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Abstract

The prevalence of abusive language on differ-
ent online platforms has been a major con-
cern that raises the need for automated cross-
platform abusive language detection. However,
prior works focus on concatenating data from
multiple platforms, inherently adopting Em-
pirical Risk Minimization (ERM) method. In
this work, we address this challenge from the
perspective of domain generalization objective.
We design SCL-Fish, a supervised contrastive
learning integrated meta-learning algorithm to
detect abusive language on unseen platforms.
Our experimental analysis shows that SCL-Fish
achieves better performance over ERM and the
existing state-of-the-art models. We also show
that SCL-Fish is data-efficient and achieves
comparable performance with the large-scale
pre-trained models upon finetuning for the abu-
sive language detection task.1

1 Introduction

Abusive language is defined as any form of mi-
croaggression, condescension, harassment, hate
speech, trolling, and the like (Jurgens et al., 2019).
Use of abusive language online has been a signifi-
cant problem over the years. Although a plethora
of works has explored automated detection of abu-
sive language, it is still a challenging task due to its
evolving nature (Davidson et al., 2017; Müller and
Schwarz, 2017; Williams et al., 2019). In addition,
a standing challenging in tackling abusive language
is linguistic variation as to how the problem man-
ifests itself across different platforms (Karan and
Šnajder, 2018; Swamy et al., 2019; Salminen et al.,
2020).

We provide examples illustrating variation of
abusive language on different platforms in Fig-
ure 1.2 For example, user comments in broadcast-

1Source code: https://github.com/Tawkat/
SCL-Fish-Abusive-Language

2This paper contains several examples of abusive language
and strong words for the purpose of demonstration.

Figure 1: Examples of abusive language on different
platforms.

ing media such as Fox News do not directly contain
any strong words but can implicitly carry abusive
messages. Meanwhile, people on social media such
as on Twitter employ an abundance of strong words
that can be outright personal bullying and spread of
hate speech. On an extremist public forum such as
Gab, users mostly spread abusive language in the
form of identity attacks. For these reasons, it is an
unrealistic assumption to train an abusive language
detector on data from one platform and expect the
model to exhibit equally satisfactory performance
on another platform.

Prior Works on cross-platform abusive lan-
guage detection (Karan and Šnajder, 2018; Mishra
et al., 2018; Corazza et al., 2019; Salminen et al.,
2020) usually concatenate examples from multi-
ple sources, thus inherently applying Empirical
Risk Minimization (ERM) (Vapnik, 1991). These
models capture platform-specific spurious features,
and lack generalization (Shi et al., 2021). Fortuna
et al. (2018), on the other hand, incorporate out-of-
platform data into training set and employ domain-
adaptive techniques. Other works such as Swamy
et al. (2019) and Gallacher (2021) develop one
model for each platform and ensemble them to im-
prove overall performance.

None of the prior works, however, attempt to
generalize task-oriented features across the plat-
forms to improve performance on an unseen plat-
form. In this work, we introduce a novel method
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for learning domain-invariant features to fill this
gap. Our approach initially adopts an first-order
derivative of meta-learning algorithm (Andrychow-
icz et al., 2016; Finn et al., 2017), Fish (Shi et al.,
2021), that attempts to capture domain-invariance.
We then propose a supervised contrastive learn-
ing (SCL) (Khosla et al., 2020) to impose an addi-
tional constraint on capturing task-oriented features
that can help the model to learn semantically ef-
fective embeddings by pulling samples from the
same class close together while pushing samples
from opposite classes further apart. We refer to our
new method as SCL-Fish and conduct extensive
experiments on a wide array of platforms represent-
ing social networks, public forums, broadcasting
media, conversational chatbots, and synthetically-
generated data to show the efficacy of our method
over other abusive language detection models (and
specially ERM that prior works on cross-platform
abusive language detection applied).

To summarize, we offer the following contribu-
tions in this work:

1. We propose SCL-Fish, a novel supervised con-
trastive learning augmented domain general-
ization method for cross-platform abusive lan-
guage detection.

2. Our method outperforms prior works on cross-
platform abusive language detection, thus
demonstrating superiority to ERM (the core
idea behind these previous models). Addi-
tionally, we show that SCL-Fish outperforms
platform-specific state-of-the-art abusive/hate
speech detection models.

3. Our analysis reveals that SCL-Fish can be
data-efficient and exhibit comparable perfor-
mance with the state-of-the-art models upon
finetuning on the abusive language detection
task.

2 Related Works

2.1 What is Abusive Language?
The boundary between hate speech, offensive, and
abusive language can be unclear. Davidson et al.
(2017) define hate speech as “language that is used
to express hatred towards a targeted group or is
intended to be derogatory, to humiliate, or to insult
the members of the group"; whereas,. Zampieri
et al. (2019a) define offensive language as “any
form of non-acceptable language (profanity) or a

targeted offense, which can be veiled or direct".
In this paper, we adopt the definition of abusive
language provided by Jurgens et al. (2019) and
consider both offensive and hate speech as abusive
language in general, since distinguishing between
offensive and hate speech is often deemed as sub-
jective (Sap et al., 2019; Koh et al., 2021).

2.2 Domain Generalization
In the domain generalization task, training and
test sets are sampled from different distribu-
tions (Quiñonero-Candela et al., 2008). In re-
cent years, domain-shifted datasets have been
introduced by synthetically corrupting the sam-
ples (Hendrycks and Dietterich 2019, Xiao et al.
2020, Santurkar et al. 2020). To improve the
capability of a learner on distributional general-
ization, Vapnik (1991) proposes Empirical Risk
Minimization (ERM) approach which is widely
used as the standard for the domain generaliza-
tion tasks (Koh et al. 2021). ERM concatenates
data from all the domains and focuses on mini-
mizing the average loss on the training set. How-
ever, Pezeshki et al. (2021) state that a learner can
overestimate its performance by capturing only one
or a few dominant features with the ERM approach.
Several other algorithms have been proposed to
generalize models on unseen domains. Sagawa
et al. (2019) attempt to develop distributionally
robust algorithm, where the domain-wise losses
are weighted inversely proportional to the domain
performance. Krueger et al. (2021) propose to min-
imize the variation loss across the domains during
the training phase and Arjovsky et al. (2020) aim
to penalize the models if the performance varies
among the samples from the same domain.

2.3 Contrastive Learning
Contrastive learning aims to learn effective em-
bedding by pulling semantically close neighbors
together while pushing apart non-neighbors (Had-
sell et al. 2006). This method uses cross-entropy-
based similarity objective to learn the embedding
representation in the hyperspace (Chen et al., 2017;
Henderson et al., 2017). In computer vision, Chen
et al. (2020) proposes a framework for contrastive
learning of visual representations without special-
ized architectures or a memory bank. Khosla et al.
(2020) shows that supervised contrastive loss can
outperform cross-entropy loss on ImageNet (Rus-
sakovsky et al., 2015). In NLP, similar methods
have been explored in in the context of sentence
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representation learning (Karpukhin et al., 2020;
Gillick et al., 2019; Logeswaran and Lee, 2018).
Among of the most notable works, Gao et al. (2021)
proposes unsupervised contrastive learning frame-
work, SimCSE that predicts input sentence itself by
augmenting it with dropout as noise.

2.4 Abusive Language Detection

Over the years, the task of abusive language detec-
tion have been studied in NLP in the form of hate
speech (Davidson et al., 2017; Founta et al., 2018;
Golbeck et al., 2017), sexism/racism (Waseem and
Hovy, 2016), cyberbulling (Xu et al., 2012; Dadvar
et al., 2013). Earlier works in abusive language
detection depend on feature-based approaches to
identify lexical difference between abusive and non-
abusive language (Warner and Hirschberg, 2012;
Waseem and Hovy, 2016; Ribeiro et al., 2018).
Although inclusion of neural network architec-
ture improves the performance (Mitrović et al.,
2019; Kshirsagar et al., 2018; Sigurbergsson and
Derczynski, 2020), the models still misclassify a
large number of samples in false-positive and false-
negative categories when abusive language is in-
tentionally manipulated (Gitari et al., 2015). Re-
cently, Transformer-based (Vaswani et al., 2017)
architectures like BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019b) have been introduced
in the abusive language detection task (Liu et al.,
2019a; Swamy et al., 2019).

However, most of the prior works on abusive
language detection focus on a single platform due
to the inaccessibility to multiple platforms (Vidgen
and Derczynski, 2020) and thus, do not scale well
on other platforms Schmidt and Wiegand (2017).
As a result, the models are not suitable to apply
to other platforms due to the lack of generaliza-
tion (Karan and Šnajder, 2018; Gröndahl et al.,
2018). In this work, we aim to address this chal-
lenge by introducing an augmented domain general-
ization method that captures task-oriented domain-
generalized features across multiple platforms.

3 Method

3.1 Challenge & Proposed Solution

As shown in Figure 1, the nature of offensive
language can vary from one platform to another.
Therefore, it is important to design a model that
can capture platform-generalized representations.
This inspires us to adopt a domain-generalization
algorithm that can maximize feature general-

ization while avoiding dependence on domain-
specific, spurious features. To learn platform-
invariant features, we adopt first-order derivative
of Inter-domain Gradient Matching (IDGM) Shi
et al. (2021), a Model Agnostic Meta-Learning
(MAML) (Andrychowicz et al., 2016; Finn et al.,
2017), algorithm, Fish, that aims to reduce sample
complexity of new, unseen domains and increase
domain-generalized feature selection across those
domains.

Figure 2: tSNE representations of platforms. We plot
the embedding of [CLS] token from pre-trained BERT.

However, if we look at Figure 2, the represen-
tation of abusive language across the platforms
is overlapping and scattered. Hence, the model
should also learn some platform-specific and over-
lapping features that can help to capture task-
oriented representations. Therefore, we need to
impose a constraint on the learning objective of
the model so that in one direction, it should learn
platform-invariant features for better generaliza-
tion, and in the other direction, it should also learn
only those task-oriented overlapping features that
pass positive signals to those platform-generalized
features for the abusive language detection task.

To learn task-oriented features we introduce
SCL-Fish, method for supervised contrastive learn-
ing (SCL) (Khosla et al., 2020) with Fish. The
rationale behind integrating SCL is that we seek to
find commonalities between the examples of each
class (abusive/normal) irrespective of the platforms
and contrast them with examples from the other
class.
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3.2 SCL-Fish
Assuming we have a training dataset of abusive
language detection consisting of samples from two
platforms P1 and P2 where Pk = {(Xk,Yk)}.
Given a model θ and loss function l , the empirical
risk minimization (ERM) (Vapnik, 1991) objective
is to minimize the average loss across the given
platform:

LERM = min
θ

E (x,y) ∼ P∈(P1, P2)
δl((x, y); θ)

δθ

The expected gradients for these two platforms
are expressed as

G1 = E(x,y) ∼ P1

δl ((x, y) ; θ)

δθ

G2 = E(x,y) ∼ P2

δl ((x, y) ; θ)

δθ

If the directions of G1 and G2 are same (G1.G2

> 0), then we can say that the model is improving
on both platforms. Therefore, IDGM algorithm at-
tempts to align the direction of the gradients G1 and
G2 by maximizing their inner dot product. Hence,
given the total number of training platforms S, the
final objective function of IDGM is obtained by
subtracting gradient dot product (GIP) from ERM
loss:

LIDGM = LERM

− γ
2

S(S − 1)

i ̸=j∑

i,j∈S
Gi.Gj (1)

Here, γ is a scaling term and GIP can be
computed in linear time by Ĝ = ||∑i Gi||2 -∑

i ||Gi||2
However, the derivation of Ĝ is computa-

tionally expensive, as it is a dot product of two
gradients. Adopting from Nichol et al. (2018),
Shi et al. (2021) work around this issue by
proposing a first-order derivative version of IDGM,
namely, Fish. Shi et al. (2021) show that given the
gradient of ERM Ḡ and a clone of original model θ̃,

Gf = E[θ − θ̃] - αS.Ḡ and Gg = d Ĝ
d θ ,

lim
α→0

Gf .Gg

||Gf || . ||Gg||
= 1 (2)

In other words, if we ignore the ERM objective,
we can substitute the second-order derivative Gg

with a computationally less expensive Gf .
Although, this method exhibits impressive per-

formance on the domain-generalization task, as

mentioned in Section 3.1, it may capture only
platform-invariant features without much focus on
task-relevant features. To overcome this issue, we
augment Fish with a supervised contrastive learn-
ing (SCL) objective, which will teach the model to
select the features such that the representation of
an abusive sample and a non-abusive sample are
located far from each other in the hyperspace,

LSCL = −
N∑

j=1

1yi=yj

log
exp(f(xi) . f(xj) / τ)∑
1i ̸=k exp(f(xi) . f(xk) / τ)

(3)

Here, f (.) is an encoder and N is the number
of samples summing all the platforms. Therefore,
the model will be encouraged to learn only those
task-oriented features that are invariant across the
platforms and can be used to distinguish abusive
and non-abusive examples.

Algorithm 1 SCL-Fish
1: for iteration = 1, 2,... do
2: θ̃ ← θ
3: for Pi ∈ {P1, P2, ..., PS} do
4: Sample minibatch pi ∼ Pi

5: g̃i = E(x,y)∼pi

[
δl ((x, y) ; θ̃)

δθ̃

]

6:

7: Update θ̃ ← θ̃ − αg̃i
8: end for
9:

10: Update θ ← θ − ϵ(θ̃ − θ) ▷ Updating Fish
11:

12: Pscl ← {P1 ∪ P2 ∪ ... ∪ PS}
13: for Sample minibatch pscl ∼ Pscl do
14: ▷ Calculate gradient for SCL from (3):
15: gscl = E(x,y)∼pscl

[
δl ((x, y) ; θ̃)

δθ̃

]

16:

17: Update θ ← θ − α′ gscl
18: end for
19: end for

We present SCL-Fish in Algorithm 1. For each
training platform, Fish performs inner-loop (l3-l8)
update steps with learning rate α on a clone of
the original model θ̃ in a minibatch. Subsequently,
the original model θ is updated by a weighted dif-
ference between the cloned model and the orig-
inal model θ̃ − θ. After performing, platform-
generalized update, the trained samples of this iter-
ation(l12) are queued and sampled in a minibatch
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Dataset Platform Source Offnsv/normal
wiki Wikipedia Wulczyn et al. (2017) 14880 / 117935
twitter Twitter Multiple* 77656 / 55159

fb-yt Facebook
& Youtube Salminen et al. (2018) 2364 / 858

stormfront Stormfront de Gibert et al. (2018) 1364 / 9507
fox Fox News Gao and Huang (2017) 435 / 1093

twi-fb Twitter &
Facebook Mandl et al. (2019) 6840 / 11491

reddit Reddit Qian et al. (2019) 2511 / 11073

convAI ELIZA &
CarbonBot Cercas Curry et al. (2021) 128 / 725

hateCheck Synthetic.
Generated Röttger et al. (2021) 2563 / 1165

gab Gab Qian et al. (2019) 15270 / 656

yt_reddit Youtube
& Reddit Mollas et al. (2020) 163 / 163

Table 1: List of experimental datasets with corre-
sponding platforms. * Twitter dataset is collected
from Waseem and Hovy (2016), Davidson et al.
(2017), Jha and Mamidi (2017), ElSherief et al.
(2018), Founta et al. (2018), Mathur et al. (2018), Basile
et al. (2019), Mandl et al. (2019), Ousidhoum et al.
(2019), and Zampieri et al. (2019a).

to update θ with supervised contrastive loss (l13-
l18).

4 Experiments

4.1 Datasets

To experiment with the efficacy of SCL-Fish,
we compile datasets from a wide range of plat-
forms. We collect source of the datasets primarily
from (Risch et al., 2021) and (Vidgen and Derczyn-
ski, 2020). We provide meta-information of the
datasets in Table 1. Description of each dataset is
presented in Appendix F.

4.2 Methods Comparison

We compare performance of SCL-Fish with Fish,
also using ERM as a sensible baseline. We also
conduct experiments on an SCL version of ERM
(SCL-ERM). Additionally, we compare SCL-Fish
with two of the benchmark models for abusive/hate
speech detection, HateXplain (Mathew et al., 2021)
and HateBERT (Caselli et al., 2021). HateXplain
is finetuned on hate speech detection datasets col-
lected from Twitter and Gab3 for a three-class clas-
sification (hate, offensive, or normal) task. It incor-
porates human-annotated explainability with BERT
to gain better performance by reducing unintended
bias towards target communities. While conducting
our experiments, we consider both hate and offen-
sive classes as one category (abusive). HateBERT
pre-trains BERT with Masked Language Model-
ing (MLM) objective on more than one million

3https://gab.com

offensive and hate messages from banned Reddit
community. It results in a shifted BERT model
that has learned language variety and hate polarity
(e.g. hate, abuse). Finetuning on different abusive
language detection tasks has shown that HateBERT
achieves the best/comparable performance.

4.3 Experimental Setup

We train the models (ERM, SCL-ERM, Fish, and
SCL-Fish) on fb-yt, twitter, and wiki datasets (in-
platform datasets) and use stromfront as validation
set. We use the same hyperparameters on all the
models for fair comparisons. We present the list
of hyperparameters in Appendix A. The rest of the
datasets from Table 1 are used for cross-platform
evaluation. As evident from Table 1, the datasets
are highly imbalanced. Hence, we report F1-score
for abusive class (we denote it as positive-F1) and
macro-averaged F1-score. For completeness, we
also provide performance in accuracy. We train
and evaluate our models on Nvidia A100 40GB
GPU.

5 Results on Cross-Platform Datasets

We show results of our models for cross-platform
performance in Table 2. We observe that SCL-
Fish outperforms other methods in macro-F1 and
positive-F1 scores while maintaining comparable
performance with the best method on the other
datasets (reddit, hatecheck). In overall average per-
formance, SCL-Fish achieves best macro-F1 and
positive-F1 scores. More specifically, user com-
ments on broadcasting media (Fox News), SCL-
Fish achieves a gain of 3.2% positive-F1 and 0.5%
macro-F1 over the other methods. On public fo-
rums (Youtube and Reddit), SCL-Fish achieves a
total gain of 2.0% in positive-F1 but SCL-ERM out-
performs SCL-Fish by 1.3% in macro-F1 score. On
AI bot conversation (CarbonBot and ELIZA), SCL-
Fish achieves a gain of 1.4% positive-F1 and 1.0%
macro-F1 over other methods. On the synthetically-
generated platform (HateCheck), ERM outper-
forms SCL-Fish by 1.2% in positive-F1 score and
Fish outperforms SCL-Fish by 0.1% in macro-F1
score. On Gab, all the methods (ERM and Fish-
based, including SCL-Fish) achieve high positive-
F1 score because of the highly imbalanced dataset.
Hence, for a fair comparison among all meth-
ods, we report performance on sampled balanced
datasets in Appendix B. We also discuss the perfor-
mance on the in-platform datasets in Appendix C.
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Platform HateXplain HateBERT ERM SCL-ERM Fish SCL-Fish

(% of hate) Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

Acc Pos
F1

Macro
F1

Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

stormfront
(12.5)

88.1 44.1 67.2 87.3 34.6 63.8 85.3 44.2 67.7 86.0 43.0 67.5 85.5 42.0 66.9 85.1 44.2 67.8

fox
(28.5)

73.9 29.4 56.7 68.7 31.5 63.8 73.6 42.3 62.6 73.6 42.3 62.6 73.6 44.3 63.5 72.2 47.5 64.3

twi-fb
(37.3)

63.4 09.3 43.2 65.0 27.9 52.4 61.3 35.7 54.0 60.2 33.6 52.6 53.7 36.9 50.2 61.8 38.2 55.3

reddit
(18.5)

83.7 38.0 64.3 81.0 45.5 66.9 76.9 43.0 64.3 77.7 43.9 65.1 76.7 44.6 64.9 76.6 46.3 65.7

convAI
(15.0)

86.4 26.6 59.5 87.9 56.9 74.9 86.6 66.3 78.9 86.8 65.9 78.8 86.3 64.7 78.1 87.3 67.7 79.9

hateCheck
(68.8)

38.4 26.9 36.9 58.9 64.3 57.9 67.3 77.4 59.0 65.4 75.3 58.6 67.1 76.6 60.5 66.7 76.2 60.4

gab
(95.9)

75.6 85.7 50.6 75.9 86.0 50.4 91.1 95.3 59.1 91.4 95.5 57.9 90.9 95.2 58.8 92.0 95.8 57.4

yt-reddit
(50.0)

65.3 54.3 63.2 70.9 69.3 70.8 72.4 75.7 71.9 74.5 77.1 74.2 73.6 76.6 73.2 73.0 76.7 72.3

avg. 71.9 38.9 55.2 74.5 52.0 61.6 76.8 59.9 64.7 76.9 59.6 64.7 75.9 60.1 64.5 76.8* 61.6 65.4

Table 2: Performance on cross-platform datasets. Bold font represents the best performance for a particular metric.
Gray cells indicate performance on the datasets from identical or overlapping platforms but different sources and
distributions. * Although SCL-Fish exhibits comparable accuracy with other competitive models on this imbalanced
dataset, it achieves better accuracy on the balanced dataset (Appendix B).

Most notably, HateBERT achieves the highest
macro-F1 scores on reddit, which is expected since
HateBERT is pre-trained on reddit and so has
an advantage over other methods since these are
trained on data from other platforms. However, all
the models including HateXplain and HateBERT
are trained on the datasets from Twitter platform.
Hence, we analyze performance of the models on
twi-fb dataset. Our rationale is that although twi-
fb involves data from Twitter and Facebook, these
data do not necessarily have the same distribution
as data used to train all the models. The distribu-
tion of datasets from the same platform can still
defer due to the variations in the timestamps, top-
ics, locations, demographic attributes (e.g. age,
race, gender, ethnicity). Although it is not possi-
ble to extract all this information from the textual
contents, we provide a quantitative comparison be-
tween in-domain and out-domain datasets for Twit-
ter in Appendix D. We refer the readers to Koh
et al. (2021) for more detailed analysis. We find
that performance of the models deteriorates sig-
nificantly (under 56% macro-F1) even on datasets
from overlapping platforms but of different distri-
butions. This demonstrates effect of distribution
shift in the data, even if we train on date from the
same platform. We further discuss possible ratio-
nales for this performance gap across the platforms
in Appendix E.

6 Analysis

In this section, we conduct qualitative and quanti-
tative analysis on the experimental results.

6.1 Diversity over Quantity
It is worth noting that HateBERT has been pre-
trained on 1, 478, 348 Reddit messages, almost five
times more data than SCL-Fish. However, as Ta-
ble 2 shows, performance of HateBERT on cross-
platform datasets suffers significant drops which
is not the case for SCL-Fish. Even on yt-reddit
dataset, which is collected from Youtube and Red-
dit (the latter being the platform whose data Hate-
BERT is trained on), HateBERT fails to outperform
the baseline ERM method. This shows that, for
the purpose of creating platform/domain-invariant
models, it is more important to employ training
data with different distributions than simply using
huge amounts of training data from the same plat-
form but that may have limited distribution.

6.2 Finetuning SCL-Fish
Since we show SCL-Fish exhibits better perfor-
mance than other methods on most of the cross-
platform datasets, we further investigate whether
the platform-generalization capability of SCL-Fish
helps it improve performance on a specific platform
(Twitter) upon finetuning. For this purpose, we use
two benchmark datasets, namely, OLID (Zampieri
et al., 2019a) dataset from SemEval-2019 Task
6 (Zampieri et al., 2019b) and AbusEval (Caselli
et al., 2020). Please note that we use OLID dataset
for training our methods (Appendix F). Now we
are finetuning with the same dataset for this experi-
ment.

We present results for this set of experiments
in Table 3. Performance of NULI (BERT-based
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Datasets Models Macro
F1

Pos.
F1

OffensEval

BERT 80.3 71.5
HateBERT 80.9 72.3

NULI 82.9 75.2
SCL-Fish 81.6 72.6

AbusEval

BERT 72.7 55.2
HateBERT 76.5 62.3

Caselli et al. (2020) 71.6 53.1
SCL-Fish 75.2 59.4

Table 3: Performance of models after finetuning. Bold
and underline represent best and second best perfor-
mance for a particular metric, respectively.

model secured first position in SemEval-2019 Task
6 (Zampieri et al., 2019b)) in the table is from Liu
et al. (2019a) and BERT, HateBERT from Caselli
et al. (2021).

As Table 3 shows, NULI (Liu et al., 2019a)
achieves the best performance for OLID dataset.
Although SCL-Fish gets a lower score than NULI4,
SCL-Fish outperforms BERT and HateBERT on
both in positive-F1 and macro-F1. This is important
because HateBERT uses five times more data from
one specific platform (Reddit). This proves that our
proposed SCL-Fish is useful not only in platform
generalized zero-shot setting but also for finetun-
ing, and emphasizes the importance of diversity of
the data (which translates into varied distributions)
over data size.

For AbusEval dataset, SCL-Fish performs bet-
ter than BERT and the prior work (Caselli et al.,
2020), but it cannot outperforms HateBERT. We
suspect that the reason is due to the different an-
notation process followed during the earlier train-
ing phase of SCL-Fish and HateBERT. Because,
although OLID and AbusEval contain identical
tweets in the training and the testing sets, the an-
notation scheme of AbuseEval is different from
OLID. While Zampieri et al. (2019a) uses the defi-
nition of offensive language as “Posts containing
any form of non-acceptable language (profanity)
or a targeted offense, which can be veiled or di-
rect" to annotate OLID dataset, Caselli et al. (2020)
uses the definition of abusive language as “hurtful
language that a speaker uses to insult or offend
another individual or a group of individuals based
on their personal qualities, appearance, social sta-

4Please note that Caselli et al. (2021) reports positive-F1
of NULI as 59.9% which is lower than positive-F1 of SCL-
Fish. But the positive-F1 we compute from Liu et al. (2019a)
is different from the one reported in Caselli et al. (2021).
Therefore, we consider our computed positive-F1 for NULI.

tus, opinions, statements, or actions" to annotate
AbusEval dataset. More comprehensively, Abu-
sEval excludes any kind of untargeted messages
from the hate speech category. During the training
phase of SCL-Fish, we consider any targeted or
non-targeted strong language as offensive. There-
fore, finetuning on AbusEval causes misalignment
with the earlier training phase of SCL-Fish, and
may result in performance deterioration.

6.3 Explainability with Attention
Visualization

Figure 3: Attention visualization for different platforms.
Deeper color indicates higher attention.

We investigate how platform generalization
helps the model attend to the right context on ‘out-
of-platform’ datasets. For this purpose, we analyze
attention vectors of SCL-Fish, HateXplain, and
HateBERT in an attempt to better understand their
performance. We use BertViz (Vig, 2019) to com-
pute and visualize the final layer attention vectors
from [CLS] to other tokens. We select three out-of-
platform datasets (fox, stormfront, and hateCheck)
and randomly sample one abusive example from
each where SCL-Fish correctly identifies the ex-
ample as abusive, but HateXplain and HateBERT
misclassify it. Figure 3 shows the attention visual-
ization for each of the examples. As we can see,
in the example from Fox News user comments,
although the text does not explicitly contain any
strong or offensive words, it is seemingly offensive
towards ‘Muslims’ and ‘Merkel’. Hence, our mod-
els should attend to these two words with the high-
est priority, which SCL-Fish does. On the other
hand, although HateXplain gives higher attention
to ‘Merkel’, it fails to attend the word ‘Muslims’.
Surprisingly, HateBERT does not assign priority to
any context for the misclassified examples. On the
example from StormFront, both SCL-Fish and Hat-
eXplain, correctly assign priority to the words ‘for-
eigners’ and ‘pegan’ unlike HateBERT. However,
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HateXplain also confuses other words e.g. ‘The’
as a highly prioritized token. Finally, the example
from synthetically-generated dataset hateCheck is
challenging because of the linguistic complexity
(e.g. negations, hedging terms) language models
typically struggle to address (Hossain et al., 2020;
Ettinger, 2020; Kassner and Schütze, 2020). We
observe that SCL-Fish highly prioritizes ‘women’
and also attends to the token ‘not’. On the other
hand, HateXplain mistakenly provides the highest
attention to ‘We must’ and ignores the negation
term ‘not’.

Overall, our analysis shows that model trained
on platform-generalized settings improves on iden-
tifying the targeted community and right context
on an out-domain offensive text. On the contrary,
platform-specific models may not be able to attend
to the targeted community in a different platform,
because these models are trained on target specific
to particular platforms.

6.4 SCL Improves Fish

From Table 2 and Table 8, it is evident that inte-
grating SCL with Fish empirically improves perfor-
mance across the platforms. Now, we substantiate
the empirical result with the visual justification for
Fish and SCL-Fish on different platforms. For all
the platforms, we pass an equal number of abusive
and non-abusive samples to the models and plot the
[CLS] embeddings in Figure 4.

Figure 4: tSNE plot for Fish vs. SCL-Fish on Fox News
Comment, Reddit, and StormFront. Abusive samples
are presented in orange and non-abusive samples are
presented in blue.

We observe that, SCL-Fish forms more com-
pact clusters of abusive (majority from orange sam-
ples) and non-abusive (majority from blue sam-
ples) examples than Fish. Supervised contrastive
learning attempts to learn task-oriented features
that help bring representations of the same class
closer to each other while pushing representations

Figure 5: Percentage of error categories in a randomly
sampled 50 misclassified examples.

of different classes further apart. As a result, dis-
tinct clusters are formed for each class in Figure 4.
Therefore, incorporating SCL helps Fish reduce the
confusion between abusive and non-abusive repre-
sentations and improves overall performance of the
model.

7 Error Analysis

We conduct an error analysis on the examples that
SCL-Fish misclassified. We randomly sample 50
misclassified examples and divide them into three
categories:
False-abusive: Examples that are normal but SCL-
Fish categorizes them as abusive.
Offensive: Examples that are degrading, harassing
to an individual or untargeted abuse, trolling but
SCL-Fish categorizes them as normal.
Hate: Examples that contain targeted attacks to-
wards a particular group or identity.

We provide examples for each category in Ta-
ble 4. Figure 5 shows that SCL-Fish misclassify
32% normal examples as false-abusive. Most of
the examples of this category contain some sort
of slang words that the model confuses as abusive.
On other hand, SCL-Fish misclassifies 28% of the
offensive examples as normal. This is because the
examples may contain some positive words (e.g.
‘please’) or do not contain any profanity. Therefore,
the model considers them as normal speech. Lastly,
around 40% of the hate speech is misclassified as
normal by SCL-Fish. Similar to the reason for
offensive, the model confuse because of some sar-
castic positive words and lack of expected profanity.
This analysis shows that detecting implicit abusive
language that does not contain direct profanity is
still challenging and a direction to be explored in
the future.
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Category Example Predicted Class

False-abusive
Once at work, I accidentally checked out some dragons
f*cking cars. Didn’t know that would be an issue.

Abusive

Offensive The girl on the left looks like a Jewish pizza. Normal

Hate
The Blacks and Browns are destroying Sweden and nobody
does anything about it!

Normal

False-abusive
I’ve been out for years and it hasn’t been easy, but I also
love being a f*g.

Abusive

Offensive
Why do you not think so? Feck off. Please go on. You annoy
me.

Normal

Hate
All we have is Blacks and a few Mestizos and all are pretty
well behaved, we keep them that way around here.

Normal

False-abusive I truly am a bada*s motherf*cker. Abusive

Offensive
Oh yeah, she’s so annoying I had mentally blocked out her
existence.

Normal

Hate
As opposed to Reddit, which is composed mainly of
Communists jacking each other off about child drag queens?

Normal

Table 4: Sample of misclassified examples from False-abusive, Offensive, and Hate category.

8 Conclusion

In this work, we addressed the problem of cross-
platform abusive language detection from the do-
main generalization perspective. We proposed
SCL-Fish, a supervised contrastive learning aug-
mented meta-learning method to learn general-
ized task-driven features across platforms. We
showed that SCL-Fish achieves better performance
compared to the other state-of-the-art models and
models adopting ERM for cross-platform abusive
language detection. Our analysis also reveals
that SCL-Fish achieves comparable performance
on finetuning with much smaller data for cross-
platform training than other data-intensive methods.
Our work demonstrates progress on both platform
and domain generalization in the context of abusive
language detection, which we hope future research
can be extended to other areas of language under-
standing.

9 Limitations

Although SCL-Fish achieves improvement over
Fish, training SCL-Fish takes longer time than
Fish. Empirically, we find that SCL-Fish is ap-
proximately 1.2x slower than Fish. Moreover, we
believe that the subjective nature of abusive lan-
guage (Sap et al., 2019) affects the annotation pro-
cess of different datasets and possibly negatively
impact performance.

Acknowledgements

MAM acknowledges support from Canada Re-
search Chairs (CRC), the Natural Sciences and En-
gineering Research Council of Canada (NSERC;
RGPIN-2018-04267), the Social Sciences and Hu-
manities Research Council of Canada (SSHRC;
435-2018-0576; 895-2020-1004; 895-2021-1008),
Canadian Foundation for Innovation (CFI; 37771),
and Digital Research Alliance of Canada.5

References

Marcin Andrychowicz, Misha Denil, Sergio Gómez,
Matthew W Hoffman, David Pfau, Tom Schaul, Bren-
dan Shillingford, and Nando de Freitas. 2016. Learn-
ing to learn by gradient descent by gradient descent.
In Advances in Neural Information Processing Sys-
tems, volume 29. Curran Associates, Inc.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. 2020. Invariant risk minimization.
In International Conference on Machine Learning.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti.
2019. SemEval-2019 task 5: Multilingual detection
of hate speech against immigrants and women in
Twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 54–63, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

5https://alliancecan.ca

104

https://proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
http://proceedings.mlr.press/v119/ahuja20a/ahuja20a.pdf
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://alliancecan.ca


Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
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A Hyperparameter Configuration

The detailed configuration of hyperparameters for
the training phase of the cross-platform experi-
ments is shown in Table 5. We run each experiment
three times and report the average performance of
the models.

Hyperparameters Values

LM model variant BERT-base-uncased
Token length 512
Optimizer Adam
AdamW epsilon 1e-8
AdamW betas (0.9, 0.999)
Fish meta lr. (ϵ) 0.05
SCL temperature (τ ) 0.05
Learning rate 5e-6
Batch size 8
Epochs 10

Table 5: Hyperparameters for cross-platform experi-
ments.

Table 6 presents the configuration of hyperpa-
rameters during the finetuning (Section 6.2).

Hyperparameters Values

LM model variant BERT-base-uncased
Token length 100
Optimizer AdamW
AdamW epsilon 1e-8
AdamW betas (0.9, 0.999)
Learning rate 1e-5
Batch size 32
Epochs 5

Table 6: Hyperparameters for finetuning.

B Performance on Cross-Platform
Balanced Datasets

We sample an equal number of examples from abu-
sive and normal classes for each dataset. The result
is shown in Table 7.

C In-Platform Performance

Table 8 shows the performance of the methods on
the in-platform datasets. Unsurprisingly, ERM-
based methods outperform Fish-based methods on
all the datasets and in all the metrics. ERM method
learns platform-specific features, while the Fish-
based method tends to learn platform-invariant

features. Therefore, evaluating the in-platform
datasets yield better performance for ERM-based
methods. Notably, as the percentage of abusive
speech decreases from the top row to the bottom
row in Table 8, positive-F1 scores also drop ac-
cordingly. But Fish-based methods suffer least
performance deterioration (10.1% drop from fb-yt
to wiki for SCL-Fish, 7.2% drop from fb-yt to wiki
for Fish) than the other methods (12.3% drop from
fb-yt to wiki for ERM, 12.7% drop from fb-yt to
wiki for SCL-ERM). This shows that domain gen-
eralization helps the methods to learn more robust
platform-invariant features, which in turn, results
in more accurate detection of abusive speech on
cross-platform datasets.

D Quantitative Comparison for Twitter
In-Domain and Out-Domain Datasets

We compare twitter (in-domain) and twi-fb (out-
domain) datasets based on linguistic features and
sentiment analysis. For each dataset, we compute
average sentiment scores, average number of words,
and characters for both abusive and non-abusive
classes.

Table 9 reflects the difference in sentiments
scores and linguistic features between the datasets.
We see that the number of words and the number
of characters are higher for the out-domain (twi-fb)
dataset than the in-domain (twitter) dataset for both
abusive and non-abusive classes. Additionally, the
examples of out-domain datasets have more neg-
ative sentiment on average than the examples of
in-domain dataset. These types of variation can
shift the distribution of the datasets, as a result,
the models may struggle to perform better on an
out-domain dataset (Table 2).

E Rationale for Performance Gap across
Platforms

To this end, we aim to study the reason for the
performance gap of the models across different
platforms through a qualitative analysis of linguis-
tic variance. We sample abusive texts from the
platforms and plot the word frequency in Figure 6.

We observe that the type of abusive texts varies
along with the linguistic features across the plat-
forms. For example, on social networks like
Twitter, most appeared words in abusive texts are
‘f*cking’, ‘gun’, ‘a*s’, which mostly imply vio-
lence and personal attack. Meanwhile, an extremist
forum like Stormfront contains words like ‘black’,
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HateXplain HateBERT ERM SCL-ERM Fish SCL-Fish
Platform Acc Pos.

F1

Macro
F1

Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

stormfront 64.7 48.5 60.9 61.9 41.2 56.5 69.2 60.1 67.5 67.5 56.4 65.3 67.3 56.1 65.0 69.5 60.6 67.8
fox 57.0 30.7 49.8 55.6 36.3 51.1 61.5 46.9 58.4 61.6 46.9 58.4 61.8 49.1 59.3 63.3 54.6 61.9

twi-fb 51.6 09.4 38.2 55.5 29.0 48.3 54.7 38.9 51.5 53.4 36.6 49.9 50.0 42.1 49.1 55.8 41.6 53.0
reddit 61.6 41.4 56.4 66.1 55.8 64.2 65.9 57.9 64.6 66.1 58.1 64.8 67.1 60.6 66.2 68.2 63.2 67.6
convAI 57.8 28.0 49.1 73.4 66.7 72.3 87.1 87.2 87.1 86.3 86.2 86.3 85.5 85.3 85.5 87.9 87.9 87.9

hateCheck 52.3 27.5 45.9 63.4 60.9 63.3 59.5 67.3 57.1 59.1 65.7 57.6 60.9 67.1 59.5 60.8 66.8 59.5
gab 33.8 41.0 32.8 33.9 42.7 32.3 64.1 72.8 60.1 62.2 72.1 56.7 64.3 72.9 60.1 60.2 71.1 53.6

yt-reddit 65.3 54.3 63.2 70.9 69.3 70.8 72.4 75.7 71.9 74.5 77.1 74.2 73.6 76.6 73.2 73.0 76.7 72.3
avg. 55.5 35.1 49.5 60.1 50.2 57.4 66.8 63.3 64.8 66.4 62.4 64.2 66.3 63.7 64.7 67.3 65.3 65.5

Table 7: Performance on the balanced cross-platform datasets. Bold font represents best performance for a
particular metric. Gray cells indicates performance on the datasets from identical or overlapping platforms but
different sources and distributions.

Platform ERM SCL-ERM Fish SCL-Fish

(% of hate) Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

Acc Pos.
F1

Macro
F1

fb-yt
(73.4) 94.1 95.8 92.9 92.9 94.9 91.4 79.9 85.1 77.1 90.1 92.8 88.5

twitter
(58.5) 89.2 90.7 88.9 89.2 90.8 88.8 84.0 85.8 83.8 89.2 90.7 88.9

wiki
(11.2) 96.2 83.5 90.7 96.0 82.2 89.9 95.1 77.9 87.6 95.9 82.7 90.2

avg. 93.2 90.0 90.8 92.7 89.3 90.1 86.3 82.9 82.8 91.8 88.7 89.2

Table 8: Performance on in-platform datasets. Bold font represents best performance for a particular metric.

Class Features twitter twi-fb

Abusive

No. of
Words

15.49 29.64

No. of
Characters

96.53 168.46

Sentiment
Score

-0.75 -0.83

Non-
Abusive

No. of
Words

18.51 26.84

No. of
Characters

118.41 172.09

Sentiment
Score

-0.49 -0.71

Table 9: Comparison between in-domain (twitter) and
out-domain (twi-fb) datasets. Features are computed av-
eraging the examples for a particular class (abusive/non-
abusive).

‘white’, ‘jews’ which indicate abusive comments to-
wards a particular community or ethnicity. Linguis-
tic features from a public forum like Reddit reveal
that abusive comments on this platform are mostly
targeted attacks and slang. Abusive conversation
with AI bots mostly contains strong words in the
form of personal attacks. On the other hand, user
comments on broadcasting media like Fox News

do not contain any strong words but rather implicit
abuse focused towards a particular race like ‘black’,
person like ‘Obama’, or sexual orientations like
‘gay’. Finally, abusive texts on Wikipedia include
both targeted and untargeted slang words toward a
specific entity.

The variation of abuse across different platforms
shows that training models on a specific platform
are not enough to address the issue of mitigating
abusive language on another platform. This also
implies the importance of the platform-generalized
study of abusive language detection.

F Datasets Description

In this section, we briefly describe the datasets we
compile for our cross-platform experiments.

F.1 wiki

wiki dataset represents Wikipedia platform. We col-
lect this dataset from Wulczyn et al. (2017). The
corpus contains 63M comments from discussions
relating to user pages and articles dating from 2004
to 2015. Human annotations were used to label
personal attack, aggressiveness, and harassment.
The authors find that almost 1% of Wikipedia com-
ments contain personal attacks. We randomly sam-
ple 132,815 examples from the initial corpus to
make it compatible in size with other training sets.
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Figure 6: Top-20 normalized word frequency of abusive language for different platforms (ignoring stopwords and
non-alphabetic characters).

Of these examples, 14,880 contain abusive (per-
sonal attack, aggressiveness, harassment) language.

F.2 twitter

We collect twitter dataset from a variety of
sources. Waseem and Hovy (2016) annotate around
16k tweets that contain sexist/racist language. Ini-
tially, the authors bootstrap the corpus based on
common slurs, then manually annotate the whole
corpus to identify tweets that are offensive but do
not contain any slur. Similarly, Davidson et al.
(2017) crawled tweets with lexicon containing
words and phrases identified by internet users as
hate speech. Then crowdsourcing is performed
to distinguish the category of hate, offensive, and
normal tweets, resulting in around 25k annotated
tweets. Jha and Mamidi (2017) crawled Twitter
with the terms that generally exhibit positive senti-
ment but sexist in nature (e.g. ‘as good as a man’,
‘like a man’, ‘for a girl’). The authors also annotate
tweets that are aggressively sexist. The final cor-
pus contains around 10k tweets of implicit/explicit
sexist and normal tweets. ElSherief et al. (2018)
adopt multi-step data collection process that in-
clude collecting tweets based on lexicon, hashtag,
and other existing works (Waseem and Hovy, 2016;
Davidson et al., 2017). Then, crowdsourcing is
applied to annotate targeted and untargeted hate
speech. Founta et al. (2018) build an annotated

corpus of 80k tweets with seven classes (offen-
sive, abusive, hateful speech, aggressive, cyber-
bullying, spam, and normal). Mathur et al. (2018)
annotate a corpus of around 3k tweets contain-
ing hate, abusive, and normal tweets. Basile et al.
(2019) crawled 13k tweets containing abusive lan-
guage against women and immigrants. The authors
applied crowdsourcing to annotate if the tweets
contain individual/ group hate speech or aggres-
siveness. Mandl et al. (2019) develop a corpus of
7k English examples with the category of hate, of-
fensive, and profanity. Ousidhoum et al. (2019)
build a corpus of multilingual and multi-aspect hate
speech. The English corpus (5,647 tweets) covers
a wide range of hate speech categories including
the level of directness, hostility, targeted theme,
and targeted group. Zampieri et al. (2019a) develop
an offensive corpus of 14,100 tweets based on hi-
erarchical modelings, such as whether a tweet is
offensive/targeted, if it is targeted towards a group
or individual.

Our final twitter dataset contains 132.815 exam-
ples of which 77,656 are abusive.

F.3 fb-yt

fb-yt represent both Facebook and Youtube plat-
forms. We collect this dataset from Salminen et al.
(2018). Salminen et al. (2018) crawled the com-
ments from Facebook and Youtube videos and an-
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notate them into hateful, non-hateful categories.
The authors also subcategorize hateful comments
into 21 classes including accusation, promoting
violence, and humiliation.

F.4 stormfront

stormfront dataset is collected from de Gibert et al.
(2018). The authors crawled around 10k exam-
ples from Stormfront and categorize them into
hate/normal speech. The authors further investi-
gate whether joining subsequent seemingly normal
sentences result in hate speech. Our final dataset
contains 1364 hateful speech from Stormfront.

F.5 fox

fox dataset represents user comments on the broad-
casting platform Fox News. We collect this dataset
from Gao and Huang (2017). The authors find that
the hateful comments are more implicit and cre-
ative and such hateful comments detection requires
context-dependency.

F.6 twi-fb

twi-fb dataset contains user posts from Twitter and
Facebook. We collect this dataset from Mandl et al.
(2019). The authors initially collect the corpus
by crawling keywords and hashtags. Later, they
annotate the corpus into targeted/untargeted hate
speech, offense, and profane.

F.7 reddit

reddit dataset contains conversations from Red-
dit. Qian et al. (2019) compiled a list of toxic sub-
reddit and crawled user conversations from those
subreddits. Additionally, the authors provide hate
speech intervention, where the goal is to automat-
ically generate responses to intervene during on-
line conversations that contain hate speech. The fi-
nal dataset contains 2511 examples of hate/abusive
speech.

F.8 convAI

Cercas Curry et al. (2021) collect convAI dataset
from the user conversation with an AI assistant,
CarbonBot, hosted on Facebook Messenger and a
rule-based conversational agent, ELIZA. The au-
thors categorize the dataset based on the severity
and the type of abusiveness, directness, and target.
We collected 853 examples from this dataset of
which 128 are abusive speech.

F.9 hateCheck
hateCheck is a synthetically-generated dataset col-
lected from Röttger et al. (2021). The authors de-
velop 29 functionality through prior research and
human interview and generate test case to evaluate
test case for each of the functionalities. The dataset
contains 2563 examples of hate speech.

F.10 gab
We collect gab dataset from Qian et al. (2019). Un-
like other datasets, Qian et al. (2019) provide the
full conversation which helps the models to un-
derstand the context. We collect 15,926 examples
from the original corpus of which 15,270 are hate
speech.

F.11 yt-reddit
yt-reddit dataset is collected from Mollas et al.
(2020). The authors develop the dataset, namely,
ETHOS sampling from Youtube and Reddit com-
ments. The authors emphasize reducing any kinds
of bias (e.g. gender) in the annotation process and
annotate the dataset into various forms of targeted
hate speech (e.g. origin, race, disability). We sam-
ple an equal number of hate and normal speech
from this dataset.
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