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Abstract

In this paper, we explore the capabilities of
LLMs in capturing lexical-semantic knowl-
edge from WordNet on the example of the
LLaMA-2-7b model and test it on multiple
lexical semantic tasks. As the outcome of
our experiments, we present TaxoLLaMA, the
“all-in-one” model for taxonomy-related tasks,
lightweight due to 4-bit quantization and LoRA.
TaxoLLaMA achieves 11 SOTA results, and 4
top-2 results out of 16 tasks on the Taxonomy
Enrichment, Hypernym Discovery, Taxonomy
Construction, and Lexical Entailment tasks.
Moreover, it demonstrates a very strong zero-
shot performance on Lexical Entailment and
Taxonomy Construction with no fine-tuning.
We also explore its hidden multilingual and do-
main adaptation capabilities with a little tuning
or few-shot learning. All datasets, code, and
pre-trained models are available online.1

1 Introduction

Recent studies in Natural Language Processing
widely utilize Large Language Models (LLMs)
for their capability to store extensive knowledge
(Sun et al., 2023; Kauf et al., 2023; Tang et al.,
2023) and to adapt quickly to different tasks via in-
context learning without backpropagation (Dong
et al., 2023). However, the application of LLMs
to the classical lexical semantic tasks still remains
understudied: for instance, no recent experiments
with LLMs have been performed for the Hypernym
Discovery task (Camacho-Collados et al., 2018) for
different domains and languages. In Taxonomy En-
richment, LLMs are mostly used to extract vector
representations which are further processed with a
complex pipeline (Jiang et al., 2022).

Our work aims to investigate the capabilities of
LLMs in addressing four tasks requiring taxonomic
knowledge: Hypernym Discovery, Taxonomy En-

1https://github.com/VityaVitalich/
TaxoLLaMA

hyponym: (definition),  hypernym:

TaxoLLaMA

Figure 1: Training procedure of TaxoLLaMA: hyper-
nym relations from the WordNet are linearized and fed
into an LLM model. The model aims at generating the
correct hypernym(s) as output.

richment, Lexical Entailment, and Taxonomy Con-
struction. We hypothesize that the model finetuned
with hypernym (IS-A relationships) would be use-
ful for solving taxonomy-related tasks. To verify
this hypothesis, we develop a method inspired by
(Moskvoretskii et al., 2024) to compile a taxonomy-
focused instruction tuning dataset, sourced from
English WordNet (Miller, 1998), to bring the im-
plicit word knowledge of an LLM to the forefront
when addressing lexical semantic tasks.

Having trained our model in this specialized set-
ting, we are releasing the TaxoLLaMA — the fine-
tuned version of the LLaMA-2-7b model (Touvron
et al., 2023) — that is capable of solving tasks re-
quiring taxonomic knowledge. Figure 1 presents
the main idea of the model finetuning process.
TaxoLLaMA operates effectively in a zero-shot
setting, surpassing SOTA results in Lexical Entail-
ment and Taxonomy Construction. With additional
tuning, it also achieves SOTA performance in the
Hypernym Discovery task across several languages
and in half of the Taxonomy Enrichment tasks. Fur-
thermore, we have optimized TaxoLLaMA to be
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lightweight through 4-bit quantization (Dettmers
et al., 2023) and the application of LoRA (Hu
et al., 2022), making it feasible to run on GPU
devices with only 4.8Gb of GPU for forward pass
and 5.5Gb for fine-tuning, ensuring its accessibility
for widespread use, e.g. using Colab2.

The contributions of the paper are as follows:

• We introduce the use of LLMs across vari-
ous lexical semantic tasks via hypernym pre-
diction and propose an appropriate taxon-
omy instruction tuning method that exploits
WordNet for dataset sampling.

• We present TaxoLLaMA – a unified model
designed to address a spectrum of lexical-
sematic tasks achieving state-of-the-art
(SOTA) results in 11 out of 16 tasks and
securing the second rank in 4 tasks.

• We present an instructive dataset based on
English WordNet-3.0 only for training a
taxonomy-based LLM and collected defini-
tions for input words in the Taxonomy En-
richment datasets and the Lexical Entailment
datasets using Wikidata3 and ChatGPT4.

• We perform a detailed error analysis for all
tasks using both manual and automatic ap-
proaches: e.g. we evaluate error patterns and
model quality using ChatGPT.

2 Related Work

In this section, we briefly describe previous ap-
proaches to the lexical semantics tasks that we are
experimenting with in the paper.

Hypernym Discovery The Hypernym Discov-
ery task involves predicting a list of hypernyms
for a given hyponym (see example in Figure 2a).
The recent study introduces a taxonomy-adapted,
fine-tuned T5 model (Nikishina et al., 2023). Ear-
lier models include the Recurrent Mapping Model
(RMM) (Bai et al., 2021), which employs an Mul-
tilayer Perceptron (MLP) with residual connec-
tions and a contrastive-like loss. CRIM (Bernier-
Colborne and Barrière, 2018), distinguished as the
best in SemEval, utilizes a similar MLP structure
with a contrastive loss. The Hybrid model (Held

2https://colab.research.google.com
3http://wikidata.org
4https://chat.openai.com

and Habash, 2019) combines the k-Nearest Neigh-
bor approach with Hearst patterns, while the 300-
sparsans method (Berend et al., 2018) is an en-
hancement to the traditional word2vec approach.

Taxonomy Enrichment This task is addressed
in SemEval-2016 Task 14 (Jurgens and Pilehvar,
2016), aiming to add a new word to the correct
hypernym (node) in the given taxonomy. Numer-
ous different architectures have been proposed to
solve the task in recent years. TMN (Zhang et al.,
2021) exploits multiple scorers to find 〈hypernym,
hyponym〉 pairs for a given query concept. The Tax-
oEnrich (Jiang et al., 2022) employs two LSTMs
(Staudemeyer and Morris, 2019) to encode ances-
tors and descendants information. In addition, the
TaxoExpan (Shen et al., 2020) uses Graph Neural
Network (GNN) (Scarselli et al., 2008) to predict
whether the query is a child of an anchor concept.

Taxonomy Construction The taxonomy con-
struction task aims to extract hypernym-hyponym
relations between a given list of domain-specific
terms and then construct a domain taxonomy
based on them. The models for this task include
Graph2Taxo (Shang et al., 2020), which employs
a sophisticated GNN architecture, LMScorer. Re-
strictMLM (Jain and Espinosa Anke, 2022) uses
zero-shot RoBERTa or GPT2 for pair relationship
scoring, differing in their use of MASK or next
token probabilities. TAXI+ (Aly et al., 2019) com-
bines Hearst patterns with Poincaré embeddings
for refinement of the existing approaches.

Lexical Entailment Lexical entailment is a clas-
sification task that identifies semantic relationships
between phrase pairs. An example of the lexical
entailment might be a hyponym “cat” which entails
the existence of a hypernym “animal”.

One of the recent lexical entailment models
is LEAR (Vulić and Mrkšić, 2018) a fine-tuning
method of transforming Euclidean space so that it
reflects hyponymy-hypernymy relations. In SeVeN
(Espinosa-Anke and Schockaert, 2018) relations
between words are encoded. Pair2Vec (Joshi et al.,
2019) and variant of GloVe introduced in (Jameel
et al., 2018) use words’ co-occurrence vectors and
Pointwise Mutual Information. GBL (“Global” En-
tailment Graph) (Hosseini et al., 2018) is GNN
that utilizes “local” learning and CTX (“Contex-
tual” Entailment Graph) (Hosseini et al., 2021)
is the improvement of GBL with contextual link-
prediction. McKenna et al. (2023) proposes an
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Figure 2: Examples with input and output for each task are highlighted by color. Rectangle “hypernym” denotes a
word generated by the model; circle means a node from the graph. Confidence score determines the existence of a
relationship between the two nodes provided in the input.

etailment smoothing technique to the CTX model
resulting in SOTA for the task.

3 Methodology

This section outlines the process of data collection
and the subsequent training of the model.

3.1 Data Collection
To create the dataset, we apply the algorithm pre-
sented by Moskvoretskii et al. (2024), focusing on
hyponym-hypernym relationships only. We sam-
ple both nouns and verbs from the WordNet-3.0
graph. To prepare our training and validation sets,
we randomly pick edges to form pairs of hyponym-
hypernym, the motivation for precise choice is
given in Section E. If a child node links to more
than one hypernym, we count each link as a sepa-
rate pair. Additionally, we incorporate definitions
for child nodes from WordNet to disambiguate
the sense of the input word. As definitions may
not be provided for some subtasks during infer-
ence (Lexical Entailment, MAG PSY, and MAG
CS from Taxonomy Enrichment), we additionally
generate definitions with ChatGPT for test sets that
lack pre-defined explanations or take them from
Wikidata. We use the web interface of ChatGPT
3.5 from February 2024 and the “gpt-3.5-turbo”
model from the same period to generate definitions.
The prompts for such requests and the statistics
of the generated definitions are presented in the
Appendix A in Examples 4-5 and in Table 7. This
step is highly required: the lack of definitions can

reduce the performance of the model, as shown in
Moskvoretskii et al. (2024).

Below we show a training sample from our
dataset used for instruction tuning of TaxoLLaMA.
It comprises a system prompt describing the desired
output (1) combined with an input word selected
from WordNet, along with its definition (2), and
the target (3), which is the true hypernym of this
input word, also sourced from WordNet:

(1) [INST] «SYS» You are a helpful assistant. List
all the possible words divided with a comma.
Your answer should not include anything ex-
cept the words divided by a comma «/SYS»

(2) hyponym: tiger (large feline of forests in most
of Asia having a tawny coat with black stripes)
| hypernyms: [/INST]

(3) big cat,

The statistics of the generated datasets are pro-
vided in the next Subsection 3.2 along with the
setups they were created for.

3.2 Training Details

We introduce two versions of our model:
TaxoLLaMA, the model trained on the full
WordNet-3.0 dataset for further community usage
in lexical semantic tasks, and TaxoLLaMA-bench,
designed for the benchmark tests. For this model,
we make sure that the training set does not include
any nodes from the test sets of those four tasks. The
size of the training set for the first model is 44, 772
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items, whereas the other model was finetuned with
36, 775 samples. The TaxoLLaMA-Verb model
that we experiment with in Section 5.4 is fine-tuned
exclusively on the verb sub-tree from WordNet, re-
sulting in 7, 712 samples. The finetuning procedure
of our models is depicted in Figure 1.

To train in this setup, we use the LLaMA-2
model with 7 billion parameters (Touvron et al.,
2023). For better computational efficiency during
training and inference, we quantize the model to 4
bits and fine-tune it using QLoRA (Dettmers et al.,
2023), a full-precision LoRA adapter. During pre-
training, we used a batch size of 32 and a learning
rate of 3e−4, applying a cosine annealing sched-
uler. Any further fine-tuning for different domains
or languages was done with a batch size of 2 and
a learning rate of 3e−4, without using schedulers.
Other details are described in Appendix F.

3.3 Task Adaptation

We propose two methods for adapting LLMs, fine-
tuned with the WordNet instructive dataset. Differ-
ent tasks interpret a taxonomy node in a different
way and their understanding is reflected in Figure 2.
For instance, Taxonomy Enrichment operates with
synsets or synset names while Hypernym Discov-
ery operates with lemmas (Figure 2a). In Figure
2b, there is no difference between “TRUE” and
“two-node connected”. However, they are depicted
in such a way as to represent the expected outputs
for two distinct tasks: Taxonomy Construction and
Lexical Entailment. Taxonomy Construction fo-
cuses on creating a taxonomy graph from a list of
nodes, essentially predicting the connections be-
tween them. On the other hand, lexical entailment
involves determining whether a connection exists
between two nodes. We benefit from this task like-
ness because we can train one model that would be
able to solve multiple lexical semantic tasks. De-
spite this, it’s important to note that the tasks differ
in how they interpret these relations.

We assume that Taxonomy-related tasks can be
solved within two approaches from our pipeline.

Generative approach involves directly apply-
ing the same procedure as used in training. Given
a hyponym, we use the model to generate a list
of corresponding hypernyms. We apply this ap-
proach to the Hypernym Discovery and Taxonomy
Enrichment datasets.

Ranking approach involves evaluating the hy-
pernymy relation using perplexity: a lower score

indicates a stronger relationship. Beyond assess-
ing this relationship, we can also evaluate the hy-
ponymy relation by simply reversing the hypernym
and hyponym positions (this way we obtain reverse
perplexity). The ratio between these two scores is
a measure of confidence that we use for ranking.
The lower the Confidence score, the higher the con-
fidence of the model in the hypernymy relationship
between the two constituents of a pair.

We apply this approach for the Taxonomy Con-
struction and Lexical Entailment datasets with
slight modifications that will be described in the
respective sections 4.3 and 4.4 in more detail.

4 Experiments

In this section, we assess the proposed method-
ology and the finetuned models, TaxoLLaMA and
TaxoLLaMA-bench, on four lexical semantic tasks:
Hypernym Discovery, Taxonomy Enrichment, Lex-
ical Entailment, and Taxonomy Construction. We
evaluate models in a zero-shot setting and after
fine-tuning on the provided train sets for each task.

4.1 Hypernym Discovery

We test our model on the Hypernym Discovery
task from SemEval-2018 (Camacho-Collados et al.,
2018) using our generative approach. This task
features an English test set for general hypernyms
and for two domain-specific “Music” and “Medical”
sets, and general test sets for Italian and Spanish.
Performance is measured using the Mean Recip-
rocal Rank (MRR) metric. We test a zero-shot
approach, where the model is not tuned to the train-
ing datasets. The test set differs from WordNet and
may involve multiple hops to hypernyms, and can
also be applied to narrow domains.

4.2 Taxonomy Enrichment

Taxonomy Enrichment aims to identify the most
appropriate placement for a missing node within a
taxonomy. Continuing the approach of prior works
(Zhang et al., 2021; Jiang et al., 2022), the goal
is framed as ranking nodes from the graph based
on their likelihood of being the hypernym, where
successfully placing the node means ranking its
correct hypernyms at the top. In our setup, we use
the generative approach described in Section 3.3
and depicted in Figure 2b.

The Taxonomy Enrichment benchmark encom-
passes the WordNet Noun, WordNet Verb, MAG-
PSY, and MAG-CS datasets (Jiang et al., 2022;
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1A: English 2A: Medical 2B: Music 1B: Italian 1C: Spanish

CRIM* (Bernier-Colborne and Barrière, 2018) 36.10 54.64 60.93 - -
Hybrid* (Held and Habash, 2019) 34.07 64.47 77.24 - -
RMM* (Bai et al., 2021) 39.07 54.89 74.75 - -
T5 (Nikishina et al., 2023) 45.22 44.73 53.35 24.04 27.50
300-sparsans* (Berend et al., 2018) - - - 25.14 37.56

TaxoLLaMA zero-shot 38.05 43.09 42.7 1.95 2.21
TaxoLLaMA-bench zero-shot 37.66 42.2 44.36 1.47 2.08

TaxoLLaMA fine-tuned 54.39 77.32 80.6 51.58 57.44
TaxoLLaMA-bench fine-tuned 51.59 73.82 78.63 50.95 58.61

Table 1: MRR performance on Hypernym Discovery. * refers to the systems that rely on the provided
dataset only, without LLM pretraining or additional data being used. Zero-shot is trained on the WordNet
data only, without fine-tuning on the target dataset.
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Figure 3: Experiments for domain and language adaptation on the Hypernym Discovery datasets.

Shen et al., 2020). To ensure consistency, 1000
nodes from each dataset were sampled to match
the test set from TaxoExpan (Shen et al., 2020).
Following Jiang et al. (2022), we consider scaled
MRR (Ying et al., 2018) as the main metric, which
is the regular MRR multiplied by 10 and averaged
over all of a node’s correct hypernyms.

4.3 Taxonomy Construction

This task aims to assemble a taxonomy given a
list of nodes and a root. We employ datasets from
TexEval-2 (Bordea et al., 2016) with “Eurovoc sci-
ence”, “Eurovoc environment” and “WordNet food”
subtasks and the F1 measure for evaluation.

We evaluate our model with the ranking ap-
proach applied to all node pairs. Using this prin-
ciple, we iteratively established a threshold below
which pairs are considered to have a relationship.
The threshold for the “Food” domain was set to
1.8, for “Environment” to 4.6, and for “Science”
to 1.89. To further refine the graph, we eliminate
cycles by deleting the edge inside a cycle with
the highest perplexity. Additionally, we limit each
node to a maximum of three hypernyms. For nodes
associated with more than three hypernyms, only
three with the lowest perplexity scores are retained.

4.4 Lexical Entailment
Lexical Entailment aims at identifying semantic
relationships between phrase pairs. Given a pair of
words, the relation of entailment holds if there are
some contexts in which one word can be substituted
by the other, such that the meaning of the original
word can be inferred from the new one.

We utilized the ANT entailment subset (Guillou
and de Vroe, 2023) (a detailed enhancement of
the Levy/Holt dataset (Holt, 2019)) and Hyperlex
benchmark (Vulić et al., 2017) for our experiments.

ANT Dataset This dataset contains pairs of sen-
tences differing in one argument in syntactic struc-
ture (for example: “The audience apploaded the
comedian” and “The audience observed the co-
median”, from Table 2 in (Guillou and de Vroe,
2023)). For these pairs, one of the relations is de-
termined: antonymy, synonymy, directional entail-
ment, or non-directional (which is reversed direc-
tional entailment) entailment. We treat the differing
elements of the sentences as hypernym-hyponym
pairs if the sentences are in one of the entailment
relationships. To evaluate the entailment relations,
we utilize the ratio of hypernym and hyponym rank-
ing score, normalized via the L2 norm to represent
the probability of entailment. For instance, we
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MAG-CS MAG-PSY Noun Verb

TaxoExpan (Shen et al., 2020) 19.3 44.1 39.0 32.5
GenTaxo (Zeng et al., 2021) 23.9 46.4 28.6 42.8
TMN (Zhang et al., 2021) 24.3 53.1 36.7 35.4
TaxoEnrich (Jiang et al., 2022) 57.8 58.3 44.2 45.2

TaxoLLaMA zero-shot 7.4 7.3 n/a n/a
TaxoLLaMA-bench zero-shot 8.5 6.6 n/a n/a

TaxoLLaMA fine-tuned 24.9 29.8 48.0 52.4
TaxoLLaMA-bench fine-tuned 30.2 31.4 45.9 51.9

Table 2: Scaled MRR Across Tasks for Taxonomy En-
richment. Here, “n/a” stands for “not applicable”, as
TaxoLLaMA has already seen WordNet data and its per-
formance cannot be considered as zero-shot. Zero-shot
is trained on the WordNet data only, without fine-tuning
on the target dataset.

S E F

TexEval-2 best (Bordea et al., 2016) 31.3 30.0 36.01
TAXI+ (Aly et al., 2019) 41.4 30.9 34.1
Graph2Taxo pure (Shang et al., 2020) 39.0 37.0 -
Graph2Taxo best (Shang et al., 2020) 47.0 40.0 -
LMScorer (Jain and Espinosa Anke, 2022) 31.8 26.4 24.9
RestrictMLM (Jain and Espinosa Anke, 2022) 37.9 23.0 24.9

TaxoLLaMA 44.55 45.13 51.71
TaxoLLaMA-bench 42.36 44.82 51.18

Table 3: F1 score for the Taxonomy Construction
Task. “S” stand for the (S)cience dataset, “E” for the
(E)nvironment dataset, and “F” stands for the (F)ood do-
main dataset. Zero-shot is trained on the WordNet data
only, without fine-tuning on the target dataset.

calculate the perplexity for “move” as a hypernym
of “walk” (PPLm→w) and vice versa (PPLw→m).
The ratio PPLm→w

PPLw→m
of these scores will thus indi-

cate the model’s confidence.

HyperLex Dataset This dataset focuses on the
entailment for verbs and nouns, evaluating on a
scale from 0 to 10. A score of 0 indicates no entail-
ment, while 10 means strong entailment. The goal
is to achieve the highest correlation with the gold-
standard scores. For Hyperlex, we consider the
ranking approach with no additional processing.

Previous methods generate embeddings and train
a simple SVM on the Hyperlex training set. Fine-
tuned models like RoBERTa demand substantial
computational efforts and are tailored to the Hyper-
lex dataset. Compared to those prior studies, our
zero-shot model uses perplexities directly as the
predictions without a need for training. Therefore,
a direct comparison might overlook the unique
methodologies and resource implications, suggest-
ing that each approach should be evaluated within
its specific context.

5 Results

This section describes the main results of genera-
tive and ranking setup experiments for all tasks.

5.1 Hypernym Discovery

The results for the English language in Table 1,
indicate that both the fine-tuned TaxoLLaMA and
TaxoLLaMA-bench outperform previous SOTA re-
sults by a large margin. While the zero-shot per-
formance of our models may be lower than when
fine-tuned, they still deliver comparable outcomes
to previous results for general English tasks and do
not fall far behind in domain-specific tasks, consid-
ering that previous approaches are all fine-tuned.

Multilingual Performance For Italian and Span-
ish, the fine-tuned model surpasses previous SOTA
results. We might assume the model’s effectiveness
in a multilingual setting, knowing that LLaMA-2 is
initially multilingual and that previous finetuning
was performed exclusively on English pairs. How-
ever, we observe that the zero-shot performance
struggles to generate accurate hypernyms for lan-
guages other than English. It is worth mentioning
that both Italian and Spanish data were not included
in the instruction tuning dataset.

Zero-shot Performance To investigate this zero-
shot underperformance, we analyzed the effects
of fine-tuning on both domains and languages, as
shown in Figure 3a. It’s clear that, except for task
2B, the model exceeds previous SOTA results with
just 50 samples for fine-tuning. Additionally, the
fluctuating scores highlight the model’s sensitivity
to the quality and nature of the training data.

Few-shot Performance We also explored the
few-shot learning approach for the Italian and Span-
ish languages to assess the model adaptability in
an in-context learning environment, as shown in
Figure 3b. The model surpassed previous SOTA
benchmarks with a near-logarithmic pattern of im-
provement for the Italian language with 30 and
50 shots, yet not performing as well for Spanish.
We attribute the suboptimal few-shot to the 4-bit
quantization and its relatively small size. Smaller
models typically exhibit lower performance across
various benchmarks compared to their larger coun-
terparts, as illustrated by the example of LLaMA-2
(Touvron et al., 2023). Additionally, the capac-
ity of smaller models or quantized models is also
inferior compared to larger models, a finding cor-
roborated by previous research (Wang et al., 2022;
Frantar et al., 2023; Lin et al., 2024; Egiazarian
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AUCN AP

GBL (Hosseini et al., 2018) 3.79 58.36
CTX (Hosseini et al., 2021) 15.44 65.66

GBL-PK=4 (McKenna et al., 2023) 13.91 64.71
CTX-PK=4 (McKenna et al., 2023) 25.86 67.47

TaxoLLaMA zero-shot 0.89 51.61
TaxoLLaMA-bench zero-shot 2.82 54.24
TaxoLLaMA-verb zero-shot 19.28 69.51

Table 4: Performance on the Lexical Entail-
ment ANT dataset. Zero-shot is trained on
the WordNet data only, without fine-tuning
on the target dataset.

Setting Model Lexical Random

fine-tuned
RoBERTa best (Pitarch et al., 2023) 79.4 82.8
RoBERTa mean (Pitarch et al., 2023) 65.8 63.8
LEAR (Vulić and Mrkšić, 2018) 54.4 69.2

zero-shot

Relative (Camacho-Collados et al., 2019) 54.3 58.4
Pair2Vec (Joshi et al., 2019) 33.4 54.3
GRV SI (Jameel et al., 2018) 48.3 55.4
SeVeN (Espinosa-Anke and Schockaert, 2018) 46.9 62.7
FastText 43.9 54.3

TaxoLLaMA 70.2 59.3

Table 5: Spearman Correlation for lexical and random test subsets
of Hyperlex benchmark. Zero-shot is trained on the WordNet data
only, without fine-tuning on the target dataset.

et al., 2024). The advantage gained from few-shot
learning scenarios is less pronounced in quantized
models compared to full-precision models. This
observation has been specifically documented in
the paper of Lin et al. (2024).

5.2 Taxonomy Enrichment

The results presented in Table 2 show that our
model surpasses all previous methods on the Word-
Net Noun and WordNet Verb datasets but does not
perform as well as the current SOTA method on
the more specialized MAG-CS and MAG-PSY tax-
onomies even after fine-tuning. We also notice
that TaxoLLaMA-bench, having less data, unex-
pectedly performed better on the MAG datasets.
To delve deeper into the reasons behind overall un-
derperformance, we conducted a comprehensive
error analysis, detailed in Section 6.1.

5.3 Taxonomy Construction

The results in Table 3 demonstrate that applying
our method directly leads to SOTA performance
on the “Environment” and “Food” datasets, and
secures a second-place ranking for the “Science”
dataset. Further analysis of the graphs generated
through our modeling is provided in Section 6.2.

5.4 Lexical Entailment

The results of TaxoLLaMA on the Lexical Entail-
ment datasets surpassed our expectations.

Results on the ANT Dataset From the results
on the ANT dataset in Table 4, we benchmark
our models against prior SOTA performances. A
notable finding is the obvious difference in per-
formance between TaxoLLaMA, which is trained
on both nouns and verbs, and TaxoLLaMA-verb,
which focuses solely on verbs.

TaxoLLaMA-verb outperformes TaxoLLaMA
in Lexical Entailment, suggesting difficulties in

processing nouns and verbs simultaneously that
might impede verb learning, possibly due to quanti-
zation and LORA adapter tuning constraints. This
issue seems specific to the entailment task, as it
does not emerge in other tasks, such as Taxonomy
Enrichment, which also includes a verb dataset.
This discrepancy could stem from metrics requir-
ing precise normalized perplexity ranking.

Table 4 shows that TaxoLLaMA-verb achieves
SOTA performance on Average Precision and is
second by normalized AUC. The comparison with
previous SOTA results is skewed, as the best-
performing models benefited from the use of ad-
ditional Entailment Smoothing (McKenna et al.,
2023) on top of the model. This technique has
yet to be applied to our models, which might be a
promising direction for future enhancements.

Results on the HyperLex Dataset Table 5
demonstrates the superiority of our model over the
previous SOTA in a zero-shot context for the “Lex-
ical” subset and a second-place ranking for the
“Random” subset. Contrary to the common trend
where other models score higher on the random
subset, our method does not follow this pattern, sug-
gesting that the larger training size of the random
subset benefits other methods more. Despite the
straightforward zero-shot approach of our model,
it still achieves notably high results. Future work
could explore using this score as a meta-feature in
task-specific models or adapting our entire model
more closely to this task.

6 Error Analysis

In this section, we analyze the errors made by the
TaxoLLaMA model, explore the reasons behind
these inaccuracies, and suggest potential strategies
for mitigation of LLMs applied to taxonomies.
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Figure 4: Average percentage of error types across Hy-
pernym Discovery and Taxonomy Enrichment datasets.

6.1 Hypernym Discovery and Taxonomy
Enrichment

As we apply the same generative approach for both
Hypernym Discovery and Taxonomy Enrichment
we perform the joint error analysis. We split the
process into four steps: (i) manual analysis to iden-
tify the most common errors; (ii) automatic anal-
ysis of errors using ChatGPT; (iii) comparing and
merging the most common errors identified; (iv)
classification of the errors using ChatGPT.

First, we take about 200 random examples from
both Hypernym Discovery and Taxonomy Enrich-
ment datasets and write explanations of why the
model fails to generate the correct hypernym. The
following four classes are identified: (i) predicted
hypernyms are too broad; (ii) incorrect/irrelevant
definition generated by ChatGPT; (iii) the model
was unable to generate relevant candidates in the
same semantic field; (iv) miscellaneous cases.

We also use the prompt in Example 6 to ask
ChatGPT to generate error types. The output is
provided in Example 7; Table 8 summarizes all the
error types generated during several runs. Then, we
merge automatically and manually identified error
types into the following classes:

1. Overly Broad Predictions: The model often
generates predictions encompassing a broader
concept than the true hypernym.

2. Underly Broad Predictions: Conversely,
some predictions are too narrow and fail to
capture the broader concept represented by
the true hypernym.

3. Inaccurate Predictions: The model may
predict words that are very semantically close
to the true hypernym but struggles with fitting
into the exact wording

4. Conceptual Ambiguity: The model may
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Figure 5: Automatic Evaluation of the MAG datasets
with the ChatGPT model. “True” denotes the number of
gold answers that ChatGPT preferred over TaxoLLaMA
answers; “Predicted” is when ChatGPT preferred
TaxoLLaMA output; “Both” and “None” options were
also possible answers for ChatGPT.

struggle with ambiguous input words or con-
cepts, leading to incorrect predictions.

5. Incorrect definitions: The model gets con-
fused with the incorrect/inaccurate definition
retrieved from external sources.

We used the prompt 8 presented in Appendix A
to classify incorrectly predicted instances. The re-
sults for each task and each dataset are presented in
Appendix B in Table 9 and in Figure 4 for average
distribution. We also provide Table 10 with an ex-
ample for each error type. The most common issue
(75% of cases) is overly broad predicted concepts.
It can be explained by the model adaptation to do-
main datasets that are richer than WordNet, like the
“Music” and “Medical” domains. For Italian and
Spanish, significant inaccuracies were attributed
to grammatical complexities, due to the dataset
limitations, linguistic intricacies, and lack of pre-
training data. Similarly, MAG datasets faced issues
with specificity and ambiguity, which led to lower
results of TaxoLLaMA compared with Wordnet-
based ones, as shown in Table 2.

Manual examination of MAG taxonomies re-
veals misaligned instances, like “olfactory toxicity
in fish” being classified as a hyponym of “neuro-
science”. Furthermore, we assess the accuracy of
the predicted hypernyms using ChatGPT, inspired
by contemporary research (Rafailov et al., 2023).
We provide the inputs, predicted nodes, and ground
truth nodes to ChatGPT, asking for preference. As
depicted in Figure 5, ChatGPT mostly prefers nei-
ther of the answers and ground truth hypernyms
only slightly more frequently than the predicted
ones. The example of the input query is presented
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Metric Science Environment Food

Original

# Nodes 125 261 1486
# Edges 124 261 1533

Constructed

# Nodes 78 216 1132
# Edges 71 507 1372
# Nodes Missing 48 45 354
# Weak Components 8 5 51
# Nodes w/o original hypernym 4 5 39
# Nodes w/o path to original hypernym 29 70 308
# Nodes w/ path to original hypernym 44 140 784
Mean Distance to original hypernym 1.02 1.15 1.06

Table 6: Statistics of original graph and the constructed
graph with highest F1 score. The lower part of the table
corresponds to constructed graph statistics

in Appendix A in Example 9.
We also evaluate the overlap between MAG

datasets with WordNet data, discovering minimal
correspondence. Only 5% of the nodes from the
entire graph are present in the WordNet graph, with
just 2% of edges for CS and 4% for PSY matching.
For 92% of these, there is no path in the Word-
Net graph. Among the remaining connections,
we see that 28% in CS and 10% in PSY repre-
sent cases where nodes are hypernyms of them-
selves. This also partially explains the low results
of TaxoLLaMA, as MAG datasets greatly differ
from the data used for TaxoLLaMA training.

Finally, we visualize the embeddings, reveal-
ing a notable discrepancy between predictions and
ground truth in the MAG subsets—which was not
seen with WordNet. ADetailed observations of this
analysis are documented in Appendix C.

6.2 Taxonomy Construction

Our analysis of the predicted graphs across various
domain datasets, based on statistics from Table 6,
reveals consistent patterns. Generally, the gold
standard graphs feature more edges, except in the
environment domain. The model often omits en-
tire clusters of nodes rather than individual ones:
about 30% of nodes in the graph constructed with
TaxoLLaMA lack a path to their actual parents,
indicating they reside in separate components.

Nevertheless, existing paths are of a rather high
quality, suggesting the model is performing ei-
ther very accurately or completely off-target. The
model assigns high perplexity to certain paths
which are further incorrectly excluded. This ten-
dency indicates a particular challenge with con-
cepts that are neither too specific nor too general
but fall in the middle of the taxonomy.

The nature of perplexity as a relative metric con-
tributes to this issue, as some edges may not be
created due to surpassing the perplexity threshold.
Adjusting the threshold introduces incorrect edges,
urging us to consider alternative approaches like
using LLMs as embedders.

6.3 Lexical Entailment

Our examination of the ANT dataset showed it
has nearly 3000 test samples but only 589 unique
verbs. This means that errors on one verb could
be replicated throughout the dataset. However, ex-
amining the overlap with WordNet revealed only
7 verbs were found in the same form. Lemmatiza-
tion increases the count to 338, but about 42% of
unique verbs still are not found in WordNet. No
paths for the verbs presented in WordNet are found,
which might have influenced model performance
on the task. Hyperlex demonstrates better statistics,
with nearly half of the words being unique and 88%
found in WordNet. Only 27% of pairs are presented
in the taxonomy, and 99% lack a connecting path.

Perplexity-related errors show high values for
polysemous pairs (e.g., “spade is a type of card”)
and low values for synonyms or paraphrases, indi-
cating a semantic closeness but no hypernymy rela-
tion. This points to the model’s struggle with lexi-
cal diversity and ambiguity, emphasizing the need
for disambiguation abilities in entailment tasks. Ad-
ditional analysis is available in Appendix D.

7 Conclusion

In this paper, we introduce TaxoLLaMA— an
LLM finetuned on WordNet-3.0, capable of solving
various lexical semantic tasks via hypernym predic-
tion. It achieved SOTA results in 11 out of 16 tasks
and securing the second position in 4 tasks.

Manual and ChatGPT-based error analysis
shows that the most errors (75%) are overly broad
predicted concepts, due to overfitting to the idiosyn-
cratic WordNet structure and inability to adapt to
the target datasets. Experiments showed that, def-
initions greatly contribute to the final scores for
Taxonomy Enrichment, similarly to (Moskvoretskii
et al., 2024), as they help to better disambiguate
input words. Regarding error analysis, the most
difficult datasets were MAGs (Jiang et al., 2022),
as they greatly differ from the data used for training
of our model.
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Limitations

We find that the main limitations of our work are
as following:

• Dozens of large pre-trained generative models
exist and we report results only on LLaMA-
2. An alternative base LLM used could fur-
ther improve the results. However, our experi-
ments showed that LLaMA-2 showed decent
performance on hypernymy prediction com-
pared to other models. Moreover, our goal
was also to provide a lightweight model that
could be of further research with limited re-
sources. Finally, the research focused on the
LLM application and not on an exhaustive
search of all LLM models.

• We did not apply the “Ranking” approach
to the Taxonomy Enrichment dataset, which
would be also possible, as finding the most ap-
propriate node for the input word could also
be seen as ranking. However, the first experi-
ments showed lower results.

• Possible “hypernymy hallucination” may also
be considered as a limitation: apart from
the generalization capabilities the model may
overpredict types, or even invent new words
or semantic categories.

• Another specificity of our model is its possible
excessive focus on a single word sense, which
may result in the inability to generate a wider
variety of options.

• We tried to be exhaustive, yet we possibly did
not cover some taxonomy-related tasks.

Ethical Statement

In our research, we employ advanced neural mod-
els like LLaMA-2, which have been pre-trained
on a diverse corpus, including user-generated con-
tent. Although the creators of these models have
endeavored to remove harmful or biased data, it is
important to recognize that some biases may still
persist in the model outputs.

This acknowledgment does not undermine the
validity of our methods. We have designed our
techniques to be flexible, allowing them to be ap-
plied to alternative pre-trained models that have
undergone more rigorous debiasing processes. To
the best of our knowledge, aside from the challenge
of mitigating inherent biases, our work does not
raise any additional ethical concerns.
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A Using ChatGPT for Definition Generation and Automatic Error Analysis

Here below are two different example prompts 4 and 5 for ChatGPT for definition generation. The MAG
PSY and MAG CS datasets for Taxonomy Enrichment, as well as ANT and HyperLex datasets for Lexical
Entailment, do not possess definitions. Therefore, we developed several prompts specifically for the two
types of datasets. For the hypernym prediction we want to have definitions for one input word, whereas
for Lexical Entailment we expect to generate definitions for two words simultaneously, as they might be
helpful for disambiguation. Table 7 represents statistics for the generated definitions for the datasets.

(4)

Write a definition for the word/phrase in one sentence.

Example:
Word: caddle
Definition: act as a caddie and carry clubs for a player

Word: eszopiclone 3 mg
Definition:

(5)

Write a definition for Word 1 and Word 2. Each definition should be
in one sentence. If a word is ambiguous, use the other word to
disambiguate it.

Example:
Word 1: depression
Word 2: melancholy
Definition 1: a mental state characterized by a pessimistic sense of
inadequacy and a despondent lack of activity
Definition 2: a constitutional tendency to be gloomy and depressed

Word 1: conflict
Word 2: disagreement

Dataset Total Generated with ChatGPT From Wikidata

MAG PSY 23,156 12,823 10,333
MAG CS 29,484 5,714 23,770

ANT 5,933 5,933 -
HyperLex 2,307 2,307 -

Table 7: Statistics on definitions generated with ChatGPT for different tasks.

Here is an example of the input to ChatGPT to automatically detect error types for hypernym prediction
(Example 6) and the model output (Example 7). Furthermore, Example 8 demonstrates an example prompt
for automatic classification.

(6)

Here is the data in four columns separated with "\t":

topic: psychology input word: social construction of schizophrenia
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true: psychiatry, predictions: psychosis, social, psychological,
and philosophical aspects, social psychology, psych, schizophrenia,
antipsychotic, psychotic, antipsychotic

topic: psychology input word: use heroin true: methadone maintenance,
predictions: heroin, opium tincture, heroin, opium, tincture, heroin,
opium, and morphine, man, heroin, drug addiction

...

topic: psychology input word: coordinated management of meaning
true: social psychology, predictions: communication disorders,
language and literacy, and social studies, language and literacy,
metaphor, metonymy, and politics, metonymy, metaphor

There is a topic, input word, correct hypernym (true), and model prediction
(predicted). Your task is to compare true answers and model predictions
and summarize what are the main error types of the model.

(7)

To summarize the main error types of the model’s predictions compared
to the true hypernyms:

1. Overly Broad Predictions: The model often generates predictions that
encompass a broader concept than the true hypernym.

For example:
"medication effects" was predicted with terms like "drug effects",
"drug interactions", and "medication", which are broader than
the true hypernym "clinical psychology" and "psychiatry."

2. Underly Broad Predictions: Conversely, some predictions are too narrow
and fail to capture the broader concept represented by the true hypernym.

For example:
"schizoid personality" was predicted with terms like "personality
disorders" and "personality theory," which are narrower than the
true hypernym "psychosis."

3. Inclusion of Unrelated Terms: In some cases, the model includes terms
in its predictions that are not directly related to the input word or
true hypernym.

For example:
"pirisudanol" was predicted with terms like "dopamine receptor
d1" and "dopamine receptor d2", which are unrelated to the true
hypernym "psychiatry".

4. Repetition of Terms: The model occasionally repeats terms in its
predictions, which might indicate redundancy or lack of diversity
in its output.

For example:
"pirisudanol" was predicted with repeated terms like
"piracetam" and "hydergine."
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5. Inadequate Coverage of Concepts: Some input words and true
hypernyms receive predictions that lack comprehensive coverage of
related concepts.

For example:
"result category" was predicted with terms like "item
response theory" and "qualitative research," which might not
fully encapsulate the scope of the true hypernym "mathematics
education."

(8)

You are a helpful linguist. Your task is to do error classification
for a dataset for hypernym prediction in a general domain. Here are
possible classes:

1. Overly Broad Predictions: The model often generates predictions
encompassing a broader concept than the true hypernym.
2. Underly Broad Predictions: Conversely, some predictions are too
narrow and fail to capture the broader concept represented by the
true hypernym.
3. Inaccurate Predictions: The model may predict words that are very
semantically close to the true hypernym, but struggles with fitting
into the exact wording
4. Conceptual Ambiguity: The model may struggle with ambiguous
(polysemantic/multivalued) input words or concepts, leading to
incorrect predictions.
5. Incorrect definitions: The model gets confused with the incorrect/
inaccurate definition retrieved from external sources

You will be given an input word/phrase, true hypernym, and
candidate hypernyms. Please, return a Python dict of error classes
{1: 1, 2: 5, 3: 1, ..., 100:3}) for all instances below:

id: 1, input word: parathyroid_hormone, true hypernym: hormone,
predicted: hormonal agent, hormon, hematopoietic growth factor,
growth factor of the blood, growth regulator, growth substance, growth
...
id: 100, input word: proofreader, true hypernym: printer, predicted:
reader, audience, audience member, spectator, viewer, listener,
listener-in, hearer, recipient, witness, watcher, observer

Here is the prompt Example 9 for ChatGPT in order to automatically evaluate TaxoLLaMA results, as
manual analysis has shown that the gold true answers from MAG PSY and MAG CS datasets might not
be of a good quality either. Therefore, ChatGPT was required to choose between the true answer from the
dataset and the predicted candidate.

(9)

Here are the words in the psychological domain. Your task is to
choose hypernym which is more relevant given two options.
Answer 1 / 2 / both / none
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Example:
social construction of schizophrenia
option 1: psychosis
option 2: psychiatry
Answer: 2

abdominal air sac
option 1: air sac
option 2: trachea
Answer:

Error Type Descripton

Overly Broad Predictions The model often generates predictions that encompass a broader
concept than the true hypernym.

Underly Broad Predictions Some predictions are too narrow and fail to capture the broader
concept represented by the true hypernym

Inclusion of Unrelated Terms In some cases, the model includes terms in its predictions that
are not directly related to the input word or true hypernym.

Repetition of Terms The model occasionally repeats terms in its predictions, which
might indicate redundancy or lack of diversity in its output.

Inadequate Coverage of Concepts Some input words and true hypernyms receive predictions that
lack comprehensive coverage of related concepts

Semantic Shift The model might exhibit errors related to semantic shift, where
the predicted terms are semantically related to the input word
but do not accurately reflect the intended meaning or context.

Conceptual Ambiguity The model may struggle with ambiguous input words or con-
cepts, leading to predictions that lack clarity or specificity.

Domain-Specific Knowledge Errors may arise due to a lack of domain-specific knowledge or
understanding of specialized terminology.

Cultural or Contextual Bias The model’s predictions may be influenced by cultural or con-
textual biases inherent in the training data. This could lead to
inaccuracies, especially when dealing with topics or concepts
that vary across cultures or contexts.

Incomplete Understanding of Rela-
tionships

The model may struggle to understand complex relationships
between concepts, leading to inaccurate predictions.

Word Sense Disambiguation Errors may occur due to difficulties in disambiguating between
different senses of a word.

Knowledge Gap The model’s predictions may reflect gaps in its knowledge or
understanding of certain concepts, resulting in inaccurate or
incomplete responses.

Table 8: 12 Error types made by TaxoLLaMA for hypernym prediction detected by ChatGPT.

B Error Type Analysis

This section represents the error types distribution across different datasets for hypernym prediction:
Hypernym Discovery and Taxonomy Enrichment in Table 9. Moreover, in Table 10 we provide an example
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for each error type that was classified by ChatGPT.

1A: English 2A: Medical 2B: Music 1B: Italian 1C: Spanish MAG-CS MAG-PSY Noun Verb

Error 1 72.49% 93.75% 100.0% 54.69% 49.08% 66.48% 85.43% 81.45% 73.39%
Error 2 2.61% 0.00% 0.0% 10.03% 10.62% 5.40% 1.40% 4.10% 2.58%
Error 3 9.44% 1.25% 0.0% 27.83% 12.09% 13.21% 11.20% 6.05% 21.03%
Error 4 15.46% 5.00% 0.0% 7.44% 18.21% 10.94% 0.70% 6.64% 0.43%
Error 5 0.00% 0.00% 0.00% 0.00% 0.00% 3.98% 1.26% 1.76% 2.58%

Table 9: Errors Type Distribution across subset datasets for hypernym prediction: Hypernym Discovery and
Taxonomy Enrichment.

Error Type Input True Predicted

Overly Broad Predic-
tions

weed vascular plant plant, plant life, vegetable,
vegetation, vascular plant,
phanerogam, green plant, green
thing, plant of the class, plant
of the division

Underly Broad Pre-
dictions

audio auditory communica-
tion

signal, transmission, transmis-
sion signal, communication,
communication signal, mes-
sage, message signal, informa-
tion, information signal, data,
data signal, notification, notifi-
cation signal, signaling

Inaccurate Predic-
tions

unconventionality unorthodoxy unorthodoxiness, unorthodxy,
unconformity, heterodoxy, dis-
sidence, disobedience, disloy-
alty, dis, disaffection, dissent,
disagreement

Conceptual Ambigu-
ity

giant red paintbrush indian paintbrush paintbrushrush, paint brush,
larkspur, delphinium, liliaceous
plant, liliid monocot, lilioid

Incorrect definitions advance directive sta-
tus

documentation advance directive, directive, de-
cision support system, clinical
decision support system, health
information technology

Definition: A do-not-resuscitate order (DNR), also known as Do Not Attempt Resuscitation (DNAR),
Do Not Attempt Cardiopulmonary Resuscitation (DNACPR)

Table 10: Examples for each Error type made by TaxoLLaMA for hypernym prediction detected by ChatGPT.

C Distribution Visualization for Taxonomy Enrichment

In this section, we delve into the distribution patterns of ground truth and model predictions within the
embedding space of the SentenceBert model (Reimers and Gurevych, 2019). To achieve this, we initiated
two separate model runs, each with a distinct seed, aiming to capture the model’s variability. Subsequently,
we extracted the predicted candidates and the ground truth hypernyms, mapping them into the embedding
space provided by SentenceBert. To facilitate a clearer visual analysis, we condensed the embedding
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NOUN VERB MAG_CS MAG_PSY
Results

gold 1st pred 2nd pred

Figure 6: t-SNE plot of distributions of ground truth nodes and predicted nodes for taxonomy enrichment tasks.
Each point represents a node, embedded with SentenceBert. Color represents ground truth or model predictions (we
ran 2 predictions with different seeds)

dimensions to 50 using Principal Component Analysis and then applied t-SNE to project these dimensions
onto two principal components for visualization.

The findings, illustrated in Figure 6, reveal a distinct pattern between WordNet and the MAG subsets
(MAG_CS and MAG_PSY). WordNet displays a notable overlap between the gold standard and predic-
tions, despite a few outliers that are presumably lower-ranked candidates. Conversely, the MAG subsets
exhibit different behavior, forming two slightly overlapping clusters in the embedding space, suggesting
a divergence between predictions and ground truths. Additionally, these subsets contain more outliers,
indicating instances where the model may have completely missed the accurate hypernym sense. It’s
important to consider, however, that the SentenceBert model’s representations could contribute to these
discrepancies, especially for concepts that are not well-represented in its training data.

D Hyperlex Correlation Analysis
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Figure 7: Correlation plot of the perplexion ranks with the annotator’s score on Hyperlex test sets. The line over the
dots is a trend found with linear regression. * shows that correlation has a p-value lower than 1e−4.

We also examine correlations using traditional methods for both test sets (refer to Figure 7). By
overlaying the linear regression trend on the observed data points, a distinct trend emerges. However, this
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trend is notably impacted by outliers, particularly within the Random set. This observation aligns with
findings from taxonomy construction, highlighting the model’s challenges in accurately handling middle
nodes or pairs exhibiting moderate entailment strength.

When analyzing gold scores ranging from 2 to 8, the Random set displays a lack of discernible trend,
underscoring the model’s inconsistency in this area. The Lexical set shows a slightly better trend in
that area. However, with both sets pairs characterized by strong entailment or minimal entailment are
more accurately categorized. This distinction crucially enhances the overall correlation, which leads to a
promising correlation score.

E Hypernym motivation

Inspired by recent advancements in semantic analysis, particularly the work (Nikishina et al., 2023) on
hyponym prediction, our study shifts focus towards hypernym prediction for several compelling reasons.
First, predicting hypernyms is crucial for tasks such as taxonomy enrichment and hypernym discovery.
Second, the formulation of a loss component for hypernym prediction is more straightforward, as most
entities typically have a single correct hypernym, unlike hyponyms, where multiple valid options exist.
This necessitates either adjustments to the loss function or extensive dataset collection and analysis.

Furthermore, our experimentation with various prompts revealed that the most effective format is
detailed in the main section. Alternate prompts, which adopted a more narrative style (e.g., “Given a
hyponym ’tiger’, the hypernym for it is"), led to the model generating paragraphs instead of concise
hypernym lists. Adjustments to the system prompt failed to rectify this. Notably, appending a comma to
the end of the target sequence remarkably improved the model output, encouraging it to list hypernyms
instead of producing narrative text.

In addressing the disambiguation challenge, we experimented with incorporating definitions or technical
identifiers from WordNet into the prompts. Definitions proved more effective, likely owing to the model
pre-training on textual data. Attempts to generate hypernyms with specific WordNet codes resulted in the
model appending the same numerical identifier to each hypernym which also resulted in lower scores.

F Hyperparameter motivation

Our analysis revealed the model acute sensitivity to the learning rate and scheduler settings. The feasibility
of employing a high learning rate in the primary study was contingent upon the use of the LORA adapter,
which modulates weights without significant alterations. However, during full model fine-tuning, we
faced instabilities, manifesting as either overfitting or underfitting—highlighting the necessity for further
technical exploration into optimal hyperparameter configurations. Additionally, the implementation of
4-bit quantization requires careful learning rate selection, as this process notably compresses the weight
distribution, demanding strategies to effectively recover the model knowledge thereafter.

In the fine-tuning process, we deliberately chose a smaller batch size to better accommodate the model
to datasets, which are often limited in sample size. Contrary to our expectations, increasing the learning
rate and batch size did not yield improved performance; this outcome can primarily be attributed to the
reduced number of steps the model takes toward adapting to the specific domain. This strategy, however,
did not apply to WordNet pre-training, where we observed differing trends.

Apart from certain instruction tuning methodologies, our approach does not involve calculating loss
including on the instruction itself. Instead, loss calculation is confined solely to the target tokens.

The experiments utilized Nvidia A100 or Quadro RTX 8000 GPUs. Pre-training for TaxoLLaMA
and TaxoLLaMA-bench spanned 6 GPU hours, while TaxoLLaMA-verb required less than 1 hour. Fine-
tuning for MAG subsets took 5 GPU hours, attributed to the lengthy definitions. Fine-tuning for other
datasets was completed in under an hour.
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