Shaastra Maps: Enabling Conceptual Exploration of Indic
Shaastra Texts

Sai Susarla!, Suryanarayana Jammalamadaka, Vaishnavi Nishankar,
Siva Panuganti, Anupama Ryali, and Sushrutha S
! Vedavaapi Foundation, Bangalore
MIT School of Vedic Sciences, MIT-ADT University, Pune
sai.susarla@gmail.com, jam.narayana@gmail.com, r.vaishnavi.rao@gmail.com,
panugantisiva@gmail.com, anupamaskt@gmail.com, ayrvedal984@gmail.com

Abstract

Indic shaastra texts employ a rigorous, structured style of discourse that adheres to well-
laid out conventions of Nyaaya and Mimaamsa. As a result, unlike modern scientific
treatises which use free form natural language for their discourse, Indic shaastra texts
are more amenable to mechanized navigation and interpretation. Such a facility also
simplifies their study by novice readers via creating custom dynamic views on demand
for rapid drill-down and assimilation.

This paper contributes a conceptual network representation of Indic shaastra texts called
Shaastra Map along with a graph query scheme called ShaastricQL' that together provide
these benefits. At its core, ShaastraMap is an overlay directed graph of sentences and
sections of one or more Shaastra texts linked via relations widely employed by shaastra
authors and experts such as tantrayuktis and padaartha sambandhas. This representa-
tion directly mimics shaastric discourse structure and hence makes the author’s intent
more explicit to reduce learning barrier. Moreover, ShaastriQL offers primitives to help
generate the following custom views of a shaastra text:

e Glossary: Show all the technical terms used in the text along with their definitions,
illustrative examples and explanations -

o Category Hierarchy: Given a conceptual category, show its recursive hierarchy of
attributes and sub-categories.

e Discourse by topic: Given a topic, show its complete analysis in the text to a given
level of detail.

e Summary: Show a high-level summary of the text with an incremental drill-down
view of details.

We have built a web-based ShaastraMap editor that lets users (i) mark up a shaastra
text to describe its structural layout upto individual sentences, (ii) tag the sections and
their inter-relationships using well-formed 7-layer shaastric categories based on Nyaaya
and Mimaamsa principles of text interpretation, and (iii) explore the text via the above
custom views. This paper outlines these capabilities and our experience in the context
of mapping four diverse shaastra texts.

1 Introduction

India’s traditional scientific knowledge is articulated in numerous shaastra texts in a wide variety
of disciplines, e.g., Ayurveda, Jyotisha, Vaastu, Yoga, Aesthetics, Dharma and Artha shaastras
to name a few. There is untapped knowledge in the shaastras which can potentially address
several prevailing issues in the world. There are areas in modern disciplines which can be aug-
mented with shaastric insights. For these reasons, there is growing curiosity among the younger
generation to explore Indic shaastras. Moreover, encoding knowledge for machine processing is

Y We recommend pronouncing ShaastriQL as Shaastric-quel.
174

Proceedings of the Computational Sanskrit and Digital Humanities, 18" World Sanskrit Conference 2023, pages 174-187

crucial for leveraging Indic knowledge for contemporary uses at scale. Some examples of useful
applications include an automated tool for Ayurvedic diagnostics assistance, Vaastu compliance
checking, and symptom-based herbal remedies. However, due to their highly technical nature
and unfamiliar style of discourse for modern seekers, Indic shaastra texts require special training
to navigate, grasp and utilize.

1.1 Challenges in exploring Shaastra Texts

There are a number of issues that a novice seeker faces in studying shaastra texts in their
current format. The exposition style looks too detailed for first reading as key points often get
interspersed with detailed commentaries and nuanced arguments. The definitions of terms and
examples of concepts seem hard to locate in flat text. The long compounds and sandhis are
difficult to parse and cross-references of concepts drawn from other shaastras are hard to find.
The novice cannot benefit from shared community experience from prior readers and more often
than not, deep experts of shaastras are hard to obtain.

1.2 Approach to a Solution

An insight into how to make Indic texts more accessible to modern seekers can come from
understanding how a traditional scholar digests them, uses cross-references and presents them
to his/her students. We explore this further in Section 3. To effectively leverage Indic scientific
knowledge for contemporary uses, we need to reduce the didactic burden of scholars for training
large numbers of students and also encode the knowledge contained in Indic texts for machine-
assisted cognition and mining. Both the objectives can be achieved by encoding shaastra text
content as a multi-dimensional concept network with a standard schema for navigation.

In this paper, we present a novel way of representing shaastric content that is amenable to
drill-down exploration and topic-based consultancy, by using the inherent structuring schemes
of shaastras, specifically Tantrayuktis Lele (1981) and Nyaaya-sambandhas Jha (2010). Section
3 gives further details about Tantrayuktis. We have developed a web-based editor for experts
to collaboratively overlay a shaastra text and/or its commentary with a concept map repre-
sentation. It includes a graph-based concept browser that supports drill-down exploration and
summary views. We have evaluated the expressive power of Shaastra Map’s representation
scheme by applying it to diverse, popular shaastra texts including Tarka sangraha, Saankhya
kaarika, KaavyaprakaaSa, Kshemakutuhala, AshtaangahRdaya etc.

The rest of the paper is organized as follows. Section 2 discusses prior work in relation to
ours. Section 3 gives the organisation of discourse structure used in the shaastras that inspired
our solution. Section 4describes our core contributions, namely, shaastra maps, their definition,
creation and knowledge representation structures. Section 4.3 illustrates through actual exam-
ples from diverse shaastras, the expressive power of our representation - tarka sangraha, Kaavya
prakaasha and Saankhya kaarikaa. Section 4.4 introduces a query scheme for conceptual search
using a shaastra map, and how several higher-level views can be expressed using it. Section 5
outlines the implementation details and current status of this work. Section 6 outlines lessons
learnt from our experience and suggest directions for further work. Section 7 summarizes the
paper’s contributions and key takeaways.

2 Related Work

The idea of shaastra maps is inspired by the success of mind maps. The value of mind maps to
organize and present knowledge has been well-studied Beel et al. (2019). The proliferation of
mind mapping tools (both free and commercial) is a testimony to their effectiveness. However,
our unique contribution is in devising a standard schema for semantic networking of Indic text
content that allows automated navigational queries. Semantic web is a methodology to represent
and organize web content to support sophisticated knowledge processing and visualization. The
natural language processing community has developed numerous tools Goyal et al. (2012; Hellwig

175

(2009; Kulkarni (2016) for automatically inferring semantic linkages among multiple sentences
in a paragraph Srinivasan and Parthasarathi (2011). Such tools can be leveraged to infer some
of the semantic tags identified in this paper, and hence are complementary. Brat Brat (2016)
is a text annotation tool that provides a user-interface for concept mapping, but leaves the
higher-level annotation and tagging strategy to the user.

A prior position paper Susarla et al. (2017) has made a strong case for concept mapping
of Indic shaastras and proposed a representation scheme for exploiting their inner structure
for machine processing. Our paper improves on that work in two ways. First, we propose
tantrayuktis and padaartha sambandhas as a sounder basis for shaastra mapping due to their
comprehensive and nuanced coverage of shaastric discourse concepts. Second, we offer a query
mechanism on shaastra maps to support sophisticated knowledge search and navigation.

3 Organization of Shaastraic Discourse

A traditionally trained shaastric scholar eases the understanding of a shaastric discourse for any
audience by (i) mapping the content of a shaastra to suit their audience, (ii) focusing on some
concepts and glossing over others, (iii) bringing in relevant external references, etc. based on
the objective of the study. This is because a shaastra expert uses his/her familiarity to mentally
build a concept map of the flat text along with relevant works, and uses it to assist students in
imbibing the concepts without getting overwhelmed.

We view a shaastric discourse as consisting of three aspects, viz.,

1. The categories of entities defined as technical terms specific to the shaastra. Shaastra has
specific conventions to enumerate, define, categorize and analyze them.

2. The relations between the categories and postulates that aid in well-formed classification,
logical evaluation and conclusion of the shaastric theories

3. The discourse involving logical and rational flow of thought based on the reasoning tenets of
Nyaaya through topical discussions, cross-referencing and addressing objections and prima
facie views leading to conclusive theorization.

The conventions available in the shaastras for describing these aspects can be broadly identified
as follows:

Tantrayuktis — Between 32-43 tantrayuktis are used in celebrated Shaastra texts. Tantrayukti
denotes a category of sentence or inter-sentence relationships that denotes their role in a
coherent logical discourse. The following elementary and standard structures are found in
most shaastra texts.

e UddeSa, LakshaNa, pariikShaa and nirNaya - enumeration, definition, examination of
definition and conclusion — the basic navigation structures.

o adhikaralNa, sangati and taatparya-lingas — topicalization, logical succession of discus-
sion and pointers to arrive at conclusions. Each of these have subcomponents that are
applied in the discourse as relevant to the context. For instance, adhikaraNa comprises
of vishaya, viSaya, poorvapaksha, uttarapaksha, nirNaya — topic, doubt, prima facie
view, proponent’s view, conclusion. They, in turn use other elements such as hypothe-
sis (pratijnaa), hetu (reason), udAharaNa (illustration), tarka (proof by contradiction),
means of proof (perception, inference etc), previous / forward reference, extension of
application etc.

Different shaastras employ different subsets of these constructs in their discourse as needed.
We find that tantrayuktis cover a superset of these structures, and hence are useful to adopt
for the purpose of creating shaastra maps.

176

Nyaaya-sambandhas — Relations between the categories and concepts that form part of shaas-
tra discourse, e.g., lakshya-lakshaNa-bhaava (defined-definition), dharma-dharmi-bhaava
(property-holder), saamaanya-viSesha-bhaava (class-type), avayava-avayavi-bhaava (whole-
part) and so on.

Figure 1 enumerates 7 dimensions of concept categorizations used in shaastric discourse with
values in each dimension. Our study of these dimensions revealed that many of the categories
under Topic, commentary, gist, concept and treatise dimensions are covered under tantrayukti.
Hence we believe that tantrayuktis can be used to adequately characterize a shaastra’s sec-
tions and their linkages. However, capturing inter-concept relations requires, in addition, the
padaartha sambandhas listed in the last column of the figure.

Tantrayukti_tag aTaa-T (GgfERT:)
A B [D E & G H

- L o s
2 | SHfOTPTTAEU retrospection fawg: Topic TEW&:division of worc inni e fi@Tdithe qualified student FIET - FAETs-yTa:
4 fAESE: extrapolation fR:ambiguity / doubt geniffaimeaning of wor SU¥ER:conclusion TW&THdefinition FW:the theme o - yftf-wre:
5 freERoe Topic FgEE-FF Rintroduction fagianalysis of gramm repetiion Tdflverification TS result WY - TP -
5 SFTTATAEU forward referance QEUE: adversary argument prose-renderi g TR T-Heithe qua SUTEH - JURT-HIG:
7 HEH agreement ITRUE: rebuttal 3d:0bjection BEHpurpose A - Se R the them AT - FOTHE-HE:
5 3UE/ed: reason T aicontext GHIYFHansvwer sifaraidescription PR EET-FaRithe u T - FETE-E:
© | 3 exception T TF R argumentation IUTR¥:cogency - fva. wae-gew Tau - wiiues-HE:
10 3ufufE implied meaning TR T Taiscope YR - MET-yTa:
1 | JERU: Refutation frafedraa-ggRioneness performing B - BRU-YG:
12| FEIE concise summary PR (TP HUBEH)- T aioneness result frarsg - ey
12 | JUETE: advisory guidance TP g T eemplification UFR - FHIR-HIa:
14 JUHFH analogy URIETERUTH- S fire-answer ofEif - srpEif-se:
15 | FEH deduction 18T TF objection I - fFdg-uma:
16 UPT: exclusive statement T - -y
17 : example iy - -y
18 |fdm: Dictate g - Ty

= Concept-sum v Concept-detail + Vakyas ~ Sambandhas ~ Tantrayukti ~ Explore

Figure 1: Conceptual structures used in Shaastra texts

4 Shaastra Maps

Based on the understanding of shaastric structures in Section 3, we have designed a conceptual
network representation of shaastra texts. We describe that in this section.

We define a Shaastra Map (hereafter referred to as SMap) as a directed graph representation
of the content of one or more Indic scientific treatises or shaastra texts. An SMap captures
the physical sectional hierarchy, conceptual category hierarchies, logical network of sentences,
arguments etc. that constitute a coherent discourse. While discourse analysis in general is a
well-developed field with its own knowledge representation conventions, we have designed SMap
to specifically encode the common methods and schemas employed in Indic shaastric treatises
(e.g., Ayurveda, Artha shaastra, Natya shaastra and Jyotisha, etc.). An SMap makes explicit
a shaastra’s inherent conceptual network that is normally implicitly understood and mentally
navigated by a well-versed traditional shaastra expert. Its purpose is twofold: 1) to simplify
the navigation of shaastra texts by novices by giving them access to expert-level insights, 2) to
enable machine-navigation, search and mining of Indic shaastra texts at scale. Figure 2 shows
the full SMap of tarka sangraha text. The nodes with high fanout indicate clustering of the
discourse around a few concepts and branches and long chains indicate their elaboration.

4.1 Anatomy of an SMap

An SMap comprises a set of text segment objects and a set of relation objects. Each text segment
in an SMap is either an individual sentence (vaakya), verse (shloka), chapter (adhikarana) or
entire book (grantha). A relation (sambandha) is a labelled directed edge between two segments
that captures one of several types of connections identified in Indic shaastraic conventions —

177

All Vakyas

4‘\\

k\: ’

Cluster by:
Color || Sections || None

Figure 2: Full SMap graph of Tarka Sangraha text.

178

specifically tantrayuktis and nyaaya sambandhas for the purpose of this paper. We plan to
include 6 other types of relations in the future. An SMap relation object is a quintuple:

o [Source segment, source anchor phrase*, relation tag (key=value), target anchor phrase*,
target segment)]

The scope of our SMap work is to encapsulate information at the level of sentence and above,
and not intra-sentence linguistic analysis which is the subject matter of shaabda-bodha. There is
a large body of existing work devoted to language-level syntactic and semantic analysis within
a sentence that can be incorporated into an SMap framework, but is outside the scope of this
paper. Since an SMap doesn’t tag individual words / phrases as first-class entities below the
sentence level, we use anchor phrases in relations to identify technical terms or concept / topic
names employed in a shaastra. This reduces the tedium of shaastra mapping process while
enabling concept-based search.

Tantrayukti_ tags can be used to tag both text segments and relations of an SMap, while
Nyaaya padaartha sambandhas, also called Relation__tags are used only to tag relations. In case
of segments, tantrayukti tag indicates the type of exposition used in a vaakya or adhikarana, such
as term-defining, exemplifying, rebuttal, forward / backward reference, enumerating, conclud-
ing, elaborating, commenting etc. Figure 5 shows an ’Uhyam’ tantrayukti example in Kshema
kutuhalam text on culinary science.

FEach relation involves an optional anchor phrase of a text segment that conceptually connects
it with an anchor phrase in the target segment. Thus, the relations bind together individual
sentences into a coherent discourse. For instance, when a sentence uses a technical term defined
in another sentence, a relation mentions the term used as the source anchor phrase, sets the
relation_tag to lakshya-lakshana bhaava. Figure 3 illustrates it with an example from tarka
sangraha text.

Sambandha: THEG::8 — THEIG::322
ThEE::8: "HUTAHTAY: TRTHIG: HEaTHIE: HATHIG: S=AATaaf I ¢
b EUg::322: "3IfG: FIdk: UNTHTE: I

Relation_tag: " <& - T&UI-HTG: Term - Definition”,
label: "SFTHIG: — 3{HTG: T,
title: "Relation: T&H - T&UI-HId: Term - Definition”,

THETg: g - A feaf
Figure 3: Capturing term definition and use in tarka sangraha SMap.

Sambandha: dHEUB::131 — dHEUB::130

TheTg::131: g YaanagIaraid = 1"
T eT::130: TEYEAN THBRBISTHASTUT: I*

Relation_tag: EUT-GI rIo-HIg:",

label: "Y1 aTaCRSATANT A | — unt”,
title: "Relation:2PTd-aIPIae-H1g:"

Figure 4: Capturing a concept and its example in tarka sangraha SMap.

4.2 Creating an SMap

SMap creation from a raw shaastra text is currently a manual process since it involves proficiency
in identifying deep shaastraic concepts. However, we have defined the structure and schema of

179

Vakya: &HGIEaH:1.50

Tantrayukti_tag: " $aH deduction”,
label: "1.50: YT’

title: "FUTgd TGO I”
Figure 5: Tantrayukti tag for a vaakya in Kshema kutuhalam text.

SMaps and developed software tools for visualization and editing of SMaps as well as a powerful
query mechanism to perform knowledge queries on SMap content. Transforming one or more
shaastra texts into an SMap involves the following manual steps:

e Markup the text to identify the various structural entities - chapters, sections, verses, sen-
tences - with unique IDs so they can be explicitly tagged and referred in relations.

o Tag the entities with SMap-defined entity attributes and their values.

o Create inter-entity relations with SMAP-defined relation types.

We provide a facility to export and edit an SMap in a spreadsheet containing a vaakya sheet and
sambandha sheet for tagging purpose. We have built a web-based SMap Ul editor that includes
a text editor for markup, structural viewer and an SMap explorer that enables specific canned
views of shaastra texts described in Section 4.4.

Tarka_sangraha_moola ¢ & (=] m (
File Edit View Insert Format Data Tools Add-ons Help Last edit was yesterday at 5:40 PM 3
e ~oF PO100% v S % .0 .00 123v Alegreya > n ~- B I & L i H E-i-»-Yr oW YV~ 3~ A
Source_vakya_id
A B c D E F G H 1 J K | 5
‘ _
102 5 Sicid 5 IR - - - - - ~ gmF-faRe-y -
103 s ® 315§ ot Termd ~ - v -~ - ~ Tpr-amiE -
104 s IR 316 GOONG: gard: Termd ~ - - - - - - Tp-aEiRE -
105 ¢ Fragergwa! fadn: g sF=aTea 1 &l o 317 Fiagergadi @m gaid: Term d ~ - - - - - ~ T&d - T&UI-HT ~
106 EEal 6 s - - - - - - -y -
107 7 SHITREE TG Il wHamE: 38 P werf: Termd ~ .- . - - T - T -
108 8 SHIYTIIY: TRTHTE: HeARTHIG: SHIS: < 3HTT: 8 ITTHTE: - |- REE ~ ~ gF-faEey -
109 8 3HTE: 8 TEWHE: - - -y
10 s 3HTG: 8 SEHTE: - - - - - E-faREy -
m s SHUTT: 8 STITHIG: - - ~ gmrg-fase-y -
12 8 TRTHTE: 322 MG AR WERfiTemd v - < [- - ~ T - TAHOT-HT ~
13 8 FEHHG: 324 WG e Termd ~ - - - - ~ & - TAEUI-HE ~
18 8 Ecstc 26 FPR@EETaR g@f: Termd ~ -+ - - - ~ T - TET-HT -
15 8 TS 328 ARG Ga: Trmd + - < - - - ~ T - TET-HT ~
,
e o T TR R | @& 2 FEt - - - - - - W R -
+ = Concept-summary ~ Concept-detail + Vakyas ~ Sambandhas ~ Tantrayukti ~ Explore

Figure 6: SMap spreadsheet of Tarka Sangraha for editing relations.

Markup of a Shaastra Text

The first step to creating a shaastra map is to identify the meaningful units of a treatise,
the smallest being a vaakya. To facilitate this, we have devised a simple markup scheme that
enables a shaastra text’s unique structural hierarchy to be expressed without too much verbosity
unlike XML. It allows a shaastra text’s verses to be resplit into sentences, which is essential for
tagging. We are open to replacing this markup with other more standardized / sophisticated
markup schemes if found suitable.

Figure 7 shows the markup created in SMap structural editor for KaavyaprakaaSa a seminal
saahitya-shaastra text by Mammata. Figure 8 illustrates how the resultant structure is visualized
using the SMap structure viewer:

180

Vedavaapi TextDoc Editor

© & https;//repo1.ebharati.org/apps/textdocs/files/index.html?_id=5¢5360693bc959000ae6c8f7&compant yinD o & & &
@ Getting Started @ Getting Started ¥ Most Visited @ Getting Started @ Getting Started
Context Editor Viewer Meta
nfo ARIGS Kavyaprakasha textdoc markup retrieved successfully e
m—— File Edit View Format Tools
type: € Paragraph v B I =
index: [vv_markup]
_id: [doc label=5: parents=document]
5e936b1ac7ade70006004a54 [ti label=ZAfYPT attr_of=doc]
componentindex: [ul label=3<T¥: parents=doc]
o [uname label=ullaasa_name attr_of=ul]
ka label=1Re] parents=ul
path: Kavyaprakasha » 9%: - STIYEIR] » SCE: - TURIGTE- [P:]
vy label =3RS parents=ul ka]
PIATHSHHRURGEURETUH » PRI - vakya_type=1TAGHa1 » _
[su label=TH parents=ul]
[ud label=3aTgRUH parents=ul ka,tt]
[tt label=Technicalterm parents=ka,vy]
[tr label=Translations parents=ka,ul,ud,vy]
[Itr label=Translation parents=tr]
[/vv_markup]
[doc name="PTAYDIRI:"]
[ti]PTHTDTR: [/ti]
[ul name=TTIGEIN: - BTGB RURGRUfRET U]
[vy ty name="gaz-[U~IR®) fApfaar SgfRduead I=EHd R --
[tr name=en][ltr lang=en] In the beginning, the author invokes the appropriate divinity for the destruction of all obstacles.
» oowERED v TN
Edit| schema names retrieved successfully 4 v

H L Type here to search

ENG 0224PM
N teos200

%)

Figure 7: Specifying a shaastra text’s structural hierarchy via custom markup.

Vedavaapi TextDoc Editor

C ® © @ httpsy//repo1.ebharati.org/apps/textdocs/files/index.html?_ic 59000ae6¢8f7&companion=https%3A° *=* & ¥ YinD o &« @®& & =
@ Getting Started @) Getting Started ¥ Most Visited @ Getting Started @ Getting Started
A v Relogin | site” console”
Vedavaapi TextDocs
VEDAVAAPIE p
Context Editor Viewer Meta
o AERS Kavyaprakasha HTML retrieved successfully

name: Expand Al Collapse All

type: + Kavyaprakasha

Emex: v TR - SISAYPI:

_id: BIAIPIL:

5936b1ac7ade70006004a54

componentindex: v JTETE: - 1

0

+ SRS - S
path: Kavyaprakasha » T7Y: - BICANBIRT: » FeTI: - FURICTIE:- R g R —
BIRGDT - vakya_type=1 THRERAT » _ N
+ Translations - en
In the beginning, the author invokes the appropriate divinity for the destruction of all obstacles.
v SIS - vakya_type=1.7af&5ar
FRIRERRGS 1§ il
mﬁﬁqﬁmwmmﬁ 111
e g VI 9 g o, et s Py
Tafgaeon g Hlaarg i | 3 @ sl | Suad 9 TReR sifaad, 3Ry of piR mm e s .
N Edit| schema names retrieved successfully +H v

H L Type here to search

@~ zn = p N

Figure 8: SMap Structure viewer

181

4.3 Shaastra Mapping Examples

In this section, we illustrate the SMap tagging process via examples from four shaastra texts
that employ diverse discourse styles, tantrayuktis and relations. Our objective is to evaluate
how well the diversity of exposition is covered by the SMap tag set.

4.3.1 Tarka sangraha

Tarka sangraha text is an elementary text on Navya Nyaaya that is widely studied by junior
students. It describes ontological categories and sub-categories extensively.

Identifying type of the sentence according to tantrayukti
o Example 1: ‘SMEIJME: TNRIE: TEETTE: STca=RTE: SWFRnT=alid’(Vk id_8): this sentence
is tagged as “JER’ because it is concise summary for further elaboration.

o Example 2: ‘STEMEROT FNO FOW' (Vk id_ 137): this sentence is tagged as ‘qEE:’ because it
is a definition of a term.

o Example 3: ’qmﬂiﬁﬂ'ﬁ?ﬁaﬁ%m (Vk id__131): this sentence is tagged as ﬁaﬁq‘{/{glr_vl:’

because it states an example of a false knowledge.

o Example 4: 9%: G g9 €94 @0a@d (Vk id_158): this sentence is tagged as FARSH,
because it explains why samyukta-samavaaya is the relation to perceive colour of the pot.

Relating the source and the target phrase
« Examplel: @MF-fRN-A@: (Type-subtype) In Tarkasamgraha Experience is classified
into four. The relation between EXperience and its types is Wﬁflﬂm‘q’ (Type-
subtype) From the sentence ama@m@a'a (Vk id_133) the phrase u?maﬂa is targeting
TR A, (Vk id_134) with the relation tag FA-fGRIS-A@: (Type-subtype).

o Example 2: &% - SHU-HG: Term —QDeﬁnition In Tarkasamgraha Perceptive cognition is
defined in the sentence ZreaHE RS S YAFH(Vk id_149), here the phrase YcH&H is
targeting HER PG CEEN | T with the relation tag F&d - FIU-TE: Term - Definition.

e Example 3: T glfed - A In Tarkasamgraha Pruthivi is defined as one of the types of
Dravya. And further it is divided into three. Each type of Pruthivi has an example. In this
sentence Wﬁ%@m Vkid_ 13) TN, Ifesd, fI99 are stated as three typeb So,
each phrase is targeting W@ﬂﬂ Vk id_ 14), 7gaEs AOM(Vk id_ 15) andFcamsmomig: (Vk
id_17) respectively with W—m—m~ relation tag.

o Example 4: o - - property - holder In Tarkasamgraha Rupam (colour) is divided
into seven and each is an attribute to different objects. In particular Pruthivi is attributed
with all the types of colours. In the sentence Hﬁ"{@]@’[H‘Elﬁ‘q‘{ (Vk id__63) the source phrase

‘E{@E’JT is targeting Gafad, with the o - gE-E: property - holder relation tag.

4.3.2 Kaavyaprakaasha

kaavya prakaasha is a seminal text on Indic theory of poetics - saahitya shaastra - this is
compulsory for Master’s students in Sanskrit throughout India. Unlike tarka sangraha, this text
is more descriptive with lot of examples of concepts and their commentary. Figure 9 shows an
example of concept-example relation in this text as shown in its SMap viewer.

Identifying type of the sentence according to tantrayukti

« Example 1:3/d 8g&gad (Vk id_1.2.8)’ this sentence is tagged as ‘S&&l:" because it is concise
summary for further elaboration.

0

. Example 2: HE,ENT BRI m g Hﬂf\ql(Vk id_1.3.2)’ this sentence is tagged as

‘E’[?L because it is a definition for a term.

182

Sambandha: kAvyaprakAsha:1.5.2 — kAvyaprakAsha:1.5.0

kAvyaprakAsha:1.5.2: "G4l JTHTRU TR0I] TaqouaHSRIG-IYGRH | U=a-=d1 Hafa ggiHaxi A gEo |I”
kAvyaprakAsha:1.5.0: "3fdTe i Toiiydeagd ogd § 4 |

Relation_tag: "EPTI-GI¥ ~id-HIg:",

Tantrayukti: "FEFH/EF: example®,

label: "qYT- AHTU THUAT TAGSAHSRITIYSHH | UG- Hafd GgiHast AfeHT Sl | — e
title: "Relation:ZFT-qIPI-ch-HTg:"

Figure 9: Concept-example relation in Kavyaprakaasha text.

[a Nl oY aN

« Example 3: % ®q R o 3 SiHfed dgqeai= H0 Gt = die:973 Sgrarid |(Vk id_1.2.7)
‘ this sentence is tagged as FH&HH because it explains why samyukta-samavaya is the
relation to perceive colour of the pot.

Relating the source and the target phrase
o Example: GM=-feRN-3a: (Type-subtype) In Kavyaprakasa, Avarakavya-type is classified
into two. The relation between avarakavya and its types is TR E: (Type-subtype).
From the sentence XIeaas ar=aa=q TTFH T a1 (Vk id_1.6.0) the phrase I is tar-
geting two subtypes g andar=Ara=H. (Vk id_1.6.1) with the relation tag - fR-
& (Type-subtype).

4.3.3 Saankhya Karika

Saankhya kaarika has a mix of ontological discourse and philosophical reasoning. It is a widely
studied root text on Saankhya system of Indian philosophy.

o Example 1: ‘T2H-ITJHAH-ITEIT A(Vk id_4.1a)’ is tagged as ’3%3[:’ because it is concise
summary of the list of epistemological tools, which will be elaborated later.

o Example 2: qﬁ-ﬂﬁﬂ?ﬂv‘lﬁﬁ@%—ﬁ'@i%@? (Vkid_8.2) is tagged to l%la%l: for.this sentence
detailed enumeration of Mahat etc from¥Wag-3TT: UFd-faFad: ad (Vk id_3.1b) sentence.

« Example 3: Th=d-3Tcdedd:-eMEE(Vk_1.2¢) is tagged as 9e@l: /&a¥: as it is explaining
the reason for why one has to enquire into Anumana, rather completely depending upon
sensory perception and Vedas.

o Example 4: HFFI'&H(VI{ id_9.2c¢) is tagged as ferorar: type of sentence because it is concluding
that the effect / product exists in the cause, after explaining all the valid reasons.

« Example 5: Aged®sd d (VK id_27.1b) is tagged as TWT: as it adds one more characteristic
of mind as a continuation from the previous statement which defines the Manas”

« Example 6: 794 T g Ira: FHZIE a6 FMREEI(VK id_30.1) is tagged as SAfchTedTaemom™,
because it is retrospecting what is said earlier regarding Indriya and Antahkarana. }
4.3.4 Ashtanga Hrdayam
Ashtanga Hrdayam is a popular foundational text of Ayurveda studied by most practitioners.
It has highly structured descriptions of herbs and their properties.
Identifying type of the sentence according to tantrayukti
e Example: In Asthanga Hridaya, there is a separate chapter for medicinal data that starts

with the vaakya STEeEmt: (Vk id_ 1), this is tagged as ‘SO .
183

Relating the source and the target phrase
All the following examples are in relation to the sentence, ‘ANK WWQ@@%@W // &
Y TG Rawaiest weRaTatad, (Vk id_ 43)

e Example 1: AW is source phrase and AT (Vk id_1) is target phrase with fos= -
faNf-AmE: relation tag.

« Example 2: dFN is source phrase and ?ﬂq?i, I, ‘«Tﬂ%, &, ﬁl@ﬂﬂ, A, Eﬁqﬁlﬂﬁﬁ are target
phrases with 9 - I-9E: relation tag. According to this tag, the karma (action of drug)
properties of nagara can be extracted.

« Example 3: RN is source phrase and &9 and &9 are target phrases with ‘:[UT-{[(T'ET-":IH:
relation tag. According to this tag, the guna (physical quality) properties of nagara can be
extracted.

o Example 4: AR is source phrase and &g is target phrase with ‘]UT-{[T"\JT—WW relation tag.
According to this tag, the rasa (taste) properties of nagara can be extracted.

o Example 5: AR is source phrase and 39 is target phrase with ‘]UTJI'\I'UT—“I'I'& relation tag.
According to this tag, the virya (potency) property of nagara can be extracted.

Overall, by using ‘Jﬁ—‘dﬁ—“l’l’q’:,ﬂm—ﬁ'\fﬂ'l—ﬂﬁ:, the rasapanchaka (rasa, guna, virya, vipaaka, karma)
of a drug or a dravya is easily extracted from Ayurveda texts or lexicons. Note that though
uShNa-tvam, svaadu-tvam, laghu-tvam, diipanam etc. are guNas / properties of Naagara, they
are visheshas of different saamaanya categories (or classes), namely, viirya, rasa, guna and karma
respectively and need to be connected as such to reconstruct the schema of oshadhis from text.

4.4 ShaastriQL: A Shaastric Query Library for Conceptual Search using SMaps

To facilitate an extensible set of services using SMap, we devised a powerful recursive graph
query library in Python and Javascript that yields a subset of the given SMap based on the
following filtering criteria.

e A starting segment selector: Select the starting text segments for navigation based on their
properties,

e A sequence of one or more hop selectors: Navigate from chosen segments to their neighbors
based on the attributes of the linking relation as well as of the target segment reached, -

o Number of hops to traverse (-1 means unlimited hops), and

e Inclusion criteria: Select which segments and relations to include in the resultant subset of
SMap, regardless of which were traversed during query processing.

Result_smap = mySMap.filter(start_node_ selector, hop_ selectors, nhops, inclusion_ criteria)

In ShaastriQL, we aim to support functional chaining paradigm similar to JavaScript, i.e., lazy
execution of queries, programmatic iteration over their results and feeding them to subsequent
operations to generate sophisticated views of a shaastra text. Towards that end, we support the
following primitive operations on an SMap:

SMap.filter(start__nodes=[], hop__selectors[], nhops=-1,inclusion__criteria=None):
A generic ShaastriQL query that returns a filtered, iterable SMap object to enable functional
chaining. Default parameter values are mentioned in the function signature.

SMap.segments(filter=None): Provide the text segment objects of given SMap as an iterable
list.

SMap.relations(filter=None): Provide the relation objects of given SMap as an iterable list.

184

Using these operators, a variety of canned views can be created on an SMap:

SMap.terms(): Provide a glossary of technical terms / concepts defined in the treatise as
iterable list. This involves querying for vaakyas with padaartha tantrayukti. To retrieve the
terms being defined, hop_ selector can be set to retrieve lakshya-lakshana bhaava relations.
The source anchor phrase denotes the term. Figure 10 show the Glossary of term definitions
generated in SMap viewer for Vedaanta saara text.

SMap.properties(dravya): List properties (guNas) of a dravya mentioned in the treatise.
This involves search for dharma-dharmi bhaava and gulNa-gulNi bhaava relations where the
target anchor phrase is the dravya name. Then traverse the gulNa-guNi relations recursively
to retrieve its property hierarchy.

SMap.examples(concept): Retrieve examples of a concept mentioned in the treatise. This in-
volves retrieving drshTaaanta-daarShTaantika bhaava relations whose target anchor phrase
is the concept name, along with their source segment, which is the example sentence.

SMap.type_ hierarchy(term): Recursively enumerate the type-subtype hierarchy of a term.
This involves starting with the nirdesha vaakya of given term (enumerating tantrayukti).

SMap.table_of contents(): Show the section hierarchy of the treatise (chapters, sections,
subsections etc.). This involves navigating the avayava avayavi relations recursively starting
with the adhikaraNa vaakyas.

SMap.summary(N): Create an N-sentence summary of the treatise. This involves starting
with vaakyas tagged as adhikaraNa tantrayukti (i.e., head sentences), and retrieving their
neighboring vaakyas until the target of N vaakyas is reached.

SMap.discourse(concept): Retrieve the entire hierarchy of sentences on given topic and its
analysis, in depth-first or breadth-first order.

SMap.sahadharmis(dravya): Retrieve dravyas with similar properties to given dravya. This
involves the following steps:

e First, we retrieve saamaanya-vishesha siblings of given dravya. To do this, we first
retrieve saamaanya-vishesha relations whose target phrase is dravya name and source
phrase denotes its class name, followed by segments reachable from the class name by
one hop via saamaanya-vishesha relation.

o Then we retrieve all the dharmas / guNas of given dravya via SMap.properties(dravya).

o Finally, we select those siblings of dravya whose guNa set maximally overlaps its guNa
set.

5 Implementation Status

We have implemented Shaastra maps as an application on a scalable annotated object store
based on MongoDB JSON object database Susarla and Challa (2019). All entities and relations
are stored as objects in the object store, and the ShaastriQL graph traversal API is built on
MongoDB’s query language. We have implemented a web-based SMap editor (Figure 8 provides
a screenshot) and an SMap navigation tool (Figure 10 shows a screenshot). We are in the process
of integrating SMap network editing U (for segment and relation tagging) into the SMap editor.
Since ShaastraMap functionality has humans in the loop and does not interpret the language
of the text directly, its paradigm is applicable not only to shaastra texts but contemporary
applications where plain text needs to be converted into knowledge maps for mining. How well
the shaastraic paradigms of SMap ecosystem apply to contemporary text mining is an open
question worth exploring.

185

B vedavaapi ® (119 Whats B8 Asthanga Hr & Inbox (1,130 = Inl

<« Cc @ © & 25 httpsy/apps.vedavaapi.org/prod,

@ Getting Started @ Getting Started ¥ Most Visited @ Getting Started @ Getting Started

Normal Traversal ~ | SHOWALL ,f
e F
{ %%?'i\ 193 w/ﬂ?g
Term definiti JAll entities in graph E“‘\ <
erm definitions All entities in graph
~ vedAntasAraH:6: 3TIPRT ~ %'ﬁéﬁ e
33 I faftraeeiqdcdarga-Tardds RrdRaed 'a;;
ve AntasAraH.SA..W. 3{3‘11?{1 WWWWW:W mrl)(f
SR Hiaed i ffd aaf : N
3
VedAntasAraH:148.1: SRIFGTIR S Tge N [-~ b :(&gi\w’
qUad | vedAntasAraH:7: BT - gi&' e
i iy e 1ol
vedAntasAraH:6: fUBRI vedAntasArat:s: ARG - O Gl i=)
v) RS =)
PRI TSI TR SRR 1 I - ® ”T/(\
G| Q@a?:ﬁg{:?ﬂ' vedAntasAraH:9: T - 3Rl @‘ @\ (Q %% (;\ @
LR R L PR TR SReATa-eTe = 1 v &

Cluster by:
Color | Sections | None

Selection details

: 2 ENG 0236 AM
i / 7D a =]
ﬂ O Type here to search =} 2 @ ©) W™ P s BB

Figure 10: Glossary browsing of Vedaanta-saara text in SMap viewer.

ShaastriQL is currently available as a Python API library, and is in use to support the SMap
application. We are building a Javascript version and hope to enrich it into a domain-specific
functional language with a JavaScript substrate to enable powerful E-reader UI tools for Sanskrit
texts.

We have created SMaps of substantial portions of a dozen Sanskrit treatises so far, with a
combined size of more than 4000 sentences and 7000 relations. We have designed and delivered
a training and certification course on shaastra mapping? to 160 Sanskrit scholars across India,
and have initiated projects to map 6 major Sanskrit works including Patanjali Mahabhashyam,
Yogasutra with Vyaasa bhaashya, Shukraniiti, Artha shaastra, Ashtaanga Hrdayam and a few
introductory Jyotisha and Vaastu texts. All the SMap templates and the tools created so far are
publicly available at https://apps.vedavaapi.org/smaps. For further queries, please contact
info@vedavaapi.org.

6 Lessons Learnt and Future Directions

Our experience with Shaastra mapping is that it requires more than academic understanding of
Nyaaya and mimaamsa texts. It requires the ability to apply their principles to identify Shaastric
knowledge structures in other disciplines. As a result, initial training of traditional scholars
to identify Tantrayuktis and sambandhas accurately has been quite tedious and intellectually
challenging and forced us to gain nuanced understanding of their semantics. However, we now
managed to train more than 160 scholars and have a dozen manually tagged SMaps. A possible
avenue of research would be to combine training data with machine-learning for human-assisted
annotation of Shaastra map categories in texts. This will greatly accelerate Indic knowledge
mining for contemporary utility.

A second avenue is to explore enriching ShaastriQL into a full-blown knowledge processing
language and compare its expressive power to prevailing knowledge representation and query
paradigms such as Semantic Wikipedia. How well can SMap representation and ShaastriQL
support mining of contemporary non-shaastra texts?

2https://mitvedicsciences.edu.in/announce/shaastric-modeling/

186

A third avenue is to explore the synergy of Shaastra mapping with sentence-level and word-
level linguistic analysis tools to create an end-to-end knowledge transformation pipeline. Can
knowing the tantrayukti of a sentence help resolve the ambiguities that cause hurdles for
shaabda-bodha? For instance, can we build custom sentence parsers to automatically extract
ontologies from Indic texts based on tantrayukti hints like “enumeration, term-defining sen-
tence” etc.? A fourth avenue is to explore how Mimaamsa nyaayas can be used for effective
knowledge mining and robotic intelligence. A fifth avenue is to take knowledge mining towards
building deployable Indic models to enrich contemporary knowledge with shaastric insights.

7 Conclusion

In this paper, we presented ShaastraMaps, a knowledge representation and query scheme based
on Indic shaastraic paradigm for easy assimilation and machine-processing of Indic scientific
texts. While extensive work happened in language processing of Sanskrit at or below sentence
level, this paper hints at the feasibility of exploiting Indic knowledge science constructs to
enable higher-order meaning processing of Indic knowledge treatises at scale. To exploit this
opportunity requires Sanskrit / shaastra scholars and computing professionals to work across
boundaries towards application-oriented study of shaastras.

References

Joeran Beel, Bela Gipp, and Jan Olaf Stiller. 2019. Information retrieval on mind maps - what could it
be good for? In 5th International Conference on Collaborative Computing (CollaborateCom’09), Nov.

Brat. 2016. Brat: Brat Rapid Annotation Tool. http://brat.nlplab.org/.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed
platform for Sanskrit processing. In 24th International Conference on Computational Linguistics
(COLING), Mumbat.

Oilver Hellwig. 2009. Extracting dependency trees from sanskrit texts. Sanskrit Computational Linguis-
tics 3, LNAI 5406, pages 106-115.

Ujjwala Jha. 2010. A Primer of Navya Nyaya Language and Methodology (Navya-Nyaya-Bhasha-Pradipa
of MM Mahesha Chandra Nyayaratna) - English Translation. The Asiatic Society Kolkata.

Amba Kulkarni. 2016. Samsaadhanii: A Sanskrit Computational Toolkit. http://sanskrit.uohyd.ac.in/.
W.K. Lele. 1981. The Doctrine of the Tantrayuktis. Chaukhamba Surabharati Prakashan Varanasi.

Bama Srinivasan and Ranjani Parthasarathi. 2011. Mimamsa inspired representation of actions (mira).
In 5th International Conference on Artificial Intelligence (IICAI).

Sai Susarla and Damodar Challa. 2019. Vedavaapi: A platform for community-sourced indic knowledge
processing at scale. In 6th International Symposium on Sanskrit Computational Linguistics (ISCLS),
1IT Kharagpur.

Sai Susarla, M.A. Lakshmithathachar, and M.A. Alwar. 2017. Concept maps of indian shaastra texts:
Simplifying the study and mining of indic knowledge. In 1st International Conference on New Frontiers
in Sanskrit and Indic Knowledge Systems (NFSI), Veliyanad.

187

