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Abstract

Ten years ago, a single metric, BLEU, gov-
erned progress in machine translation research.
For better or worse, there is no such consensus
today, and consequently it is difficult for re-
searchers to develop and retain intuitions about
metric deltas that drove earlier research and de-
ployment decisions. This paper investigates the
“dynamic range” of a number of modern met-
rics in an effort to provide a collective under-
standing of the meaning of differences in scores
both within and among metrics; in other words,
we ask what point difference x in metric y is
required between two systems for humans to no-
tice? We conduct our evaluation on a new large
dataset, ToShip23, using it to discover deltas
at which metrics achieve system-level differ-
ences that are meaningful to humans, which we
measure by pairwise system accuracy. We ad-
ditionally show that this method of establishing
delta-accuracy is more stable than the standard
use of statistical p-values in regards to testset
size. Where data size permits, we also explore
the effect of metric deltas and accuracy across
finer-grained features such as translation direc-
tion, domain, and system closeness.

1 Introduction

A decade ago, the BLEU metric served as the de-
fault metric for machine translation evaluation. It
was not without its criticisms (Hovy and Ravichan-
dran, 2003; Callison-Burch et al., 2006; Belz and
Reiter, 2006) or compelling alternatives (Baner-
jee and Lavie, 2005; Popović, 2015), but a com-
bination of adequate performance, robustness to
new languages, simplicity, understandability—and
also inertia—helped it retain this position. This is
no longer the case. BLEU’s deficiencies quickly
became apparent as deep learning approaches to
machine translation replaced the earlier symbolic
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Figure 1: Distribution of pairwise system deltas for each
metric over all systems from WMT22. Gray rectangles
show min-max range which is vastly different between
metrics. Standard deviations (black lines) also differ.

paradigms (Mathur et al., 2020a). Today, a num-
ber of metrics—themselves deep-learning based—
compete in an ecosystem where there is no longer
any dominant, default metric.

This situation creates a problem for researchers
working to keep abreast of developments in the
field. Different metrics, including different mod-
els within the same metric family, have different
dynamic ranges, i.e., the range of scores one can ex-
pect to see. Furthermore, the metric delta, i.e., the
score difference signifying a meaningful change
in performance between two systems, also varies
across metrics. It is perhaps understandable that
some practitioners therefore continue to use BLEU,
as well, if only to ground their understanding.

This paper attempts to introduce some order and
clarity into this situation. We make use of a large,
new human evaluation dataset, ToShip23, to com-
pare the score ranges of metrics on a large number
of systems against pairwise system-level accuracy.
Importantly, we break down these accuracy scores
into bins based on metric deltas, which allows us
to determine accuracies for each metric as a func-
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tion of the score differences between two systems.
This provides a measure of confidence in the output
that is stable across testset size, in contrast to stan-
dard statistical significant testing, which becomes
more stable as testset size grows. We release a tool
that allows a user to easily compare accuracies at
different threshold across metrics.0

In this work we:
§3.2 Empirically investigate the estimated accu-

racy for multiple metrics, human ability to
perceive quality difference;

§3.3 Provide thresholds for popular metrics to help
reviewers and practitioners interpret results;

§4.1 Validate our estimated accuracies on WMT
testsets and §4.2 investigate the effect of dif-
ferent language groups;

§4.3 Show that string-based metrics, such as
BLEU, should never be used to evaluate un-
related systems;

§4.4 Show that statistical significance testing is
insufficient to determine model improvement
especially as it is affected by the testset size,
but is important for small deltas;

§5.1 Assess quality of automatic metrics over
6530 system pairs;

§5.2 Summarize recommendations for machine
translation evaluation.

2 Experimental Setup

Data. We perform experiments related to evalua-
tion of MT outputs based on a proprietary dataset
ToShip23 which is of a magnitude larger than
any publicly available data and enables more fine
grained glimpse into the metrics behaviour. The
dataset is an extended version of ToShip21 dataset
(Kocmi et al., 2021) with details described in Ap-
pendix B. We also use data from the annual WMT
evaluation campaigns to validate our results, specif-
ically the metrics shared task (Freitag et al., 2022b,
2023), to make results replicable. We only use
MQM (Freitag et al., 2021a) and DA+SQM (Kocmi
et al., 2022) subset of human evaluated systems be-
cause reference-based DA (Bojar et al., 2016) is
suboptimal for the evaluation of modern MT sys-
tems (Freitag et al., 2022b). See Table 1 for an
overview of dataset sizes.

Investigated Metrics. We evaluate the most fre-
quently used metrics in machine translation: BLEU
(Papineni et al., 2002), ChrF (Popović, 2015), sp-
BLEU (Goyal et al., 2022), BLEURT (Sellam et al.,
2020), COMET (Rei et al., 2020). BLEU and ChrF

Dataset Segments Systems Sys. pairs Langs. Domains

WMT22 221k 108 543 8 4
WMT23 223k 129 871 7 4
ToShip21 2300k 4380 3344 101 2
ToShip23 3016k 6752 6530 94 >10

Table 1: Sizes and coverage for the human annotated
datasets used in this work.

are n-gram matching heuristics while the rest uses a
parametric model to produce a segment-level score
of a translation. CometQE

21 and CometKiwiQE
22 are

special cases which do not require a reference. We
do not include any LLM-based metrics (Fernandes
et al., 2023; Kocmi and Federmann, 2023) which
are not replicable because of non-publicly available
models. Find the specific models, implementation
details, and our selection rationale in Appendix A.

Metric Delta. We focus solely on the pairwise
system ranking: deciding which system is better
based on a system-level score (usually average of
all segment-level scores) difference between two
systems. We refer to this as metric delta (∆).

Pairwise Accuracy. To test the correlations be-
tween automatic metrics and human judgement, we
use pairwise accuracy (Kocmi et al., 2021): how
many system pairs does the metric rank the same
way as humans over the total number of system
pairs in the dataset. Formally:

Acc =
|sign(metric∆) = sign(human∆)|

|all system pairs| .

3 Unifying Metric Ranges

We first look at the “dynamic ranges” exhibited by
different metrics across our datasets. We ground
these deltas in human scores by comparing pair-
wise system-level accuracy at different thresholds
of delta. With this, we are able to establish a table
of average metric deltas for different accuracy lev-
els, and build a simple model that maps any metric
into the unified space of estimated accuracies.

3.1 Various Ranges for Metric Deltas
Figure 1 depicts the distribution of system-level
score deltas for various metrics. Some metrics
have similar ranges, such as ChrF and BLEU, while
others use a much larger score range (Comet20 has
∼5× higher deltas to BLEU) or lower score range
(CometQE

21 has ∼1/5 range of BLEU).
In addition to the wide ranges of scores, we also

observe that metrics do not always have the same di-
rection or agreement with human judgment, which
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Figure 2: What pairwise accuracy (left-y-axis) to expect
when seeing given certain acceptance threshold (x-axis).
The bin width (right-y-axis) shows the width of the bin
for metric delta that contains 300 system pairs.

results in their different performance as measured
via accuracy (see Appendix C for more details).

It may be tempting to attempt to bring together
these score ranges onto a single scale, say by linear
interpolation, perhaps towards BLEU scale. But
reconciling metrics by projection is not possible,
due to an obvious point: metrics differ not just in
the range of their scores, but in their accuracies.
To better understand the problem, we look next
into what are the implications of different levels
of metric deltas. Specifically, we investigate how
different delta correspond to humans being able to
differentiate systems.

3.2 Accuracy of Metric Deltas

Many factors affect metric behavior:
• Each metric weights various phenomena differ-

ently, especially fluency and adequacy (Amrhein
et al., 2022; Karpinska et al., 2022).

• The reliability of metrics differs when compared
to humans (Mathur et al., 2020b; Freitag et al.,
2021b, 2022b, 2023; Kocmi et al., 2021).

• Reference-based metrics are affected by the qual-
ity of human references (Freitag et al., 2023;
Zouhar and Bojar, 2024).

The pairwise accuracy as usually reported (Kocmi
et al., 2021; Freitag et al., 2023) represents a value
over the full dataset for all system-pair metric
deltas. It does not take into consideration the size
of the delta between systems, which heavily affects

the accuracy; that is, whether the metric gap be-
tween two systems was large or small. However,
this information is important in establishing equiv-
alency of deltas across metrics.

To investigate this, we use a binning approach
on the ToShip23 testset. Pairwise system deltas
are sorted, and for each delta level, we group the
closest 300 pairs into a same bin. For each bin, we
plot the mean delta for that bin against the system-
level pairwise accuracy.1

Figure 2 depicts this information for both BLEU
and CometKiwiQE

22 . The red line shows that we
need around 1.3 BLEU delta to reach 70% pairwise
accuracy and 3.5 BLEU to reach 80% accuracy
against the human judgments. Because BLEU is
not a reliable metric, it never reaches 90% accuracy
with humans, even for deltas as high as 6 BLEU
points. In contrast, CometKiwiQE

22 reaches 90%
accuracy already at around 0.9 points and gets close
to 100% accuracy past 2 CometKiwiQE

22 points.
Our use of fixed-size bins introduces a caveat

into the evaluation. Because our data points do
not have a uniform delta distribution, the “width”
of each bin (defined as the difference between the
smallest and largest delta) grows as we move to-
wards larger deltas, where data points are sparser.
This width is depicted by the blue line in Figure 2.
As we increase the delta, there are fewer and fewer
systems with as large delta and thus we need to take
system pairs that are farther from the investigated
delta. For example, for calculating the pairwise
accuracy of 1 BLEU point, we take system pairs
with a delta of 1 ±0.1 (half of 0.2), while for 3
BLEU the width of a bin is 3 ±0.25 points. The
bin width mainly affects the tail of the evaluation.

As our evaluation is empirical, it is heavily af-
fected by the underlying systems and the lines fluc-
tuate. In the next section, we try to fit a smooth
line to abstract the results, followed by discussion
which phenomena affect the pairwise accuracy.

3.3 Aligning Metrics on Accuracy

Practitioners might be interested in getting an intu-
ition behind a particular metric delta, e.g., +0.10 of
Comet22 and how such delta relates to other met-
rics that they are familiar with. Clearly, the higher
the delta, the more likely that human raters would
also notice the quality difference between systems.
It remains unclear what delta is enough to warrant

1Appendix D investigates other sizes of bins than selected
300 system pairs.
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Estimated
Accuracy

Coin toss
50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

BLEU 0.27 0.52 0.78 1.06 1.39 1.79 2.34 3.35 - -
ChrF 0.14 0.33 0.54 0.76 1.00 1.28 1.63 2.12 3.05 -
spBLEU200 0.25 0.52 0.82 1.13 1.49 1.91 2.46 3.28 5.57 -
Bleurtdefault 0.23 0.66 1.11 1.59 2.11 2.71 3.43 4.39 5.98 -
Bleurt20 0.02 0.17 0.33 0.49 0.66 0.85 1.07 1.35 1.73 2.44
Comet20 0.08 0.36 0.65 0.96 1.29 1.67 2.10 2.66 3.45 5.10
Comet22 0.03 0.10 0.18 0.26 0.35 0.45 0.56 0.71 0.94 1.53
CometQE

21 0.003 0.008 0.013 0.019 0.025 0.032 0.041 0.052 0.073 -
CometKiwiQE

22 0.01 0.08 0.16 0.24 0.33 0.42 0.53 0.67 0.85 1.18
xCOMETXXL 0.02 0.19 0.37 0.56 0.76 0.98 1.24 1.55 1.99 2.74

Table 2: Thresholds and estimated accuracies for each metric on ToShip23 dataset averaged across all language
pairs. For example, when requiring 90% of decisions be the same as humans, improvement needs to be ≥3.05 ChrF,
≥0.85 CometKiwiQE

22 , and BLEU never reaches this accuracy threshold.

acceptance. To this end, we use the estimated accu-
racy results introduced in previous subsection. As
the estimated accuracy line is noisy, we fit a curve
through the data and use it to derive thresholds for
comparing various metric deltas.

We use a parametrized sigmoid to fit a curve
through the data. The choice of the sigmoid func-
tion is arbitrary and based on visual similarity and
the feature that it converges towards fixed point
and thus is bounded. This is a desired feature rep-
resenting that each metric has a different overall
reliability. We parameterize it using two variables
φ and fit it with damped least square algorithm
(Levenberg, 1944). The function is defined as:

f(x) =
φ1

1 + exp(−φ2 · x)
.

The resulting fit is visualized in Figure 3. Al-
though not perfect, it offers insight into the metric
delta behaviour, specifically comparing different
different deltas’ estimated accuracy. We use the
sigmoid functions to calculate estimated accuracy
for various levels of delta in Table 2. This is the
core result of our work and helps in understanding
how different metrics compare to each other.

For example, an improvement of 1.06 BLEU has
the same estimated accuracy (65%) as the 0.24
CometKiwiQE

22 , while 3.35 BLEU has the same
estimated accuracy as 0.67 CometKiwiQE

22 . And
+1 improvement on CometKiwiQE

22 signals that in
>90% scenarios, human annotators would agree
with the ranking of CometKiwiQE

22 , while BLEU
never reaches this level of agreement. Note that
estimated accuracies are empirical from a given
ToShip23 dataset. Therefore, we do not claim that
+0.56 Comet22 yields 80% accuracy for all scenar-
ios but rather that it is as accurate as +2.34 BLEU.
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Figure 3: Empirical pairwise accuracies for various
metrics with a fitted sigmoid curves on ToShip23 dataset.
All metrics are in Figure 11.

As these thresholds are combined for all scenar-
ios, we dive in the next section into validating out
results on public WMT dataset, followed with in-
vestigation of what affects the metric delta and how
reliable the comparison is in different settings.

4 Factors Affecting Metric Deltas

We have empirically derived the estimated accuracy
for various metrics. In this section, we investigate
factors that affect metric delta and show how re-
liable the thresholds remain under these factors.
These include the testset size, dataset and domain
selection, and translation direction.

Additional factors could influence the metric
delta, but we lack the data to evaluate these aspects.
A key consideration is whether the metric delta is
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per-metric breakdown in Figure 10.

contingent on the underlying absolute values. In
other words, we need to determine if a +1 BLEU
delta varies in reliability based on these absolute
values. For instance, does the impact of moving
from 20 to 21 BLEU differ significantly from a shift
from 60 to 61 BLEU in different system pairs?

4.1 Different Domains and Datasets

We derived the thresholds from ToShip23. Now,
we validate them on WMT data to show how well
they transfer. To address the relatively small size of
WMT, we first combine the WMT 2022 and 2023
datasets, yielding 1414 system pairs. This dataset
contains different set of segment sources and do-
mains, and was evaluated with mix of MQM and
DA+SQM human evaluation protocols. In order
to test the thresholds, we take scores for all WMT
system pairs and convert them into estimated accu-
racies via devised thresholds. For each estimated
accuracy level, we take the closest 300 system pairs
and calculate the real accuracy on WMT data. If
the mapping would be perfect and we had enough
samples, the estimated accuracy would match the
real accuracy for each investigated level.

We show the results in Figure 4. In the ideal
case, we would expect the real accuracies and esti-
mated accuracies to match; however, the noise from
empirical data affects the results. Some metrics
are consistently underestimated, such as Comet22,
which has higher real accuracies on WMT dataset
that the estimated accuracies. On the other hand,
CometQE

21 has much lower accuracies on WMT data
and our thresholds overestimate it.
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Figure 5: Comparison of pairwise accuracy on ToShip23
dataset when comparing into English, out-of-English,
and Chinese, Japanese, Korean language pairs sepa-
rately. The count shows total number of system-pairs in
the evaluation. See other metrics in Figure 12.

Overall, the trend is clear and the thresholds
normalize all metrics into a shared space of esti-
mated accuracies. Therefore, we advise reporting
accuracy when presenting results, together with
significance testing and metric delta.

4.2 Language Pair

Notoriously, a large gap in absolute BLEU scores
exists between languages (Denoual and Lepage,
2005; Post, 2018). This reflects properties like data
sizes, attention progress in different languages, and
target-side morphological complexity.

Unfortunately, there is not enough data to exam-
ine each language pair individually. Instead, we bin
languages into two groups, into-English (XE) and
out-of-English (EX) language pairs, which does
leave us with enough data in the ToShip23 dataset.
In addition, we separate system pairs containing
Chinese, Japanese, or Korean (CJK) together.

Figure 5 show the accuracy with a subset of sys-
tem pairs depending on a languages. There is some
fluctuation between XE and EX, but the behaviour
is comparable. This is interesting, since most of
the underlying testsets have authentic source (e.g.,
not using testset in reverse direction, Toral et al.,
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Figure 6: Comparison between iterated and unrelated
systems on ToShip23. See other metrics in Figure 13.

2018). The CJK group does also perform similarly
for CometKiwiQE

22 , but not for ChrF. This shows the
thresholds are invalid for all metrics and scenarios
and are affected by whether metrics evaluate all
language similarly or not.

4.3 Iterated versus Unrelated Systems

Another main difference that affects the evaluation
is if the systems are closely related. Key point of
distinction is between iterated systems (a baseline
system against specific improvements, produced
by the same research group) or unrelated system
(for example, WMT yearly evaluation which comes
from different teams and systems produce vastly
different translations). It has long been known that
surface metrics like BLEU work best when eval-
uating closely-related iterated systems (Callison-
Burch et al., 2006). It may be easier for both met-
rics and humans to distinguish an iterated system
over its baseline, because comparing unrelated sys-
tems adds a difficulty of weighting different styles
and errors.

To investigate this, we use the system labels of
ToShip23 dataset, where some system pairs are
baseline model and it’s improved iterated model,
while other system pairs are completely unrelated
and developed by different teams, similarly to
WMT evaluation. Figure 6 confirms the assumption

that unrelated systems are much harder to evalu-
ate and that the metric behaves differently. There-
fore, automatic metrics are better to rank iterated
systems than unrelated systems. While pretrained
metrics, such as CometKiwiQE

22 , seems to be robust
enough for comparing both types of system pairs,
other metrics such as BLEU have much harder time
to distinguish unrelated systems. This effect should
be investigated to larger detail in future work.

For example, +2 BLEU on iterated models has
an accuracy with humans of about 90%, the same
+2 BLEU on unrelated systems are barely better
than toss of a coin (≈55%). This shows, that some
metrics (specifically BLEU, ChrF, spBLEU) should
not be used to evaluate unrelated systems. This
findings was also suggested by Berg-Kirkpatrick
et al. (2012), who showed that you need to get
about one third larger BLEU improvements for
unrelated systems to reach the same p-value.

Therefore, string-based metrics, such as BLEU,
ChrF, or spBLEU, should never be used to compare
unrelated systems.

4.4 Testset Size
Another phenomena that may affect the system
delta is the number of sentences in the parallel
testset used to evaluate pair of systems. Common
wisdom says that the testset should be as large as
possible. We ask if increasing testset size affects
the system delta and its statistical significance.

To examine how testset size affects the metric
delta, we take a system pair and sample testsets
with increasing number of sentences. For each
sample, we calculate CometKiwiQE

22 delta and p-
value using paired Student’s t-test (Mathur et al.,
2020a). We sample with repetition various testset
sizes. For each testset size, we plot the average
metric delta (or p-value respectively) over 50 runs
together with the confidence interval.

From Figure 7, the metric delta fluctuates but
keeps being mostly constant. The variance of the
metric delta is higher for small testset sizes (under
500 segments). On the other hand, the p-value asso-
ciated to the comparison hypothesis goes down sim-
ply by having a larger testset, phenomena shown
for MT by Berg-Kirkpatrick et al. (2012).

This is a natural phenomenon of statistical sig-
nificance testing (Greenland et al., 2016). P-values
decrease with an increasing sample size, assuming
the null hypothesis does not hold. This is due to the
increase in statistical power—the probability that
the test correctly rejects the null hypothesis when it
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Figure 7: Three system pairs on different languages from WMT23 scored by CometKiwiQE
22 . The blue line is the

average system delta for given testset size and green line is the associated p-value. Values to the right of the dashed
line are supersampled and shaded areas are 99.9% confidence intervals from t-distribution. The metric delta does
not change much while the p-value goes down with higher subset size.

is false. Should the null hypothesis hold perfectly,
which is rarely the case, increasing the sample size
would not systematically affect the p-values. There-
fore, it is possible to claim a statistically significant
improvement over a baseline model even with a
small metric delta, which might not be noticeable
by humans, just by using a large-enough testset.
This conclusion is not an argument against the use
of statistical significance testing, which remains im-
portant, especially when observing smaller deltas.

Overall, this shows that metric delta is stable
under different testset sizes, while statistical sig-
nificance testing is affected by it. We assumed to
be adding sentences from the same distribution.
The metric delta can be manipulated by adding
segments that are more difficult than the rest.

5 Discussion

5.1 Best-performing Metrics

With the ToShip23 dataset, we can also calculate
total pairwise accuracy over all system pairs to
devise which metrics perform the best on the (to
date) largest dataset of MT human evaluation. We
follow the same evaluation as in Table 2 from
Kocmi et al. (2021). Twice as large dataset than
ToShip21, extended by state-of-the-art systems
from 2022 and 2023, we can see how metrics per-
form on system-level rankings. Table 3 shows
that the best performing metric over the ToShip23

dataset is CometKiwiQE
22 by a small margin over

xCOMETXXL. CometKiwiQE
22 is a quality estima-

tion metric, which has an additional bonus of not
being affected by reference bias.

ToShip23 22-23 19-21 WMT23

system pairs (N) 6530 1843 4687 249
CometKiwiQE

22 81.5 74.5 84.3 90.0
xCOMETXXL 81.4 75.3 83.9 92.8
Comet20 80.1 73.2 82.9 86.3
Bleurt20 78.6 69.8 82.1 89.2
Comet22 78.6 71.1 81.5 84.7
CometQE

21 76.8 71.2 79.0 69.5
ChrF 71.9 61.4 76.0 79.5
spBLEU200 71.6 61.0 75.7 81.9
BLEU 70.3 61.3 73.9 81.5
Bleurtdefault 69.9 61.0 73.4 85.1

Table 3: A pairwise accuracy over all system pairs from
ToShip23 and two subsets depending on the year of
evaluation. The results of MQM subset of WMT23
(Freitag et al., 2023).

Additionally, we notice the overall accuracy
dropped for all metrics in the last two years. This
does not necessarily signify a drop in metric perfor-
mance, but may have several other explanations:
• Different systems: Newer architectures or sys-

tems are closer to each other in performance, thus
harder to evaluate by humans

• New testsets: While the 2019-2021 contains only
two domains, the newer data have been evaluated
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on a much larger set of domains, where some
domains may be challenging for metrics

• Human bias: The evaluation protocol changed,
which may have shifted annotator’s scoring pat-
terns.

However, the absolute pairwise accuracy is less im-
portant than the ranking of metrics, as it is heavily
affected by the system pairs. We compare to MQM
subset of Freitag et al. (2023), which ranks metrics
in similar order supporting our findings. There are
some notable differences, such as CometQE

21 ranking
as the worst metric in WMT, while BLEURTdefault
is the worst in ToShip23. Since many aspects
of the evaluation are different, we do not dive
into a comparison, but rather highlight the over-
all picture. ToShip23 corroborates that QE metrics
have reached the quality of reference-based metrics,
as well as the (already well-established) fact that
lexical-based metrics are not useful for evaluating
high-resource MT models these days.

5.2 Recommendations for MT Evaluation
We conclude with a list of recommendations for
automatic MT evaluation:

• Use CometKiwiQE
22 as the main metric. In addi-

tion to its better performance, as a quality estima-
tion metric, it is not affected by references.

• Use at least one additional metric of a different
type; e. g. BLEURT20, which is reference-based
and uses a different architecture from Comet.

• For each metric delta, report estimated accuracy
to help align reliability of used metrics.

• Do not use BLEU, ChrF, or spBLEU to evaluate
unrelated systems.

In addition, employ caution when using the same
metric for evaluation that was used during training,
as this practice may lead to artificially inflated re-
sults. For instance, it is advisable not to evaluate
with the same metric used for Minimum Bayes Risk
Decoding (Freitag et al., 2022a), QE metric used
for corpus filtering (Peter et al., 2023), or avoid
using metrics built on the same model as the trans-
lation system because LLMs tend to favor outputs
generated by themselves (Liu et al., 2023).

6 Related Work

The closest work to ours is Lo et al. (2023), who
investigate the relationship between metric deltas
and the p-value of human ranking, concluding that
not even 2 BLEU points reliably correspondent to
human judgement. This aligns with our work that

two BLEU points reaches an estimated accuracy
of only 77.2%. Their work also does not consider
the directionality of the delta, and consequently
they do not penalize situations where humans and
metric disagree on which system is better.

Mathur et al. (2020a) found that even statisti-
cal significant deltas of up to three BLEU points
do not reliably correspond to human judgement.
In a broad survey, Marie et al. (2021) notes that
various community “rules of thumb” about suffi-
cient BLEU deltas might be the result of an evolved
consensus that has no basis in scientific evidence.
Similarly, Kocmi et al. (2021) demonstrated that
among system pairs deemed statistically significant
by humans and where BLEU disagree with humans,
the median delta is 1.3 BLEU. Marie (2022) rein-
vestigated the WMT 2020 and 2021 results and
showed that deltas lower than 2 BLEU needs to be
tested for statistical significance.

Automated metrics in NLP and MT have been
under scrutiny for a long time. Hovy and Ravichan-
dran (2003) raised early doubts about BLEU.
Callison-Burch et al. (2006) pointed to failure
modes of BLEU and suggested it be used in more
narrow situations. Post (2018) identified a prob-
lem with conflicting implementations of BLEU and
offered a unified solution. The broader field of com-
puter science has been concerned with what is a
meaningful acceptance threshold of a metric (Mori
et al., 2018). The acceptance thresholds are usu-
ally established to trade off risks in types of errors
(Shatnawi et al., 2010). Kelley and Preacher (2012),
studying effect sizes in psychology, summarize that
effect sizes should be scaled appropriately. Alike,
Plonsky and Oswald (2014) ask what effect size
suffices and note its dependence on the variance
and that all acceptance thresholds are arbitrary.

7 Conclusion

In this work, we investigated the interpretation of
deltas from automatic machine translation metrics.
Although metrics have different ranges of scores,
what ultimately matters to the practitioner is how
score deltas are grounded in human ability to per-
ceive those differences, which we judge by pair-
wise system-level accuracy on a large collection
of human judgments. We empirically determined
thresholds for popular metrics to align them on
accuracy and provide a tool0 that relates metrics
to each other. Finally, we showed the importance
of using metric-delta accuracy over p-values: the
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former is stable across testset sizes.
We undertook some investigations into sub-

factors of the data, showing that the results were ro-
bust to, for example, translation direction, and also
that they generalized to different testsets. These
investigations were limited by the data size. For
future work, it would be useful to explore delta-
accuracy for different subsets and combinations of
features, presuming that enough data were avail-
able for the task.

Limitations

While this work provides more informed guidelines
on interpreting metric delta, they remain crude and
do not fix the inadequacy of automated metrics. In
order to guarantee improvements, human evalua-
tions need to be carried out.

We use humans as a gold standard, however, they
are noisy and also unreliable especially for systems
that are close in performance.

Almost all MT systems used in this meta-
evaluation are not based on LLMs. Therefore, we
may observe different behaviour of automatic met-
rics when evaluating LLM-based models.

Our estimated accuracy should not be used as
the reason to reject a result, similarly as low signif-
icance p-value.
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• BLEU (Papineni et al., 2002): the most popular
and currently one of the worst performing MT
metrics (we used a specific tokenizer for Japanese
and Chinese as recommended)

• ChrF (Popović, 2015): second most popular
lexical-based metric with better performance

• spBLEU200 (Goyal et al., 2022): metric popular
when evaluating on Flores testset

Two BLEURT models (commit cebe7e6):
• BLEURTdefault (Sellam et al., 2020): the default

model when using BLEURT framework called
BLEURT-Tiny. It is important to note, that its
performance is worse than BLEU (Section 5.1)
and should not be used as authors suggest.

• BLEURT20 (Pu et al., 2021): the best performing
Bleurt model

We evaluate five Comet models (v2.1.0), the most
popular metric framework aside BLEU:
• Comet20: most frequently used model and the

default reference based model until the end of
year 2023. The model name wmt20-comet-da.

• Comet22: currently the default reference-
based model (wmt22-comet-da), outperforming
Comet20.

• CometQE
21 : we picked wmt21-comet-qe-mqm for

its unusual behaviour of using very small delta
while reaching high pairwise accuracy.

• CometKiwiQE
22 : wmt22-cometkiwi-da is the best

quality estimation model.
• xCOMETXXL: the best performing publicly avail-

able metric as evaluated by Freitag et al. (2023).

B ToShip23 Dataset Details

For this work, we introduce and analyze an ex-
tended version of a non-public ToShip23 dataset.
The main changes of a dataset are almost twice as
many system pairs as in ToShip21 (Kocmi et al.,
2021); more than ten new domains and new parallel
testsets; improved human evaluation protocol; and
evaluating the latest state-of-the-art MT models.

The parallel testsets for evaluating MT models
that we use in the extended part are mostly a collec-
tion of non-published human translated sentences.
We focus on using testsets in authentic direction,
from original source into human translated refer-
ence (avoiding reverse testsets whenever possible,
Toral et al., 2018). In contrast to ToShip21, which
uses mainly two domains (news and speech), we
extended the domains by more than ten.

We reduced the total number of languages in the
ToShip23 from 101 to 94. The removed languages
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Figure 8: Subset of system pairs from WMT23 that have
∼1 BLEU delta. Each column is one system-pair. Dark
background represent metric disagreeing with humans
on system ranking. This highlights that normalizing
metrics towards BLEU range is not feasible.

are those which are not supported by either BERT
(Devlin et al., 2019) or XLM-RoBERTa (Conneau
et al., 2020) – language models used in the most
popular metrics – therefore, we could not include
those languages in our analysis.

The MT systems being part of the dataset are
coming from the same distribution as in ToShip21,
but evaluating the most recent state-of-the-art mod-
els including a limited number of LLM based trans-
lations. Lastly, we improved the human evaluation
protocol, moved from source-based DA towards
DA+SQM (Kocmi et al., 2022).

C Metrics Disagreement on Ranking

Automatic metrics often disagree on a ranking
which system is better even for large enough deltas.
We illustrate this phenomena in this section.

We use the mostly unwritten (and long-debunked
(Mathur et al., 2020a)) operating assumption that
+1–2 BLEU points denotes a significant finding as
an anchor point to illustrate the range of metric
deltas on a subset of systems in Figure 8. This fig-
ure reports metric deltas for six randomly-selected
system pairs from WMT23 data, whose delta was
roughly 1 BLEU.

As we can see in Figure 8, while for first two
system pairs, all metrics and humans agree on the
system ranking, it is not the case for later four
system pairs. For example, even Comet20 score of
3.4 (fifth system pair) may result in disagreement
with humans.
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D Number of System Pairs in a Bin

In our work, we fixed the number of systems in a
bin for given metric delta to 300 system pairs. We
now show how this decision affected our evaluation.
To this end, we show various bin sizes in Figure 9.
The bin width works as a smoothing parameter.
With bin size of 100 system pairs, the curve fluctu-
ates, especially as one system pair transfer into 1%
change on the accuracy scale.

We set the parameter to 300 system pairs because
that is already a smoother curve, while not too wide
so that the epsilon around the investigated delta is
also not too high. However, this parameter should
be re-investigated in the future works.
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Figure 9: Comparison of pairwise accuracy for BLEU
on ToShip23 dataset when we change how many system
pairs are in evaluation for each individual delta.
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Figure 10: Testing the validity of thresholds devised on
ToShip23 with WMT datasets. In a scenario without
noisy data, we would expect the real accuracies to match
the estimated accuracies (the black line). This figure
provides more detail on Figure 4.
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Figure 11: Empirical pairwise accuracies for all metrics with a fitted sigmoid curves on ToShip23 dataset. This
figure extends Figure 3.
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Figure 12: Comparison of pairwise accuracy on ToShip23 dataset when comparing into English, out-of-English,
and Chinese, Japanese, Korean language pairs separately. The count shows total number of system-pairs in the
evaluation. This figure extends Figure 5.
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Figure 13: Comparison between iterated and unrelated systems on ToShip23. This figure extends Figure 6.
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