it
can be divided into copying from input text, from
document, and from external dictionary.

Copying from Input Text. The copy mechanism
is commonly used to copy text from input text. For
instance, in text summarization tasks, it is common
to employ the copy mechanism to copy keywords
from the input text (Cheng and Lapata, 2016; Xu
et al., 2020). In grammatical error correction tasks,
where only a small portion requires correction, the
copy mechanism is used to copy the correct text
from the input text (Zhao et al., 2019b).

Copying from Document. In addition to copy-
ing from input text, the copy mechanism can be
employed to copy text from other texts when the
input text is not available. Lan et al. (2023) intro-
duced the copy mechanism in decoder-only lan-
guage models, where text fragments are selected
from a vast amount of documents to generate the
target text.

Copying from External Dictionary. In this paper,
we introduce a systematic framework, which seam-
lessly integrates the process of copying from an
external dictionary to aid in generation. We believe
that our framework can also be applied to other
generation tasks.
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6 Conclusion

In this paper, we consider entities as indivisible
elements and introduce a copy mechanism into
ASR for the first time to assist in transcribing enti-
ties. We devise a systematic copy framework that
can copy all the tokens of an entity from the NE
dictionary at once, preserving the token span as a
complete entity. Our approach demonstrates sub-
stantial improvements on both English and Chinese
datasets. In summary, CopyNE represents a signifi-
cant advancement in contextual ASR, providing a
promising direction in this field.

Limitations

From our experiments, we have found that an ex-
cessive number of noisy entities can impact the
performance. As part of our future work, we intend
to explore methods for dynamically filtering out
interfering entities from the dictionary during the
decoding process.
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Appendices

A Datasets

Aishell (Bu et al., 2017) and ST-cmds6 are two
widely used Chinese Mandarin datasets. Aishell
contains about 150 hours of speech. ST-cmds was
built based on commonly used online chatting and
user command speeches, which contains about 110
hours of speech. For the English dataset, we utilize
the portion of data that has been manually anno-
tated with entities by Yadav et al. (2020), which
comprises approximately 150 hours. The Eng
dataset is built by extracting content from well-
known English datasets, including Librispeech

6https://www.openslr.org/38/

(Panayotov et al., 2015), CommonVoice7, Tedlium
(Rousseau et al., 2012), and Voxforge8.

Table 6 shows the detailed statistics of the
datasets used in our experiments. “Sent” means
the number of instances. “NE” is the number of
different named entities in the dataset and also the
size of the contextual entity dictionary used during
inference.

Dataset Train Dev Test
Sent NE Sent NE Sent NE

Aishell 119919 14241 14326 2194 7176 1186
Aishell-NE 119919 14241 4949 2194 2244 1186
ST-cmds 82080 17376 10260 3029 10260 3124
ST-cmds-NE 82080 17376 3285 3029 3241 3124
Eng 64570 11858 3100 2568 3100 2508
Eng-NE 64570 11858 2677 2568 2690 2508

Table 6: Statistics of the used datasets.

B Parameter Settings

We use 80-dimensional log-mel acoustic features
with 25ms frame window and 10ms frame shift.
The log-mel features are first fed into a 2D convo-
lutional layer for downsampling and mapped to 256
dimensions before being inputted into the Audio
Encoder. Both the audio encoder and decoder con-
sist of 6 Transformer layers with 4 attention heads
each. The NE Encoder is composed of three LSTM
layers, with the input being a randomly initialized
256-dimensional embedding vector and the hidden
size being 512. The relative weight λ in Equation
13 is set to 0.7. The experiments are conducted on
two NVIDIA A100 GPUs.

In addition, for the experiments on Whisper,
we use Whisper-small model9, which includes 12
transformer layers in both its encoder and decoder,
and is pre-trained on a total of 680,000 hours of
multi-lingual and multi-task data. We replace our
audio encoder and decoder with the Whisper model
and fine-tune the parameters of the entire model
on our training set for a maximum of 20 epochs.
During fine-tuning, the initial learning rate for the
Whisper model’s parameters is set to 1e-5, while
the learning rate for other parameters is set to 1e-3
with 10,000 warm-up steps. During inference, we
used beam search with a beam size of 5 and 10 for
models with and without Whisper, respectively.

7https://en.wikipedia.org/wiki/Common_Voice
8https://en.wikipedia.org/wiki/VoxForge
9https://huggingface.co/openai/whisper-small
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Figure 5: Effect of β.

C Influence of Negative Entities in
Training

During training, we construct an NE dictionary
for each batch. To enhance the model’s ability
of copying correct entities, we sample additional
negative examples.

Suppose the dictionary already contains m enti-
ties, either real entities or pseudo sub-string entities.
We sample β ·m entities as negative examples from
the training set. We utilize the parameter β to con-
trol the number of negative examples. Thus, we get
the final dictionary for this batch which contains a
total of (β + 1) ·m entities. As shown in Figure 5,
adding 1 or 2 times the number of negative samples
can reduce transcription errors. Specifically, when
β = 2, the CER and NE-CER decreased by 0.42%
and 0.44% compared to β = 0. However, as β con-
tinues to increase, the error rate started to rise. We
think that this is due to the presence of excessive
noise. This causes the model to excessively focus
on the negative samples, thus affecting its ability
to accurately copy entities. Therefore, we set β to
2 during training.
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