Ramopakhyana
a Web-based reader and index

Peter M. Scharf
President, The Sanskrit Library
Adjunct Professor, IIIT Hyderabad
scharf@sanskritlibrary.org
and
DHRUV CHAUHAN
International Institute of Information Technology, Hyderabad

Abstract

Web-based interactive readers integrated with indices provide scholars of Sanskrit a learn-
ing environment more responsive to their needs. Advances in Web technology and more
stringent security requirements rendered the Kramapatha reader and indices developed
for the Ramopakhyana two decades ago obsolete and inoperative. A current implemen-
tation using state-of-the art encoding and Web-development software revives the reader
and its indices.

Keywords: Sanskrit, Mahabharata, Ramayana, text-encoding, XML, TEI

1 Introduction

The story of Rama is one of the most popular stories in India. Its most ancient extant version is
told in Valmiki’s Ramayana. More than 35 other major Sanskrit works retell it, as do numerous
versions in every modern Indian language and those of Southeast Asia. It spread to Tibet,
China, and Japan in ancient and medieval times and continues to be appreciated in India in
modern performances and television productions. Before the final redaction of the Ramayana
in about 25,000 verses, however, it was summarized in the Ramopakhyana in the great epic
Mahabharata in 704 verses in eighteen chapters comprising chapters 258-275 of the Aranyaka
Parvan. There it is introduced in chapter 257 after the Pandavas’ rescue of their wife Krsna
from abduction by Jayadratha when the exiled king Yudhisthira who asks the sage Markandeya
who could be more unfortunate than he. Markandeya draws implications for the Pandavas from
Rama’s successful defeat of Ravana and return to Ayodhya with the help of the alliances he
formed during his exile.

Scharf (2002) produced a Sanskrit reader of the Ramopakhyana that provides everything a
student of Sanskrit would need for the precise understanding of each verse. The text of each
verse occurs as in the critical edition (Sukthankar and others, 1933 1959) with minor revisions
as described by Scharf (Forthcoming, §ITA) in Devanagari and is supplied with a close prose
English translation. The explanation of each verse includes Roman transliteration; analysis
of sandhi; identification of inflection; a glossary that includes the analysis of compounds, and
nominal and verbal derivates; prose Sanskrit sentences paraphrasing the verse, and syntactic
and cultural notes. Scharf (2005) and the introduction to the book describe the features of the
book in detail. A second edition (Scharf, Forthcoming) will appear imminently.

Simultaneous with the preparation of the first edition of the Ramopakhyana, Scharf prepared
an interactive digital reader and detailed digital indices called Kramapatha. Kramapatha con-
sisted of two integrated apps that ran in the browser. The Web-based reader included sound
in addition to the features of the printed book. The Web-based indices allowed one to filter a
list of lemmata by lexical, inflectional, and text extent parameters, and to see related inflected
forms, definitions, and the passages in which they occurred. An index of Paninian sutras was
also included. Created before the availability of Indic Unicode Fonts, Kramapatha displayed
Devanagart directly on the users screen using a dynamic font.

146

Proceedings of the Computational Sanskrit and Digital Humanities, 18" World Sanskrit Conference 2023, pages 146-154

Great progress has been made over the past twenty years since the publication of Ramopakhya-
na and the development of Kramapatha in making resources available in digital form on the Web
for scholars and students of Sanskrit. High quality Indic Unicode fonts are now widely available.
The extensible markup language (XML) has become ubiquitous and integrated with hypertext
markup language (HTML). JavaScript has been enriched and made easy to use by the develop-
ment of numerous programming packages. JavaScript Object Notation (JSON), a lightweight
data-interchange format is isomorphic with XML and integrated with powerful databases. How-
ever, along with the progress of the last two decades came restrictions. Enhancement of Web
security rendered our Web-based version of the Ramopakhyana and its fabulous indices deployed
in the Kramapatha reader and index applets obsolete several years ago. The present paper de-
scribes the redesign of the Ramopakhyana source data and reimplementation of the Web-based
Kramapatha that utilizes recent advances in text encoding and Web technology.

2 Data description

The original source data for the Kramapatha reader was stored in a set of plain ASCII text
files with tab-delimited fields that used special characters to mark the position for non-ASCII
characters to be displayed in HTML or print such as single and double curly quotes and the root
sign, and to designate the beginning and end of Sanskrit text such as proper names in English
text fields. Sanskrit text was encoded in a subset of what became the Sanskrit Library Phonetic
basic encoding (SLP1) described by Scharf and Hyman (2011). Several years ago Scharf wrapped
the tab-delimited fields in these text files in XML tags to check and protect data-validity. Over
the past several months he transformed all the data to an XML format that conforms to the
Text-Encoding Initiative guidelines by writing XSLT routines and using TEITagger (described
by Scharf (2018) and wrote Document Type Definitions (DTD) and Schematron schemas to
validate the data. The TEI source now consists of the following parallel files:

text.xml. The text of the Ramopakhyana in SLP1 encoding.

ansan.xml. The text with sandhi analyzed.

morph.xml. Morphological analysis of each word.

morphCheck.xml. The above with the lemma of verbs with preverbs in a single element
and the Unicode character entity for the check mark between the preverbs and root.
morphEng.xml. The English translation of each word in morph.xml or morphCheck.xml.
prose.xml. Sanskrit prose paraphrases of each verse.

proseSandhi.xml. The above with sandhi applied.

notes.xml. Syntactic and cultural notes.

english.xml. The English translation of verses.

- W=

© XN T

Scharf had written a Paninian sandhi program in Pascal in 1991 and revised it in 2000. Jim
Funderburk rewrote the program in Perl, Java, and Python since then, maintains these versions
in a Git archive at https://github.com/funderburkjim/ScharfSandhi, and described them
in the README file there. In the past couple of months, Scharf revised the Java version to default
to certain combinations more commonly expected and to eliminate spaces between preverbs and
finite verbs. He used an XSLT routine that called his latest revision of the Java sandhi program to
reproduce the sandhied versions of the Sanskrit verses (text.xml) and Sanskrit prose sentences
(proseSandhi.xml) from the original sandhi-analyzed source files (ansan.xml and prose.xml).
Another XSLT routine produces the file morphCheck.xml from morph.xml.

The data in all of these files is encoded in XML in accordance with the Text-Encoding Initia-
tive Guidelines (Consortium, 2007). The elements and attributes used for basic text encoding
are described in instructions on the Search and Retrieval of Indic Texts project (SARIT) web-
site (http://sarit.indology.info) as well as by (Scharf, 2018), (Scharf, 2019 2020), (Scharf,
2015), (Scharf, 2017). We review them briefly here. Every file encodes its data in the body
element which is a child of the text element within the TEI root element. A single div ele-
ment occurs as a child of the body element with a texttttype attribute value set to parvan,

147

and an n attribute set to 3. The data of each chapter is encoded in a div element with the
texttttype attribute value set to aDyAya, and an n attribute numbering the chapter according
to its numbering in the Aranyaka Parvan. Each chapter groups the verses of each speaker in an
sp element, the first child of which is a speaker element containing phrases such as FAASD:
3419, and whose subsequent children are the verses attributed to that speaker. Each verse is
encoded in an 1g element and each line of verse in an 1 element. Each speaker element and
1g element has an n attribute that numbers the verse within the adhyaya and an xml:id that
uniquely identifies the passage within the text by a combination of the parvan number, the
adhyaya number within the parvan, and the verse number. Since an xml:id is required to begin
with a letter, we use m for Mahabharata. The speaker element of each speech includes an s to
distinguish its xml:id from that of the first verse. For example, m3.257.1s is the value of the
xml:id of the speaker element at the beginning of adhyaya 257.

The two files text.xml and ansan.xml containing the original text in SLP1, and its sandhi
analysis respectively, are encoded with these elements with exactly parallel numbering and
xml:ids. The file english.xml is nearly parallel with the exception that it uses the p element for
the prose translation of each verse and child s elements for sentences within it. The xml:id of
each p element is identical to that of the corresponding verse in the other two files. The files
prose.xml, proseSandhi.xml and notes.xml do likewise. In the English and notes files, Sanskrit
text is encoded in a foreign element and single and double curly quotes, ellipsis, and the root
sign are rendered with the appropriate Unicode entity values.

In the files morph.xml and morphCheck.xml, each element containing Sanskrit text, i.e. the
1 and speaker elements, encodes each Sanskrit word in a w element. The root of each inflected
verb and the stem of each nominal is encoded as the value of the 1emma attribute of the w element.
Its lexical identifier is encoded as the value of the w element’s type attribute, and its inflectional
identifier is encoded as the value of its subtype attribute. Each word w element is numbered
within the verse 1g element or the speaker element in the value of the n attribute and provided
with an xml:id that uniquely identifies it. The xml:id is formed by adding .w and the number
to the end of the xml:id is ancestor 1g element or parent speaker element. For example, the
value of the word, janamejayah, which is the first word of the speaker element of the first speech
of adhyaya 257 is m3.257.1s.wl. Morphemes of words are encoded in an m element as children
of the w element that contains the word in its text node, and each is supplied with a type
attribute whose value is its lexical identifier. If a morpheme is an inflected word whose nominal
termination has not been deleted in an aluk-samasa, its m element is supplied with a baseForm
attribute whose value is its stem, and with a subtype attribute whose value is its inflectional
identifier. The analytic paraphrase (vigraha-vakya) of a compound is encoded in a seg element,
supplied with a type attribute with the value vigraha, as the first child of the w or m element that
contains the compound. These m and seg elements are all supplied with n attributes that number
them and xml:id attributes with unique ids. In the case of submorphemes of morphemes, these
numbers and ids show the hierarchy of the morpheme relative to its ancestor w element. For
example, in the first verse in the morphCheck.xml file, the preverb prapya has the morpheme
prayfap with the xml:id with the value m3.257.1.w4.1. This morpheme has two children: the
preverb pra and the root yap which have the xml:ids with the values m3.257.1.w4.1.1 and
m3.257.1.w4.1.2 respectively. The m element may contain child seg elements that separate
the markers from roots and augments and similar technical grammatical units classified by
appropriate values of the type attribute. These are not considered separate morphemes and
are not enumerated or supplied with xml:ids. Additional elements such as bibl and its child
biblScope identify references to Panini’s Astadhyayi, Amarasimha’s Namaliriganu$asana, and
other works. The English translation of each word or morpheme, or each analytic paraphrase
of a compound, is encoded in the morphEng.xml file in exactly the same structure.

148

3 Indices and their production

Given the high degree of analysis of the words in the Ramopakhyana undertaken in the prepara-
tion of the Kramapatha reader, and the intention to make it useful for learning Sanskrit, it was
deemed useful and practical to make the text accessible from various angles by the construction
of detailed indices. The original index included an index of lemmata consisting of a list of all the
lexical bases of nominal and verbal forms as well as their morphemes, and an index of Paninian
sutras. The new indices include a word index in addition. The lemma index can be limited by a
number of parameters. First of all, it can be limited to the lemmata of whole words that occur in
the text, excluding their morphemes. The list can also be limited by selecting any combination
of lexical categories, inflectional categories, and extents of text. For example, one can search
for all masculine nominative singular perfect active participles. One finds eight instances, five
of which are the form jaghnivan from the root han ‘slay’, one of which is the same with the
preverb a, and the remaining two of which are the form sameyivan from the root ¢ with the
preverbs sam and a ‘come together’. If one limited the search to chapter 263 in addition, one
would find just one instance: ajaghnivan. It is also possible to show the list of all occurring
inflected forms of the lemma of any inflected word or the immediate derivatives of any lemma
including morphemes.

In order to make the data for these indices accessible for a Web-based index, Scharf wrote
XSLT routines to reassemble the data from the files morphCheck.xml and morphEng.xml in
three index files: stems.xml, words.xml, and sutras.xml. The first and principal index file is like
a dictionary: it gives the lemma, its lexical identifier, and its English translation. Yet it also
includes a list of the derivates of that lemma, a list of its inflected forms, and a list of verses
in which the lemma occurs including the xml:id of the word or morpheme of each occurrence.
Each of the inflected forms also includes a list of the verses in which that form occurs with their
xml:ids of each occurrence. By looking up a derivate in the same index file, one can find the
same information for that lemma and so recursively access all of the derivates of any morpheme.

The word.xml file is somewhat similar but simpler. The entry for each word includes its
lemma, its lexical identifier and its inflectional identifier, its English translation, and a list of
the verses in which it occurs with the xml:id of each occurrence. The sutra.xml file has Paninian
suitra numbers as its main entries. An additional file has a list of sutras with their numbers as
in the Kasika. Fach entry in the sutra.xml file includes a list of the lemmata to derive which the
stitra was cited, each of which has a list of the verses in which that lemma occurs, including the
xml:id of each occurrence. This arrangement allows one to find the lemma in the stems.xml
index file if desired. Each entry also includes a the inverse: a list of the the verses in which that
sttra is cited each of which indicates the lemma to derive which it is cited with the xml:id of
each occurrence. This arrangement permits easy access to the instances of the citation of the
sutra.

4 Web-interface implementation

Using the Oxygen XML editors XML to JSON converter, Scharf produced JSON versions of the
reader files:

ansan.json
english.json
morphCheck.json
morphEng.json
notes.json
prose.json
proseSandhi.json
text.json

PN T W

and of the index files:

149

stems.json
sutras.json
sutraOnly.json
words.json

- W=

Chauhan used the MongoDB database to house these data, Elasticsearch as a secondary
database, and the Flask and VuelJS application development frameworks. The MondoDB
database is a schema-less database in which one can have any type of data in separate doc-
uments and the flexibility to store data of different types. ElasticSearch permits speedy, com-
plex searches. Chauhan migrated the data into both databases and used the RESTful APIs
made available in the Flask framework to develop the interaction between Elasticsearch and the
frontend framework VueJS. The latter is a progressive framework for building user interfaces,
promotes modular application structure and provides practical ways to build component-based,
dynamic user interfaces where one can manipulate and manage DOM elements in powerful ways.
Figure 1 shows a diagram of the architecture of the system.

The Kramapatha reader display allows one to show any of the information one wishes to see
regarding a verse: text, transliteration, sandhi analysis, prose, notes, and translation, by clicking
buttons at the right of the window. Figure 2 shows the display of the first two and last three
of these six types of information. By clicking any word in the Devanagari or Romanization,
one can display the information relevant to that word in stages. In the first stage the word’s
inflectional identifier and lemma are shown. In the second stage its lexical identifier and English
translation are shown, and in the third stage its morphemic analysis is shown. Figure 3 shows
the display of the first speaker and verse in adhyaya 257 with its Roman transliteration in which
the user has clicked the word naravyaghrah three times to show all three stages of information
relevant to the word.

The index display allows one to select the list of whole words, morphemes, or inflected forms.
By selecting one word in the list at the left, its occurrences are shown in the middle. At the
right is an interface in which one can select lexical and morphological categories and text extents
by which to limit the list at the left. Figure 4 shows the list of inflected forms selected in the
index. Here the word adrsyam is selected and its list of occurrences is shown in the middle with
its inflectional identifier, its lemma, and its lexical identifier. Beneath this is shown the verses
in which it occurs and its English translation. At the right is shown the pane to limit the list
by inflectional identifier with the nominal subpane selected but no parameters within it chosen.

Figure 5 shows the list of the lemmata of whole words that occur in the text, here called
free morphemes. The lemma antar has been selected and the list of verses in which it occurs,
either independently, as part of a compound, or as a gati with a verbal root, is shown in the
middle. At the head of that list is shown the selected lemma in bold with its lexical identifier in
parenthesis. Immediately below is shown the independent word in which it occurs and its verse
number. Below that is shown the three derivates in which the lemma occurs, and below them
is shown the list of verses in which these forms occur. At the tail end of the list is shown its
English translation and beneath that the sutra cited in the derivation of antarhita. The pane at
the right shows the interface to limit the list by lexical category. Here the pronominal sub-pane
has been selected but no parameters within that pane have been selected. At the bottom of the
right pane is shown the interface to limit the list by text extent. The very first and last verses
of the text are shown by default.

We are still refining the display of items in the interface and their arrangement. The second
index figure shown at present appears crowded with too much information of different types
shown at once. We expect to have the display finished with a few weeks work.

5 Conclusion

The interactive reader and index permit scholars of Sanskrit to access the information they need
as they need it. A printed text can only present a single view, so the printed edition of the

150

Ramopakhyana presents all the information for each verse on a page at once. The Web-based
reader, in contrast, more effectively facilitates learning by hiding information until desired by
the reader. While the printed text can supply limited indices in appendices, the Web-based
indices dynamically interact with the text display to permit the user to navigate the text easily.

Figure 1: The architecture of the Kramapatha reader and index system design

Kramapatha - System Design

(35

Publishing Rendering p

~ 'y Sandhi]
: \ rProgmm
-)
E Backend
Database .
MongoDB Elastlcseiarch Index Framework: Elask
l_/—“\ ’._/‘—x
. O O
J,-"" - - : _,r/ }_4_%‘\
1 |
Data Source Author Reader ; FI?HFI:-IT} <
TEI Format 5 ramework: Vue
References

TEI Consortium, editor. 2007. TEI P5. TEI Consortium.

Peter M. Scharf. 2022. Ramopakhyana—the story of Rama in the Mahabharata. The Sanskrit Library,
2 edition.

Peter M. Scharf and Malcolm D. Hyman. 2011. Linguistic issues in encoding Sanskrit. The Sanskrit
Library.

151

Figure 2: The Kramapatha reader showing the text, Roman transliteration, prose Sanskrit

sentences, notes, and translation
The Sanskrit Library | mstructionalMaterials | Kramapatha

Unicode Devanagari ¥

Figure 3: The Kramapatha reader showing the text, Roman transliteration, and information
relating to the word naravyaghrah
The Sanskrit Library | mstructionaiMaterials | Kramapatha

Unicode Devanagari v

152

Figure 4: The Kramapatha inflected forms index
The Sanskrit Library | mstructionaiMaterials | Kramapatha

atinidrélum
ativamoruh
atisthat
atitya
atindriyani
ativa
atudan
atusyat
atyakramat
atyagnipavanojjv
alaih
atyugram
atra

atha
adinatma
adrsyah
adréyata
adréyam

adr§yanam

Figure 5: The Kramapatha lemma index
The Sanskrit Library | mstructionaiMaterials | Kramapatha

anekasas

anta

antahpura
antahsarira
antahsarirastha
antar

antara

antara
antaratas
antard
antariksa

antar dha
antardhé@na
antardh&@navadh
anaya
anayavista
anala
analasparsa
anavama

_?57.1 v -276.14'

153

Peter M. Scharf. 2002. Ramopakhyana—the story of Rama in the Mahabharata. RoutledgeCurzon, 1
edition.

Peter M. Scharf. 2005. Ramopakhyana: the story of Rama in the Mahabharata. In T. S. Rukmani,
editor, The Mahabharata, pages 49-60. Munshiram Manoharlal. Paper presented at the International
Conference on the Mahabharata, 18-20 May 2001, Concordia University, Montreal, Quebec, Canada.

Peter M. Scharf. 2015. Providing access to manuscripts in the digital age. In Justin Thomas Mc-
Daniel and Lynn Ransom, editors, From Mulberry leaves to silk scrolls, number 1 in The Lawrence J.
Schoenberg Studies in Manuscript Culture, pages 231-271. University of Pennsylvania Libraries.

Peter M. Scharf. 2017. Accessing manuscripts in the digital age. volume 6, pages 131-173. National
Mission for Manuscripts.

Peter M. Scharf. 2018. Teitagger. In Gérard Huet and Amba Kulkarni, editors, Computational Sanskrit
and Digital Humanities, selected papers presented at the World Sanskrit Conference, University of
British Columbia, Vancouver, 9—-13 July 2018, pages 169-191. DK Publishers Distributers.

Peter M. Scharf. 2019-2020. Issues in digital sanskrit philology and computational linguistics. 80:347—
375.

Vishnu Sitaram Sukthankar et al., editors. 1933-1959. The Mahabharata. Bhandarkar Oriental Research
Institute. Vol. 4, The Arapyakaparvan (part 2),1942.

154

