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Abstract

In this paper, we present CSCD-NS, the first
Chinese spelling check (CSC) dataset designed
for native speakers, containing 40,000 samples
from a Chinese social platform. Compared
with existing CSC datasets aimed at Chinese
learners, CSCD-NS is ten times larger in scale
and exhibits a distinct error distribution, with
a significantly higher proportion of word-level
errors. To further enhance the data resource,
we propose a novel method that simulates the
input process through an input method, gener-
ating large-scale and high-quality pseudo data
that closely resembles the actual error distribu-
tion and outperforms existing methods. More-
over, we investigate the performance of various
models in this scenario, including large lan-
guage models (LLMs), such as ChatGPT. The
result indicates that generative models under-
perform BERT-like classification models due to
strict length and pronunciation constraints. The
high prevalence of word-level errors also makes
CSC for native speakers challenging enough,
leaving substantial room for improvement. 1

1 Introduction

Chinese spelling check (CSC) is a task to detect
and correct spelling errors in Chinese texts. There
are two primary user groups for CSC: (1) Chinese
learners, including teenage students and individuals
who use Chinese as a second language, and (2)
Chinese native speakers. It is obvious that the latter
user group has a larger population and more diverse
applications, therefore, this paper concentrates on
CSC for native speakers.

However, there is still no CSC dataset specifi-
cally designed for native speakers. Existing CSC
datasets, such as SIGHAN13, 14, and 15 (Wu et al.,
2013; Yu et al., 2014; Tseng et al., 2015), are all
sourced from Chinese learners. Spelling errors
made by Chinese learners differ greatly from those
made by native speakers. This is because Chinese

1https://github.com/nghuyong/cscd-ns

Figure 1: An error from SIGHAN: misspelling “错误”
as “错勿”. Despite having the same pronunciation, it’s
hard to reproduce this error in the given context through
a Chinese IME, no matter what input form is used.

input relies on Chinese input methods (IME), and
modern Chinese IMEs always have powerful lan-
guage models, making it difficult to recommend
candidates that clearly do not fit the context. As
shown in Figure 1, native speakers using Chinese
IMEs are unlikely to make such an unusual error.

Furthermore, the size of existing datasets is lim-
ited. As shown in Table 1, for three SIGHAN
datasets, the training set contains an average of
merely 2158 samples, while the test set comprises
an average of only 1054 samples, and no develop-
ment set is provided. When using such small-scale
datasets, it is difficult for models to be trained suf-
ficiently and for evaluation results to be reliable.

To address the aforementioned issues, we intro-
duce CSCD-NS, a Chinese spelling check dataset
designed for native speakers. The dataset is sourced
from real Weibo (a Chinese social media platform)
posts, which contain genuine spelling errors made
by native speakers during their input process. More-
over, the dataset comprises 40,000 samples, which
is ten times larger than previous datasets and this
is also the largest dataset for the CSC task. To con-
duct an in-depth investigation into the distribution
of spelling errors, we develop a tagging system that
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Figure 2: An authentic Weibo post from LCSTS, where
the phrase "效力于" is mistakenly written as "效力与".

operates at phonetic and semantic levels. The anal-
ysis indicates that native speakers make a higher
proportion of homophonic and word-level errors
compared to Chinese learners, with the proportion
of word-level errors doubling.

Due to the lack of labeled data, previous stud-
ies always build additional pseudo data to improve
the performance of models. However, these meth-
ods, which rely on confusion sets (Liu et al., 2021;
Zhang et al., 2020) or ASR transcriptions (Wang
et al., 2018), do not align with the real-world input
scenario. Therefore, we propose a novel method
that directly simulates the input process through
the Chinese IME and adds sampled noises to con-
struct high-quality pseudo data. Experimental re-
sults show that our method can better fit the real
error distribution and bring greater improvements.

We conduct comprehensive experiments on
CSCD-NS, with different model sizes (from 0.1B
to 13B parameters), architectures (encoder-only,
encoder-decoder, and decoder-only), and learning
approaches (fine-tuning and in-context learning).
We also evaluate the performance of ChatGPT and
GPT4. The results demonstrate that BERT-like clas-
sification models outperform generative models, as
the latter struggle with the simultaneous constraints
of text length and pronunciation. Concurrently, the
CSC task for native speakers is challenging due to
the high proportion of word-level errors, leaving
substantial room for improvement.

In summary, our contributions are as follows:

• We introduce the first Chinese spelling check
dataset for native speakers which is also the
largest dataset for the CSC task. Through

quantitative analyses, we further unveil the
specific error distribution for this scenario.

• We propose a novel method for construct-
ing high-quality and large-scale pseudo data
through a Chinese IME. Experimental results
show that our method can bring greater im-
provements than existing methods.

• We explore the performance of different types
of models in this scenario and analyze the
challenges. To the best of our knowledge, we
are the first to investigate the effectiveness and
limitations of large language models (LLMs),
such as ChatGPT, in addressing the CSC task.

2 Related Work

CSC Datasets: The existing CSC datasets, such as
the SIGHAN series (Wu et al., 2013; Yu et al., 2014;
Tseng et al., 2015), primarily cater to Chinese learn-
ers. However, these datasets suffer from limited
data size and significant discrepancies in spelling
errors compared to those made by native speakers.
While there have been some efforts to develop Chi-
nese grammatical error correction (CGEC) datasets
for native speakers (Ma et al., 2022; Xu et al., 2022;
Zhao et al., 2022; Wang et al., 2022), no such work
has been undertaken for CSC datasets.

CSC Data Augmentation: In order to compen-
sate for the lack of labeled data, previous studies
often create additional pseudo data to enhance per-
formance. The mainstream method is based on
confusion sets (Liu et al., 2021; Zhang et al., 2020),
the pseudo data generated in this way is large in
size but low in quality because context information
is not considered. Another relatively high-quality
construction method is based on ASR (Wang et al.,
2018). However, this approach requires additional
labeled ASR data, making it difficult to create large-
scale datasets. Moreover, the spelling errors gen-
erated by these two methods differ greatly from
those produced by native speakers, such as having
a much smaller proportion of word-level errors. We
provide a detailed analysis in Appendix A.

CSC models: In recent years, BERT-like (De-
vlin et al., 2019) classification models have dom-
inated the research of the CSC task (Hong et al.,
2019; Zhu et al., 2022; Huang et al., 2021; Zhang
et al., 2020; Liu et al., 2021, 2022). However, due
to the lack of large-scale and high-quality datasets,
the performance of these models is greatly limited.
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3 CSCD-NS

In this section, we will show how to build CSCD-
NS and discover the error distribution.

3.1 Data Source

We chose the LCSTS dataset (Hu et al., 2015) as
our data source. This dataset is composed of au-
thentic Weibo posts, which is a popular Chinese so-
cial media platform. As shown in Figure 2, spelling
errors found within these posts reflect the genuine
mistakes made by native speakers during the input
process. Furthermore, this dataset contains over
2 million posts and covers a wide range of fields,
such as finance, sports, and entertainment. The
substantial scale and scope of the LCSTS make it
suitable to serve as the data source.

3.2 Data Selection

We split posts in LCSTS into sentences and obtain
over 8 million sentences. It is not realistic to la-
bel all of these sentences, and most of them are
completely correct. Therefore, we use an error de-
tection model to filter out these correct sentences.

Detection Model: Given a source sequence
X = {x1, x2, ..., xN}, the detection model is to
check whether a token xi(1 ≤ i ≤ N) is correct
or not. We use the label 1 and 0 to mark the mis-
spelled and the correct, respectively. The detection
model can be formalized as follows:

y = sigmoid(W T (E(e))) (1)

where e = {e1, e2, ..., eN} is the sequence of word
embeddings and E(∗) is the pre-trained encoder.
The output y = {y1, y2, ..., yN} is the sequence of
probabilities, where yi ∈ (0, 1) denotes the proba-
bility that xi is erroneous.

Training: We follow the successful experience
(Wang et al., 2020) of the NLPTEA2020 task
(Rao et al., 2020) and use a Chinese ELECTRA-
Large discriminator model 2 (Clark et al., 2020)
to initialize the detection model. Following pre-
vious research, we train the detection model on
SIGHAN13-15’s training data and Wang’s pseudo
data (Wang et al., 2018) and save the best check-
point by SIGHAN13-15’s test data 3.

Filtering: We then use the trained detection
model to filter out correct sentences. For the in-
put sentence, we can obtain the error probability

2https://github.com/ymcui/Chinese-ELECTRA
3SIGHAN datasets have no development set.

of each token y = {y1, y2, ..., yN}. Previous re-
search indicates that the detection model struggles
with certain Chinese particles (的/地/得) due to the
poor labeling of these words in SIGHAN datasets.
Additionally, low-frequency entity words, such as
person names, are also prone to over-checking. To
address these issues, we utilize a Chinese lexical
analysis tool (LAC) (Jiao et al., 2018) to iden-
tify these particles and entities in the input sen-
tence. We categorize tokens into three groups:
Cparticle, Centity, Cothers. Then, we calculate the
maximum error probability for tokens in each cat-
egory. If a category is empty, the maximum error
probability is 0. We only consider a sentence cor-
rect if all the maximum error probabilities for each
category are below the corresponding threshold.
This can be formalized as follows:




max({yi|xi ∈ Cparticle}) < δparticle

max({yi|xi ∈ Centity}) < δentity

max({yi|xi ∈ Cothers}) < δothers

(2)

Here, δparticle, δentity and δothers represent thresh-
old values. These thresholds are determined using
a small manually labeled set and are set to 0.05,
0.5, and 0.15 respectively.

Based on the above method, we filter out ap-
proximately 91.2% of sentences, retaining around
700,000 sentences that may contain spelling errors.
To verify the accuracy of our filtering, we randomly
select 2,000 filtered sentences and find that the ac-
curacy is 99.2%, aligning with our expectations.
For the remaining sentences, we randomly select a
portion for manual annotation.

3.3 Data Annotation
We recruit a group of native speakers for manual
annotation. The annotators are required to check
whether the given sentence contains any spelling
errors and provide the correct sentence. To ensure
the quality of annotation, each sentence is anno-
tated at least twice by different annotators. If the
results of the two annotations are inconsistent, a
senior annotator will make the final decision.

To clarify the annotation rules and reduce dis-
putes during the annotation process, sentences that
fall into the following three categories will be di-
rectly discarded: (1) sentences with inherent am-
biguity; (2) sentences with multiple reasonable an-
swers to errors; (3) sentences with complex gram-
matical errors. Therefore, the sentence retained in
the annotation process is semantically clear and has
a unique correction result.
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Dataset Train Size Dev Size Test Size Target Group Source Language Err. ratio Avg err./sent.
SIGHAN13 700 - 1000 Chinese learners essays TC 77.11% 1.20
SIGHAN14 3437 - 1062 Chinese learners essays TC 86.19% 1.52
SIGHAN15 2339 - 1100 Chinese learners essays TC 81.82% 1.33
CSCD-NS 3,0000 5,000 5,000 native speakers tweets CN 46.02% 1.09

Table 1: The comparison of CSCD-NS and existing CSC datasets SIGHAN13, SIGHAN14, and SIGHAN15 in
terms of dataset size, target group, data source, language, error sentence ratio, and average errors per sentence. In
the table, TC and CN respectively denote Traditional Chinese and Simplified Chinese.

origin 由之可见，中国企业的技术提升后，因与跨国企业共同研发，不在简单的代加工

correct 由此可见，中国企业的技术提升后，应与跨国企业共同研发，不再简单的代加工

segment 由此可见 ，中国企业的技术提升后， 应与跨国企业共同研发，不再简单的代加工

translation
It can be seen that after the technology of Chinese enterprises is upgraded,
they should cooperate with multinational enterprises in research instead of simple processing.

errors

word pair pinyin pair (ed) phonetic tag word len ori-word valid semantic tag
由之可见→由此可见 zhi → ci (2) dissimilar 4 % character

因→应 yin → ying (1) similar 1 - character
不在→不再 zai → zai (0) same 2 ! word

Table 2: The process of adding phonetic and semantic tags. In the table, "ed" means edit distance, and "ori-word
valid" indicates the validity of the original word.

In the end, we obtain 40,000 manually annotated
sentences, which constitute the CSCD-NS dataset.
After random partitioning, there are 30,000 samples
in the training set, and 5,000 samples each in the
development and test sets.

3.4 Analysis on Basic Statistics

As shown in Table 1, the CSCD-NS is significantly
larger in scale compared to existing datasets. More-
over, only the CSCD-NS provides a development
set, is in Simplified Chinese, and originates from
daily input by native speakers. Additionally, the
CSCD-NS exhibits a more balanced distribution of
positive and negative samples, with fewer spelling
errors per sentence on average, suggesting a lower
error rate among native speakers compared to Chi-
nese learners.

3.5 Analysis on Error Distribution

To conduct an in-depth study on the differences
between native speakers and Chinese learners in
terms of spelling errors, we design a tagging system
for quantitative analyses.

Tag definition: We define three phonetic-level
tags and two semantic-level tags. The phonetic tags
consist of: (1) same phonetic error: the erroneous
character has the same pronunciation as the correct
one. (2) similar phonetic error: the erroneous char-
acter’s pronunciation has an edit distance of 1 from
the correct character’s pronunciation. (3) dissimilar

phonetic error: the erroneous character’s pronunci-
ation has an edit distance greater than 1 from the
correct character’s pronunciation. The semantic
tags consist of: (1) word-level error: the erroneous
word is a valid Chinese word. (2) character-level
error: the erroneous word is not a valid Chinese
word, or the length of the erroneous word is 1.

As shown in Table 2, we first tokenize the cor-
rect sentence using LAC (Jiao et al., 2018) to ob-
tain word-level correction pairs. For each pair,
we compute the pinyin edit distance and assign
a phonetic-level tag. Simultaneously, we check the
original word’s validity in Chinese and incorporate
its length to assign a semantic tag.

Phonetic-level analysis: As illustrated in Fig-
ure 3, the proportion of same phonetic errors is the
largest, while the proportion of dissimilar phonetic
errors is the smallest in all four datasets. This fea-
ture is more pronounced in the CSCD-NS dataset,
where the proportion of dissimilar phonetic errors
is only 2.2%, significantly lower than in the other
datasets. Over 97% of the errors are either the same
phonetic or similar phonetic errors. This is because
even if users make slight mistakes in their pinyin
input, Chinese IME will auto-fix the input pinyin
based on the context (Jia and Zhao, 2014).

Semantic-level analysis: As shown in Figure
3, the proportion of word-level errors in CSCD-
NS (49.4%) far exceeds that of existing datasets,
which is twice the average value (23.3%) of the
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Figure 3: The comparison of error distribution (%) at phonetic level (above) and semantic level (below).

SIGHAN datasets. This is because native speakers
rely on the IME to input Chinese texts, which tends
to recommend relatively reasonable valid words
rather than strange "error words", resulting in a
lower proportion of character-level errors. Com-
pared to character-level errors, word-level errors
pose a greater challenge to CSC systems.

4 Data Augmentation

The manual annotation of CSC dataset is very ex-
pensive, therefore, how to construct pseudo data
has always been a valuable topic. In this section,
we introduce a novel method that can generate high-
quality pseudo data on a large scale.

4.1 Data Preparation
The basic principle of pseudo-data construction is
to add noise to accurate sentences. Therefore, it is
necessary to first prepare completely correct sen-
tences. Fortunately, such text data is readily avail-
able on the Internet, including Wikipedia articles
and classic books. This availability also ensures
the generation of a large-scale dataset.

4.2 IME-based Pseudo Data Generation
First, we should analyze and obtain the error distri-
bution based on the annotated data, including the
distribution of the number of errors per sentence
Dnum, phonetic-level error distribution Dphonetic,
and semantic-level error distribution Dsemantic.

As illustrated in Figure 4, the IME-based gener-
ation of pseudo data involves eight steps.

(1) Sample a noise vnum based on Dnum, which
indicates the number of generated spelling errors.
The following steps are performed for each error.

(2) Sample a semantic noise vsemantic based on
Dsemantic, which indicates whether the error is at
the word level or the character level.

(3) Randomly select a token from the original
text based on the sampled vsemantic.

(4) Sample a phonetic noise vphonetic based on
Dphonetic, which indicates whether the error is the
same, similar, or dissimilar phonetic error.

(5) Generate the new pinyin p, based on the sam-
pled phonetic noise vphonetic and the actual pronun-
ciation of the selected token.

(6) In a Chinese IME, input the correct text be-
fore the selected token t and enter the generated
pinyin p. The IME would then recommend rea-
sonable candidates {c1, c2, ..., cn}. Leveraging the
powerful language model of the IME, candidates
are recommended by considering both the context
before token C<t and the pronunciation p (Chen
et al., 2015). This can be represented as:

{c1, c2, ..., cn} = IME(C<t, p) (3)

(7) Choose the candidate from the recommen-
dations. If the first recommended candidate is the
original token, randomly select the second or third
candidate word {c2, c3}. If the first candidate word
is not the original token, directly choose the first
candidate word c1. Then, replace the original token
in the input text with the selected candidate word
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Figure 4: The IME-based pseudo data generation process.

to generate a noisy sentence.
(8) Due to the powerful language model of IME,

the generated sentence may still be a correct sen-
tence. Therefore, we adopt an n-gram language
model for secondary filtering. We consider the gen-
erated sentence to be incorrect only if its perplexity
(PPL) exceeds that of the original sentence by a
threshold of δ. This can be formalized as follows:

PPL(noisy)− PPL(origin)

PPL(origin)
> δ (4)

Through these steps, we can generate pseudo
data that closely resembles the actual input process.

4.3 LCSTS-IME-2M
We apply the above method to construct a large-
scale CSC pseudo dataset LCSTS-IME-2M, con-
sisting of about 2 million samples, based on the
correct sentences filtered from LCSTS, the error
distribution of CSCD-NS, and the Google IME 4.

5 Experiments

In this section, we evaluate the performance of dif-
ferent models on CSCD-NS and compare different
pseudo-data construction methods.

5.1 Basic Settings
Data: We perform experiments based on the labled
data CSCD-NS and the pseudo data LCSTS-IME-

4https://www.google.com/inputtools/

Model Structure Parameters Learning
BERT Encoder 102M FT
SM BERT Encoder 123M FT
PLOME Encoder 123M FT
BART En-Decoder 407M FT
Baichuan2-7B Decoder 7.5B LoRA
Baichuan2-13B Decoder 13.9B LoRA
ChatGPT Decoder - ICL
GPT4 Decoder - ICL

Table 3: The comparison of different baselines. In the
table, En-Decoder refers to encoder-decoder, FT refers
to full-parameter finetuning, LoRA refers to finetuning
using low-rank adaptation, and ICL refers to in-context
learning. Note that the number of parameters for Chat-
GPT and GPT4 has not been disclosed by the official
documentation.

2M. For pseudo data, we pre-train the model on it
first, then fine-tune the model on the labeled data.

Metric: We compute detection and correc-
tion metrics at the sentence level and character
level, including precision, recall, and F1 score.
For sentence-level metrics, we use the calcula-
tion method in FASPell (Hong et al., 2019). For
character-level metrics, we calculate all characters
instead of only those correctly detected characters.

Baselines: As shown in Table 3, the baselines en-
compass a diverse range of model structures, sizes,
and learning methods. (1) BERT (Devlin et al.,
2019) directly fine-tunes the standard masked lan-
guage model to generate fixed-length corrections.
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Models
Sentence level Character level

Detection Correction Detection Correction
P R F1 P R F1 P R F1 P R F1

BERT 79.16 65.83 71.88 70.55 58.66 64.06 83.00 67.01 74.15 73.59 59.41 65.75
+LCSTS-IME-2M 78.98 73.60 76.20 75.63 70.47 72.96 82.19 75.75 78.84 78.84 72.67 75.63
SM BERT 80.87 64.78 71.94 74.42 59.62 66.20 84.46 65.35 73.68 77.50 59.97 67.62
+LCSTS-IME-2M 79.19 74.86 76.97 75.75 71.60 73.62 82.39 77.93 80.10 78.63 74.37 76.44
PLOME 79.78 57.23 66.65 78.09 56.01 65.23 83.48 57.99 68.44 81.49 56.61 66.81
+LCSTS-IME-2M 81.20 72.21 76.44 79.05 70.30 74.42 84.21 73.81 78.67 82.00 71.88 76.60
BART 38.73 46.05 42.08 35.41 42.11 38.47 36.97 63.32 46.69 33.30 57.04 42.05
+LCSTS-IME-2M 42.06 54.29 47.40 41.01 52.95 46.22 40.87 75.97 53.15 39.68 73.75 51.60
Baichuan2-7B 64.98 53.04 58.41 62.70 51.17 56.35 57.10 56.92 57.01 54.72 54.55 54.63
+LCSTS-IME-2M 66.94 66.13 66.54 64.84 64.05 64.44 60.63 72.57 66.07 58.55 70.08 63.80
Baichaun2-13B 67.53 60.23 63.67 65.14 58.11 61.42 60.07 64.62 62.26 57.49 61.86 59.60
+LCSTS-IME-2M 67.82 67.35 67.58 66.33 65.87 66.10 61.67 73.91 67.24 60.06 71.98 65.48
ChatGPT 59.74 51.60 55.38 55.17 47.66 51.14 60.41 55.73 57.98 54.84 50.59 52.63
GPT4 58.37 59.71 59.03 53.67 54.90 54.28 58.40 63.60 60.89 52.34 57.00 54.57

Table 4: The performance (%) of different models on CSCD-NS with or without pseudo dataset.

Models Char level Word level ∆

BERT 72.82 71.07 -1.75
SM BERT 75.09 72.71 -2.38
PLOME 77.77 72.78 -4.99
BART 57.19 55.60 -1.59

Baichaun2-7B 65.88 63.50 -2.38
Baichaun2-13B 71.58 68.88 -2.70

ChatGPT 61.96 57.65 -4.31
GPT4 71.06 61.13 -9.93

Table 5: The performance (correction F1 score at char-
acter level %) comparison between word-level and
character-level errors. We only select the same pho-
netic errors here to avoid the influence of pronunciation.

(2) Soft-Masked BERT (SM BERT) (Zhang et al.,
2020) employs an error detection model to pro-
vide better correction guidance. (3) PLOME (Liu
et al., 2021) integrates phonetic and visual fea-
tures into the pre-trained model. It has included a
pre-training step on a confusion set-based pseudo
dataset. (4) BART (Lewis et al., 2020) models the
CSC as a sequence-to-sequence task. We use the
Chinese BART-large version here 5. (5) Baichuan2
(Baichuan, 2023) models the CSC as a text gen-
eration task based on instructions. We fine-tune
the model by LoRA (Hu et al., 2021) and use the
version of 7B and 13B here 6. (6) ChatGPT and
GPT4 perform the CSC task in a few-shot setting
(10 examples) through in-context learning (ICL)
(Dong et al., 2022).

To ensure that the correction results are of the

5https://huggingface.co/fnlp/bart-large-chinese
6https://github.com/baichuan-inc/Baichuan2

same length as the input text, we only extract equal-
length substitution modifications for generative
models (BART, Baichuan2, ChatGPT and GPT4).
Further implementation details of these models can
be found in Appendix B.

5.2 Main Results

(1) As shown in Table 4, compared with generative
models, BERT-like token-level classification mod-
els (BERT, SM BERT, PLOME) remain the best
approach for the CSC task, with smaller model size,
higher performance, and faster inference speed.

(2) The overall performance of generative mod-
els is relatively poor because the CSC task has
strong constraints, requiring corrections to be of
equal length and phonetically similar to the orig-
inal text. These strong constraints make it easy
for generative models to cause over-correction and
incorrect correction.

(3) For generative models, as the parameter size
increases, their performance tends to improve grad-
ually. This trend can be observed from smaller
models like BART (0.4B) to larger ones such
as Baichuan2-13B. Similarly, GPT4 outperforms
ChatGPT, and it is only through in-context learning
that GPT4 can achieve performance comparable to
Baichuan2-7B fine-tuned on CSCD-NS.

(4) Large-scale and high-quality pseudo data is
important for improving the performance, bringing
consistent improvements across all six models.

(5) The task of CSC for native speakers is highly
challenging and the best F1 score of baseline mod-
els is still below 80. A key characteristic of this
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origin 新方案还处多方博弈中，想要尽快的打破僵局仍就困难重重，我们会跟紧并持续报到

correct 新方案还处多方博弈中，想要尽快地打破僵局仍旧困难重重，我们会跟紧并持续报道

translation
The new plan is still in a multi-party game. It is still difficult to break the deadlock as soon as possible.
We will follow up and continue to report.

PLOME 仍就(jiu) →仍旧(jiu); 跟紧(jin) →跟进(jin)
ChatGPT 处→处于; 尽快的(de) →尽快地(de) ; 仍就(jiu) →仍然(ran); 跟紧(jin) →跟进(jin)

Table 6: The correction results of PLOME and ChatGPT. The pronunciation of the character is in brackets.

Data BERT SM BERT BART Baichuan2-7B
*CS 19.57 15.39 14.02 25.67

*ASR 42.22 39.50 29.97 35.69
*IME 46.71 53.84 32.16 38.64
+CS 64.53 67.36 42.95 54.30

+ASR 68.44 71.26 44.88 56.77
+IME 70.41 72.72 45.92 57.85

Table 7: The comparison of the performance (correction
F1 score at character level %) of three pseudo-data con-
struction methods based on confusion sets (CS), ASR,
and IME. In the table, an asterisk (*) indicates that only
pseudo data is used for training, while a plus sign (+)
denotes pretraining on pseudo data followed by contin-
ued training on the CSCD-NS’s training data.

scenario is the high proportion of word-level errors.
As shown in Table 5, word-level errors are more
difficult for models to handle than character-level
errors, as they require understanding more complex
contexts. The development of CSC models, from
BERT to PLOME, has primarily focused on opti-
mizing character-level errors, with little progress
made in addressing word-level errors. Therefore,
further efforts are required in this scenario.

5.3 Better Data Augmentation Method

In this part, we compare different pseudo-data con-
struction methods. We conduct experiments on an
existing ASR-based pseudo dataset (Wang et al.,
2018), containing about 271K samples. We extract
the correct sentences and construct new pseudo-
data based on confusion sets and IME, respectively.

As demonstrated in Table 7, our IME-based ap-
proach exhibits a substantial enhancement in per-
formance compared to the other two methods. This
improvement is even more pronounced when train-
ing exclusively on pseudo-data. The primary factor
contributing to this success is the error distribution.
As depicted in Figure 5, the pseudo-data generated
via the IME-based method more accurately reflects
the spelling errors made by native speakers. More
analysis can be found in Appendix A.

5.4 Discussions

For generative models, it is difficult to ensure that
the generated text satisfies constraints on length
and pronunciation. In the original correction re-
sults produced by ChatGPT, a staggering 82.1% of
modifications exhibit unequal length, while 35.4%
display dissimilar pronunciation. As illustrated
in Table 6, the replacement of "处" with "处于"
(located in) disregards the length constraint by in-
troducing an additional character. Similarly, the
correction of "仍旧" to "仍然" (still) overlooks
the pronunciation constraint. Although these alter-
ations may appear reasonable, they fail to meet the
CSC task’s requirements.

BERT-like classification models have difficulty
in addressing complex word-level errors and equal-
length grammatical errors, as these require a
strong contextual understanding. For example, the
PLOME model shows a recall rate of only 60%
for word-level errors and merely 44% for particle-
related grammatical errors (的/地/得). Table 6 il-
lustrates that the incorrect word "报到" (check-in)
is a high-frequency term, necessitating the model
to recognize its context and correct it to "报道" (re-
port). Similarly, in the phrase "尽快的打破" (try
to break), the model must comprehend the gram-
matical rule (the particle between the adjective and
the verb should be "地" instead of "的") and apply
the appropriate correction.

Moreover, all baseline systems, which are based
on pre-trained language models, exhibit a propen-
sity to over-convert low-frequency expressions into
more prevalent ones (Zhang et al., 2020; Liu et al.,
2022). As demonstrated in Table 6, "跟紧" and "跟
进" share similar meanings (follow-up); however,
since "跟进" is more frequently used, the model is
prone to over-correcting.

Consequently, enabling controlled text genera-
tion, addressing complex word-level and grammat-
ical errors, and enhancing the understanding of
low-frequency or new words all represent valuable
avenues for future research.
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6 Conclusion

In this paper, we focus on CSC for native speakers.
For this scenario, we propose a new dataset, CSCD-
NS, which is also the largest dataset for CSC. We
further unveil the specific error distribution, with a
significantly higher proportion of word-level errors.
Moreover, we introduce an IME-based pseudo-data
construction approach, enabling large-scale gen-
eration of high-quality pseudo-data. We explore
the performance of various models and first eval-
uate ChatGPT and GPT4 on the CSC task. Our
experiments demonstrate that BERT-like models
exhibit better performance than generative models,
but there is still a considerable room for improve-
ment. We hope these data resources and our find-
ings could stimulate further research in this area.

7 Limitations

Limitation of the CSCD-NS dataset: The data
source for the CSCD-NS dataset is derived from a
Chinese social networking platform. Therefore, it
may not fully represent the error distribution of na-
tive speakers, as there may be slight differences in
other scenarios, such as formal document writing.

Limitation of the pseudo-data construction: The
employed method of input simulation via IME is
relatively basic, and the actual input scenario is
more complex. For instance, individuals may uti-
lize abbreviated pinyin to input common phrases,
entering only the initials of characters (e.g., "wm"
for "我们") (Tan et al., 2022). Moreover, a substan-
tial number of users prefer the T9-style keyboard
when employing IME on mobile devices. These
factors collectively contribute to the inability of
our pseudo-data construction method to accurately
simulate the realistic input scenario.

8 Ethics Statement

License: CSCD-NS and the constructed pseudo-
data LCSTS-IME-2M are based on LCSTS (Hu
et al., 2015), we applied for and obtained the right
to use this dataset, and performed the academic
research under the copyright.

Annotator Compensation: In this work, anno-
tators are from a data labeling company in China.
Through the pre-labeling, we estimate that each
annotator could label 80 samples per hour and the
label speed would be faster when they are skilled.
In China, 60 yuan (8.76 dollars) per hour is a fair
wage, therefore, we pay the annotator 0.75 yuan
(0.11 dollars) for each sentence.
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LM threshold (δ) Precision Recall F1
w/o 41.17 40.66 40.91

-20% 44.52 49.01 46.66
0% 49.69 44.07 46.71
20% 50.64 26.46 34.76
50% 57.52 9.38 16.12

Table 8: The correction results (%) at character level for
pseudo data with different LM filtering strategies.

A Pseudo Data Analysis

A.1 Impact of LM Post-Filtering
In this section, we investigate the influence of lan-
guage model (LM) post-filtering, which constitutes
the final stage of our proposed pseudo-data con-
struction method. We extract accurate sentences
from the Wang271K dataset (Wang et al., 2018)
and generate pseudo-data using IME, incorporat-
ing various LM filtering strategies. We choose the
basic BERT model to conduct the experiment and
train the model only on the pseudo data to clearly
distinguish the differences.

As demonstrated in Table 8, the lack of LM
filtering results in the introduction of undesired
noise. For example, the generated pseudo-data
may consist of entirely accurate sentences. In con-
trast, when the threshold is excessively low (even
below 0), the generated errors become more com-
plex, leading to high recall but poor precision. Con-
versely, if the threshold is set too high, the gener-
ated errors tend to be relatively simple, resulting
in better precision but lower recall. Therefore, LM
filtering is necessary, and selecting an appropriate
threshold is also very important.

A.2 Error Distribution
As illustrated in Figure 5, we analyze the error dis-
tribution of pseudo-data generated by various meth-
ods at both phonetic and semantic levels. It is clear
that our pseudo-data construction method demon-
strates the highest consistency with the CSCD-NS
dataset, suggesting that our approach closely resem-
bles real input scenarios. In contrast, the confusion
set-based method and the ASR-based method ex-
hibit a significant deviation from the actual error
distribution.

A.3 Case Study
We sample some examples in Table 9. It can be
observed that the confusion set-based method is
capable of producing similar phonetic errors; how-
ever, these errors are entirely out of context and

translation simple, fashionable and moderate style
origin 简约时尚的风格适中的

CS 简约时尚的风格誓中的

ASR 简约时尚的风格是中的

IME 简约时尚的风格始终的

translation and the regulation is not perfect
origin 且监管也不完善

CS 且监管也不碗善

ASR 其监管也不完善

IME 且监管也不玩善

Table 9: The pseudo data generated based on confusion
set (CS), ASR, and IME.

Configurations Values
PLM bert-base-chinese (Devlin et al., 2019) 7

devices 1 Nvidia A100 GPU (40GB)
framework PyTorch Lightning 1.3.8 8

optimizer AdamW (Loshchilov and Hutter, 2017)
learning rate 1e-4
sequence length 512
batch size 128
epochs 10
dropout 0.1

model size
BERT: 102 M
SM BERT: 123 M

training speed
BERT: ~10 batches/s
SM BERT: ~7 batches/s

metric for best 9 loss

Table 10: Configurations of BERT and SM BERT.

can not accurately represent the real input scenario.
The ASR-based method performs better but pri-
marily generates character-level errors. Moreover,
since the ASR-based method lacks an LM filtering
module, the generated noise may occasionally be
correct, as demonstrated by the third case in Table
9. In contrast, our method can effectively gener-
ate high-quality pseudo data, encompassing both
word-level and character-level errors.

B Experimental Details

In this section, we provide comprehensive descrip-
tions of the experimental procedures and parameter
settings for each model.

Note that for each experiment, we select the best
checkpoint based on the development set and eval-
uate its performance on the test set. We carry out
three trials for each experiment and report the av-

7https://huggingface.co/bert-base-chinese
8https://www.pytorchlightning.ai/
9The metric used to save the best model

10https://share.weiyun.com/OREEY0H3
11https://www.tensorflow.org/
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Figure 5: The comparison of error distribution (%) at phonetic level (above) and semantic level (below).

Configurations Values
PLM PLOME pre-trained model 10

devices 1 Nvidia V100 GPU (32GB)
framework Tensorflow 1.14 11

optimizer AdamW (Loshchilov and Hutter, 2017)
learning rate 5e-5
sequence length 180
batch size 32
epochs 10
dropout 0.1
model size 123 M
training speed ~2.12 batches/s
metric for best F1-score of correction at character level

Table 11: Configurations of PLOME

erage results in the paper. The total training time
is contingent upon the size of the training data and
can be estimated based on the training speed.

B.1 BERT-like Models

Since there is no official implementation for BERT
and SM BERT, we follow a widely-used open-
source version12. For PLOME, we directly utilize
the official code13. We adhere to the default hy-
perparameters, and the detailed configurations for
these three models can be found in Table 10 and
Table 11.

Configurations Values
PLM fnlp/bart-large-chinese 14

devices 8 Nvidia A100 GPU (40GB)
framework transformers 4.29.1 15

optimizer AdamW (Loshchilov and Hutter, 2017)
learning rate 5e-5
sequence length 512
batch size 256
epochs 10
dropout 0.1
model size 407 M
training speed ~3.5 batches/s
metric for best loss
input {origin sentence}
output {correct sentence }

Table 12: Configurations of BART

B.2 BART

We choose the Chinese BART-large model as the
base model and fine-tune it for the CSC task by
treating it as a sequence-to-sequence task. The
model takes the original sentence as input and pro-
duces the correct sentence as output. The decoding
method employed is beam search with a beam size
of 4. The specific model configuration can be found
in Table 12.

12https://github.com/gitabtion/BertBasedCorrectionModels
13https://github.com/liushulinle/PLOME
14https://huggingface.co/fnlp/bart-large-chinese
15https://github.com/huggingface/transformers
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Configurations Values
PLM Baichuan2 16

devices 8 Nvidia A100 GPU (40GB)
framework transformers 4.29.1 17

optimizer AdamW
lora rank 8
learning rate 1e-4
sequence length 512
batch size 128
epochs 10
dropout 0.1

model size
Baichuan2-7B: 7.5 M
Baichuan2-13B: 13.9 M

training speed
Baichuan2-7B: ~3.0 s/batch
Baichuan2-13B: ~4.4 s/batch

metric for best loss

input
Instrction: 纠正句子中的拼写错误
Input: {origin sentence}
Output:

output {correct sentence }

Table 13: Configurations of Baichuan2

B.3 Baichuan2

Baichuan2 (Baichuan, 2023) is a powerful Chi-
nese language model that includes two open-source
models, Baichuan2-7B and Baichuan2-13B. The
CSC task is modeled as an instruction tuning task,
with the instruction being "纠正句子中的拼写
错误" (correct the spelling errors in the following
sentence). We use LoRA (Hu et al., 2021) to fine-
tune the model. During the decoding stage, random
sampling is not performed, and the beam size is set
to 1. Table 13 displays the specific configurations.

B.4 ChatGPT and GPT4

We tested ChatGPT and GPT4 through OpenAI’s
API on November 26, 2023, and the model id for
ChatGPT is gpt-3.5-turbo-1106 and GPT4 is gpt-4-
1106-preview. We set the temperature to 0 to reduce
the influence of random sampling. As illustrated in
Table 14, we devise three prompt templates, each
comprising a task description, 10 examples, and
a test sentence. These 10 examples encompass 5
positive instances (sentences containing spelling
errors) and 5 negative instances (sentences without
spelling errors), all of which are randomly cho-
sen from the training set. As shown in Table 15,
utilizing the same prompt template with varying
example samples exerted a negligible effect on the
outcomes. Likewise, employing different prompt

16https://github.com/baichuan-inc/Baichuan2
17https://github.com/huggingface/transformers

templates also has a minor impact on the results.
Given that the outcomes obtained using "prompt 3"
are slightly better, we present the average results
derived from "prompt 3" in our paper.
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prompt 1

instruction 修正句子中的拼写错误，修正结果需要与原文长度相等，发音相近

10 examples

比特币价格从15美元飚升到266美元⇒ 比特币价格从15美元飙升到266美元

...

其中，企业成为职务专利申请的主力军⇒ 其中，企业成为职务专利申请的主力军

test case 让农民工流血、流汗不在流泪⇒

prompt 2

instruction 修正拼写错误，修正结果与原文需要长度相等，且发音尽可能相近

10 examples

修正前:比特币价格从15美元飚升到266美元

修正后: 比特币价格从15美元飙升到266美元

...

修正前:其中，企业成为职务专利申请的主力军

修正后:其中，企业成为职务专利申请的主力军

test case
修正前:让农民工流血、流汗不在流泪

修正后:

prompt 3

instruction

Instruction: Correct spelling errors in the sentence, adhering to the following two requirements:

(1) The corrected output should maintain the same character length as the original text.

(2) The pinyin of the corrected character and the original character should be identical, or the edit distance

should be as minimal as possible.

10 examples

Input:比特币价格从15美元飚升到266美元

Output: 比特币价格从15美元飙升到266美元

...

Input:其中，企业成为职务专利申请的主力军

Output:其中，企业成为职务专利申请的主力军

test case
Input:让农民工流血、流汗不在流泪

Output:

Table 14: Three prompt templates designed to call ChatGPT/GPT4 for the CSC task.

Settings
Sentence level Character level

Detection Correction Detection Correction
P R F1 P R F1 P R F1 P R F1

prompt 1 (run1) 52.92 51.13 52.01 48.70 47.05 47.86 54.14 57.91 55.96 48.56 51.94 50.19
prompt 1 (run2) 53.61 50.22 51.86 49.40 46.27 47.78 54.08 56.28 55.16 48.84 50.83 49.82
prompt 1 (run3) 53.85 50.61 52.18 49.75 46.75 48.20 54.73 56.92 55.80 49.30 51.27 50.26
prompt 2 (run1) 55.52 48.83 51.96 50.94 44.80 47.67 55.08 54.86 54.97 49.25 49.05 49.15
prompt 2 (run2) 55.43 49.61 52.36 50.82 45.49 48.01 55.48 55.65 55.56 49.72 49.88 49.80
prompt 2 (run3) 55.91 50.22 52.91 51.76 46.49 48.98 55.56 56.72 56.13 50.33 51.38 50.85
prompt 3 (run1) 59.56 47.27 52.71 55.25 43.84 48.89 61.16 51.11 55.69 55.49 46.36 50.52
prompt 3 (run2) 58.29 45.88 51.35 54.88 43.19 48.34 60.62 49.84 54.71 55.67 45.77 50.24
prompt 3 (run3) 59.85 47.83 53.17 55.56 44.41 49.36 61.29 51.70 56.09 56.00 47.23 51.24

Table 15: The performance (%) of ChatGPT with different prompts on CSCD-NS.
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