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Abstract

Online Gender-Based Violence (GBV), such as
misogynistic abuse, is an increasingly prevalent
problem that technological approaches have
struggled to address. Through the lens of the
GBV framework, which is rooted in social sci-
ence and policy, we systematically review 63
available resources for automated identification
of such language. We find the datasets are lim-
ited in a number of important ways, such as
their lack of theoretical grounding and stake-
holder input, static nature, and focus on certain
media platforms. Based on this review, we
recommend development of future resources
rooted in sociological expertise and centering
stakeholder voices, namely GBV experts and
people with lived experience of GBV.

1 Introduction

We are in the midst of an ‘epidemic of online
abuse’, which disproportionately affects women
and minoritised groups and has worsened during
and after the COVID-19 pandemic: 46% of women
and marginalised gender identities such as trans-
gender users experience gender-based online abuse,
with non-binary people and Black and minority eth-
nic women at 50% (Glitch UK and EVAW, 2020).

In recent years, technology companies and com-
puter science researchers have made efforts to
automate the identification of hate speech and
other toxic or abusive language, and have released
datasets and resources for training machine classi-
fication systems (see e.g. Poletto et al., 2021; Vid-
gen and Derczynski, 2021). While some of these
have focused on sexist and misogynistic abuse (e.g.
Jiang et al., 2022; Zeinert et al., 2021), overall, sys-
tems still perform worse at detecting such instances,
with high failure rates (Nozza et al., 2019).

In this review, we examine efforts at produc-
ing resources for automated content moderation
through the lens of Gender-Based Violence (GBV).

∗Now at Google DeepMind.

We particularly focus on the extent to which stake-
holders, namely GBV experts and people with lived
experience of GBV have been included in the de-
sign and production of these resources.

The GBV framework While there is a growing
body of natural language processing (NLP) work
purporting to address sexism and misogyny, these
terms are often used imprecisely in the literature
and dataset taxonomies. We advocate for the use of
the term ‘gender-based violence’, which was first
used by the United Nations to promote a compre-
hensive, umbrella theorisation of endemic violence
and abuse (United Nations, 2021) arising from a
gender stereotypic society of unequal gender orders
and gender stratification (UN General Assembly,
1993). GBV is often non-linear1 and overlapping,
entailing hybrid behaviours of physical, digital, ver-
bal, psychological, and sexual violence; implicit
and explicit forms; and spanning multiple spaces,
actors, and events–inclusive of numerous types of
abuse and specialist focuses, such as coercive con-
trol, domestic violence, intimate partner violence,
sexual harassment and stalking.

The concept has been broadened by the Euro-
pean Union to include online abuse (Dominique,
2021; Lomba et al., 2021) as GBV has come to
be understood as affecting both online and of-
fline life, manifesting in victims/survivors’ com-
munities, domestic, and occupational lives. Con-
ceptualising GBV in a modern context shows
how the framework has adapted to a digitised
and globalised world, expanding and diversify-
ing to contemporary types. Online forms of
GBV, with a particular focus on ‘cybersexism’ and
‘cybermisogny’ include taking photographs and

1‘Non-linearity’ refers to how the realities of GBV
do not follow isolated incident trajectories of ‘not vic-
tim’/victim/recovery. Victimisation is episodic, always mixing
different forms, and happens multiple times across lifespans
(it cross-cuts ‘time and space’) (Lindgren and Renck, 2008;
Mouffe, 2013).
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videos without consent, so-called ‘revenge pornog-
raphy’ (or ‘image-based abuse’), deepfakes, rape-
supportive jokes and memes, cyberflashing, cy-
berstalking (including ‘creeping’), cyberbullying,
trolling, anti-feminist forums and bots targeting
feminist content, social media-based harassment,
grooming, threatening private messages, the dis-
semination of private information, catfishing and
doxing (Get Safe Online, 2023; Glitch, 2022). As
phenomena that are morphing, multi-pronged, and
crossing the boundaries of multiple social worlds,
modern GBV is more complex than ever and more
challenging to regulate. Online GBV is of spe-
cific interest because it has distinct characteristics,
namely that it is rising sharply and is mostly perpe-
trated by strangers (Amnesty International, 2017).

The GBV concept recognises that people of all
genders are victimised by, perpetrate, uphold, and
enable (gender) stereotypes and the systematic vio-
lence and abuse arising from them, occurring at the
point(s) of situational power differentials and axes
of difference. Spectrum-based and pluralistic, GBV
is perpetrated by numerous people across bound-
aries of time and cultural sites, experienced in every
level of social life, combining macro factors, such
as patriarchal belief systems, meso factors such
as institutional dismissal, and micro factors such
as interpersonal relations (Public Health Scotland,
2021). The GBV framework has been recognised
and strategically adopted by organisations such as
the World Bank (2019), the World Health Organi-
zation (2020), and the Scottish Government (2016),
among others. Its increasing take-up in policy-
making at both supranational and national levels
relates to the framework’s exhaustive and inclusive
approach, considering age, class, disability, geog-
raphy, history, race, and socioeconomics.

Terminology As the framework is widely encom-
passing, GBV accounts for terms that are often
used loosely and interchangeably in NLP litera-
ture, annotation schema and guidelines, which we
clarify here. According to Manne (2017), Sexism
‘consists in ideology that has the overall function
of rationalising and justifying patriarchal social
relations’. Sexism provides the underlying assump-
tions, beliefs, and stereotypes, as well as theories
and narratives concerning gender differences that
cause people to ‘support and participate in patriar-
chal social arrangements’—and engage in misog-
ynistic behaviour. Misogyny, on the other hand,
consists of actions that serve to police and enforce

those sexist norms and assumptions. As Manne
(2017) puts it, misogyny is the “‘law enforcement”
branch of a patriarchal order’.

Our contributions In this paper, we reassess re-
sources for automated abusive language identifica-
tion through the GBV framework, paying particular
attention to the conceptual strand dedicated to vi-
olence against women and girls (VAWG) in the
form of (online) sexism and misogyny. We con-
duct a systematic review considering factors that
are pertinent to stakeholders (i.e. people with lived
experience of GBV and organisations that support
them), such as stakeholder representation and data
selection. We highlight gaps in currently available
resources, and make recommendations for future
dataset creation. Specifically, we address the fol-
lowing Research questions:

R1. How is GBV characterised?

R2. Who is represented in annotation of the data?

R3. From which platforms have the data been
sourced?

R4. How has the data been sampled?

R5. Which languages are represented?

R6. During which time periods were the data cre-
ated?

For motivation of these questions and analysis of
the findings, see section 4. We create a new reposi-
tory of resources for computational identification
of GBV structured around the issues highlighted
here. This is available at https://github.
com/HWU-NLP/GBV-Resources.

2 Related work

In addition to the sociological and policy literature
outlined in section 1, our methodology and research
aims are informed by work from NLP and human-
computer interaction in a number of areas.

GBV online A number of studies address com-
putational analysis of aspects of GBV, such as the
tone of news reports on incidents of rape and femi-
cide (De La Paz et al., 2017; Minnema et al., 2022)
and user engagement with GBV stories on social
media (ElSherief et al., 2017; Purohit et al., 2016).
However, we are not aware of prior work applying
the framework to abusive language detection.

171

https://github.com/HWU-NLP/GBV-Resources
https://github.com/HWU-NLP/GBV-Resources


Abusive, hateful, and toxic language detection
There are several reviews summarising work on
detection of related but broader phenomena such as
hate speech (e.g. Vidgen et al., 2019). In a survey of
ethical issues surrounding automated content mod-
eration, Kiritchenko et al. (2021) highlight the im-
portance of engaging with stakeholders, consider-
ing annotator welfare and labelling disagreement—
factors we also analyse in this online GBV review.

For hate speech detection resources, Poletto et al.
(2021) present a systematic review of hate speech
benchmark datasets, finding that the field lacks a
common framework, that annotation schema and
taxonomies are not systematically described, and
that targeted sampling methodologies result in ne-
glect of prevalent forms of abuse—issues we fur-
ther examine and make recommendations on.

We draw heavily on Vidgen and Derczynski
(2021), who systematically reviewed abusive lan-
guage datasets and provide the hatespeechdata.com
repository. While this comprehensive resource pro-
vides one of our search sources and many of the re-
sources we review, we examine a number of factors
it does not touch upon, such as the correspondence
of annotation schemes to the GBV framework, and
the levels of stakeholder participation.

Sexism and misogyny detection In recent years,
there has been growing interest in developing
datasets for the identification of phenomena related
to sexism and misogyny as a separate task from
more general abusive, hateful, offensive, or toxic
language detection. This has included a number of
shared tasks, such as EXIST (Rodríguez-Sánchez
et al., 2021, 2022; Plaza et al., 2023), AMI (Fersini
et al., 2018, 2022), SemEval-2019 Task 5 (Basile
et al., 2019), and EDOS (Kirk et al., 2023).

For an earlier overview, Shushkevich and Cardiff
(2019) surveyed the detection of misogynistic text,
primarily on Twitter. They focus on approaches
to technical aspects of automatic classification and
performance measured on benchmark datasets. We
are not aware of prior work that situates compu-
tational resources within a cohesive framework
rooted in social science and policy, as we provide.

Stakeholder participation In this review, we fo-
cus on the extent to which stakeholders such as
experts in and victims of GBV are included and
consulted in the production of resources for its iden-
tification. Participatory design has a long history
of being incorporated into projects in the field of

human-computer interaction (e.g Muller and Kuhn,
1993). However, despite a handful of successful
projects (e.g Birhane et al., 2022), the inclusion of
stakeholders in NLP and AI design tends to remain
superficial at best (Delgado et al., 2021).

3 Review methodology

In order to form a comprehensive picture of the
available resources and to conduct a replicable
and transparent review, we follow the systematic
methodology of Moher et al. (2009). The search
protocol is shown in Figure 1, and outlined below.

Figure 1: Flow diagram showing the phases of the se-
lection of research items analysed in this review.

Databases Following a scoping study to establish
coverage of GBV-related publications and datasets,
we searched two databases: the DBLP Computer
Science Bibliography2 and hatespeechdata.com.3

We found that these were sufficient to cover all
papers published at typical NLP venues such as the
ACL Anthology.4

Keyword selection We used the primary search
keywords misogyn*, sexis*, and “gender based vi-
olence”. For DBLP, to capture publications that
concern hate speech and abusive language more
generally, but that include categories relevant to
GBV, we also search using the secondary key-
words hate speech | detection | rhetoric, abuse,

2https://dblp.org/
3https://hatespeechdata.com/
4https://aclanthology.org/
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and abusive | offensive | toxic language | speech,
which we developed from the results of our scop-
ing study. Search using secondary terms is unnec-
essary in hatespeechdata.com, where all included
entries concern hate speech and abusive language.
To filter out irrelevant publications, we then search
within the whole text results for our primary key-
words. We also perform a manual search of hate-
speechdata.com, adding items that describe general
hate speech and abusive or toxic language datasets
which include sexism, misogyny, or gender-based
abuse as categories in their taxonomies. We con-
ducted all searches on April 21st 2023.

Eligibility criteria Table 1 shows the inclusion
and exclusion criteria we applied. Two authors of
this paper read the identified items applying the
criteria, and cross checking agreement.

Include Exclude
Describes a dataset designed
and manually annotated for
text classification of toxic
language, hate speech, or re-
lated phenomena.

Describes a previously re-
leased dataset with no mod-
ifications (e.g. shared task
system paper).

Data is from online sources
such as social media and
website comments.

Data is from other sources
such as scripted TV shows.

GBV specified as target phe-
nomena (e.g. ‘misogyny’,
‘sexism’).

Describes general toxic lan-
guage dataset without fine-
grained GBV concepts.

Table 1: Inclusion/exclusion criteria.

For items found in hatespeechdata.com, we di-
rectly apply the inclusion/exclusion criteria. For
items retrieved from the DBLP, we first automati-
cally select two groups of items for the first round
of eligibility assessment: i) dataset description pa-
pers with keywords ‘dataset’ / ‘corpus’ in the title;
ii) GBV-related papers with primary keywords men-
tioned in the whole text content. We then apply the
criteria to manually check the remaining items.

Summary of included resources Following the
systematic search process, we eventually include
63 relevant items for analysis in the review. These
are shown in Table 2 along with summary statistics
describing the resources. Of these, all but eight
of the described datasets are currently available to
download, while those described by Fersini et al.
(2022) and Zeinert et al. (2021) require sign-up or
email request to obtain access. Due to licensing
and privacy issues, the majority of the resources
sourced from Twitter include only the ID numbers
of posts, which is likely to result in difficulties in

retrieving their contents given elapsed time and
changes in the accessibility of the platform’s API.

Figure 2: Publications per year up to April 2023.

Figure 2 shows the number of GBV detection re-
sources over time, with relevant work first appear-
ing in 2016 and increasing in number until 2022.5

4 Research questions and analysis

With this review, we synthesise information on the
following aspects of the available resources:6

Characterisation of GBV Given the framework
outlined in section 1, we investigate how GBV is
characterised in the resources: what terminology is
used to describe GBV (e.g. ‘sexism’, ‘misogyny’),
how these concepts are theorised, and how GBV
fits into the datasets’ taxonomies. Overall, we find
that use of terminology is confused, and limited
engagement with sociological theory.

We find that a large number of resources (28,
41.8%) name ‘sexism’ as their target phenomena
of interest. The majority of these describe this
only superficially as, for example ‘hate against
women’ (Guellil et al., 2021b) or ‘hate speech in-
cluding sexism’ (Yadav et al., 2023). However, sev-
eral ‘sexism’ resources are grounded—to greater
or lesser extents—in sociological theory. Sharifi-
rad and Jacovi (2019) cite Mills (2008)’ definitions
of sexism, concluding that ‘sexism seems to be a
relatively complex concept which is [not] easy to
define’, while Jha and Mamidi (2017) contrasts
‘benevolent’ and ‘hostile’ forms of sexism as de-
scribed by Glick and Fiske (1997). The most com-
prehensive grounding of sexism in theory is pro-
vided by Samory et al. (2021), who compile a ‘sex-
ism codebook’ based on nearly 30 psychological

5For further statistics and visualisations, see Appendix A.
6Detailed notes on the resources with respect to these

dimensions are provided in the repository at https://
github.com/HWU-NLP/GBV-Resources.git.
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Conceptualisation Avail-
Publication/source reference of target phenomena Media platform Level of analysis Language Size ability

Al-Hassan and Al-Dossari (2022) Sexism as category Twitter Post Arabic 11,000 ✗
Almanea and Poesio (2022) Misogyny, Sexism Twitter Post Arabic 964 ✓
Alsafari et al. (2020) Gender-based hate as category Twitter Post Arabic 5361 ✓
Anzovino et al. (2018) Misogyny Twitter Post English 4,454 ✓
Assenmacher et al. (2021) Sexism Rheinische Post Post German 85,000 ✓
Basile et al. (2019) Women as target Twitter Post English, Spanish 19,600 ✓
Bhattacharya et al. (2020) Misogyny Facebook, Twitter, Post Bangla, English, 25,000+ ✓

YouTube Hindi
Borkan et al. (2019) Gender identity (female, male, Online comment Comment English 450,000 ✓

transgender, non-binary) forums
Bosco et al. (2018) Gender issues as category Facebook, Twitter Post Italian 8,000 ✓
Cercas Curry et al. (2021) Sexism, Dialogue systems, Conversation English 4,185 ✓

Sexual harassment Facebook
Chiril et al. (2021) Sexism Twitter Post French 9,282 ✓
Chiril et al. (2019) Sexism Twitter Post French 3,085 ✗
Chiril et al. (2020) Sexism Twitter Post French 12,000 ✓
Chung and Lin (2021) Sex (gender, sexual orientation, PTT (Taiwanese Post, comment Chinese 1000 posts, ✓

or gender identity) as category bulletin board) 121,344 com.
Das et al. (2022) Gender as target Twitter Post Bengali 10,178 ✓
El Ansari et al. (2020) Discrimination and Violence Twitter Post Arabic 1,690 ✗

Against Women
Fanton et al. (2021) Women as target Semi-synthetic

text
Post English 5,003 ✓

Fersini et al. (2018) Misogyny Twitter Post English, Spanish 8,115 ✓
Fersini et al. (2020) Misogyny Twitter Post Italian 7,961 ✓
Fersini et al. (2022) Misogyny 9GaG, Imgur, Meme English 15,000 ✓

Knowyourmeme,
Reddit, Twitter

García-Díaz et al. (2021) Misogyny, Twitter Post Speanish 7,682 ✓
Violence against Women

Gomez et al. (2020) Sexism Twitter Post English 149,823 ✓
Gong et al. (2021) Gender as target YouTube Comment, sentence English 11,540 ✗
Grosz and Conde-Cespedes (2020) Sexism Twitter, related Post, quote English 1,100+ ✓

quotes collection
Guellil et al. (2021a) Sexism YouTube Comment, reply Arabic 3,798 ✗
Guest et al. (2021) Misogyny Reddit Post (header and body) English 6,567 ✓
Hewitt et al. (2016) Misogyny Twitter Post English 5,500 ✗
Hoefels et al. (2022) Sexism Twitter Romanian 39,245 ✓
Ibrohim and Budi (2019) Gender as category Twitter Post Indonesian 13,169 ✓
Jha and Mamidi (2017) Sexism (benevolent vs hostile) Twitter Post English 712 ✓
Jiang et al. (2022) Sexism Sina Weibo Post, comment Chinese 8,969 ✓
Jeong et al. (2022) Gender & sexual orientation NAVER news, Post Korean 40,429 ✓

as target YouTube
Kennedy et al. (2020) Gender identity as target, Twitter, Reddit, Comment English 39,565 ✓

Sexist speech YouTube
Kennedy et al. (2022) Gender identity as target Gab Post English 27,665 ✓
Kirk et al. (2023) Sexism Gab; Reddit Post, comment English 20,000 ✓
Kumar et al. (2018) Gendered Aggression Facebook, Twitter Post, comment Hindi-English 39,000 ✓
Kwarteng et al. (2022) Misogyny (misogynoir) Twitter Post English 4,532 ✓
Lee et al. (2022) Gender as category Korean news site Comment Korean 109,692 ✓
Leite et al. (2020) Misogyny Twitter Post (Brazilian) Portuguese 21,000 ✓
Lynn et al. (2019) Misogyny Urban Dictionary Post English 2,285 ✓
Mathew et al. (2021) Women as target Twitter, Gab Words, phrases, posts English 20,148 ✓
Mulki and Ghanem (2021) Misogyny Twitter Post Arabic (Levantine) 6,550 ✓
Mollas et al. (2022) Gender as category Reddit, Youtube Post, comment English 1,072 ✓
Moon et al. (2020) Gender bias as category NAVER entertain- Comment Korean 9,381 ✓

ment news
Ousidhoum et al. (2019) Gender as target Twitter Post Arabic, English, 13,000 ✓

French
Petrak and Krenn (2022) Misogyny Austrian news Comment German 6,600 ✗
Plaza et al. (2023) Sexism Twitter, Gab, Post English, spanish 9,400 ✓
de Pelle and Moreira (2017) Sexism Globo (news) Post (Brazilian) Portuguese 1,250 ✓
Rizwan et al. (2020) Sexism Twitter Post Roman Urdu 10,041 ✓
Rodríguez-Sánchez et al. (2020) Sexism Twitter Post Spanish 3,600 ✓
Rodríguez-Sánchez et al. (2021) Sexism Gab, Twitter Post English, Spanish 11,345 ✓
Rodríguez-Sánchez et al. (2022) Sexism Gab, Twitter Post English, Spanish 12,403 ✓
Romim et al. (2022) Gender as category Facebook, TikTok, Post, comment Bangla 50,281 ✓

YouTube
Samory et al. (2021) Sexism Twitter Post English 91 ✓
Sharifirad and Jacovi (2019) Sexism Twitter Post English 3,240 ✓
Sharifirad and Matwin (2019) Sexism Twitter Post English ✓
Strathern and Pfeffer (2022) Misogyny Twitter Post English 266,579 ✓
Talat (2016) Sexism Twitter Post English 4,033 ✓
Talat and Hovy (2016) Sexism Twitter Post English 16,000 ✓
Toosi (2019) Sexism Twitter Post English 31,961 ✓
Vidgen et al. (2021) Gender: women & Gender: Synthetic text Post English 41,255 ✓

minorities as targets
Yadav et al. (2023) Sexism as a category Twitter Post Arabic, English, 497,660 ✗

French, German,
Hindi, Spanish

Zeinert et al. (2021) Misogyny Twitter, Facebook, Post Danish 279,000 ✓
Reddit

Table 2: Summary of included resources for automated identification of GBV-related phenomena.
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scales including Attitudes toward Women (Spence
and Helmreich, 1972), Neosexism (Tougas et al.,
1995), and Gender-Roles Attitudes (García-Cueto
et al., 2015). They also bemoan the ‘lack of defini-
tional clarity’ in prior work on automated sexism
detection.

19 (28.4%) of the resources are constructed with
gender-based abuse as one of several categories
or targets of more general hate speech. These
are variously described as ‘gender bias’ (Moon
et al., 2020), ‘gender issues’ (Bosco et al., 2018),
or to include female, male, transgender, and non-
binary genders (Borkan et al., 2019). The latter
is similar in approach to the eight resources in
which gender is conceived as one of various tar-
gets. Inclusion in gender as a target ranges from
‘women’ (Basile et al., 2019; Fanton et al., 2021;
Mathew et al., 2021); to separation of ‘gender:
women’ from ‘gender: minorities’ (Vidgen et al.,
2021); to ‘women, men, non-binary or third gender,
transgender women, transgender men, transgen-
der (unspecified)’ (Kennedy et al., 2020), the latter
identifying these groups as those protected in U.S.
law.

16 (23.9%) of the resources characterise the tar-
get phenomenon as ‘misogyny’. Almanea and Poe-
sio (2022) ground this only in prior computer sci-
ence literature, describing misogynistic language
as ‘a category which overlap[s] with sexism to-
wards women’. Petrak and Krenn (2022) explicitly
conflate sexism and misogyny, but provide the dis-
claimer that their guidelines ‘are not meant as an
accurate abstract definition’, but rather to assist an-
notators in making judgements. García-Díaz et al.
(2021) delineate online misogyny into several cate-
gories including ‘violence against relevant women’,
where ‘relevant’ signifies known targets of abuse.
Anzovino et al. (2018) and Mulki and Ghanem
(2021) consider language used in ‘cybermisogyny’,
as outlined by Poland (2016). The latter also char-
acterises misogyny as ‘hatred of or contempt for
women’, citing feminist sociology and media stud-
ies (Moloney and Love, 2018) and the U.S. Con-
stitution (Nockleby, 2000). Strathern and Pfeffer
(2022) provide the most comprehensive overview
of misogyny, comparing, among other sources, def-
initions from feminist philosophy (Allen, 2022),
digital media studies (Ostini and Hopkins, 2015),
and gender studies (Megarry, 2014), and devise
a taxonomy based on these as well as computer
science resources.

Despite its widespread adoption in policymak-
ing (see section 1), we do not find any existing
resources rooted in the GBV framework.

Annotators Most datasets for supervised ma-
chine learning are annotated by small numbers of
anonymous crowdworkers (Vidgen and Derczyn-
ski, 2021), biasing the labelled data towards the
opinions, world views, and lived experiences of
those people who happen to work on the crowd-
sourcing platforms. Rottger et al. (2022) describe a
scale of annotation scenarios ranging from highly
prescriptive to descriptive, where the former at-
tempts to induce annotators to follow a defined
schema, while the latter seeks to elicit their indi-
vidual and potentially conflicting points of view.
There is a growing movement to recognise, that
for many tasks, there may be no single ‘ground
truth’, different judgements may be equally valid,
or preservation of minority perspectives should be
facilitated (Abercrombie et al., 2022; Aroyo and
Welty, 2015; Plank, 2022). In the following, We
report on who and how many annotators are repre-
sented, their expert or stakeholder knowledge, the
level of training and/or supervision, and the guide-
lines and instructions with which they work. We
examine these resources through the lenses of data
perspectivism (Cabitza et al., 2023),7 participatory
design (Delgado et al., 2021; Muller et al., 2021)
and design justice (Costanza-Chock, 2020), report-
ing on the extent to which different points of view
are represented and the levels at which stakeholders
are included as participants in decision making.

Due to the psychological harm working with abu-
sive language can cause and its potential to trauma-
tise victims (Kirk et al., 2022; Shmueli et al., 2021),
we also assess the annotator welfare measures re-
portedly taken in constructing these resources.

Overall, we find that engagement with stakehold-
ers is limited, minority annotator perspectives are
usually not preserved, and comprehensive annota-
tor welfare measures are unusual.

Representation: Reporting of who undertook
dataset annotation is patchy, with only nine re-
sources accompanied by a full data statement or
annotator information to a similar degree of de-
tail (Assenmacher et al., 2021; Cercas Curry et al.,
2021; Das et al., 2022; Guest et al., 2021; Ibrohim
and Budi, 2019; Leite et al., 2020; Kirk et al., 2023;

7See also the Perspectivist Data Manifesto: https://
pdai.info/
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Zeinert et al., 2021). From the information that
is provided, we find that 16 (25%) of the datasets
were annotated by crowdworkers, and 19 (30%) by
people at various levels of academia ranging from
the authors and other researchers to undergraduate
students. The term ‘expert’ is used loosely, and
refers variously to Gender Studies students (Cer-
cas Curry et al., 2021; Chiril et al., 2020, 2021),
people the authors provided some form of train-
ing to (Guest et al., 2021), ‘experienced modera-
tors’ (Petrak and Krenn, 2022), or is not explic-
itly defined at all (Rodríguez-Sánchez et al., 2022;
Vidgen et al., 2021). Where we understand the
‘experts’ in question to potentially be stakeholders,
they are described as ‘non-activist feminists’ (Jha
and Mamidi, 2017), ‘feminist and anti-racism ac-
tivists’ Talat (2016), or Gender Studies students.
Only Vidgen et al. (2021) report on whether their
annotators have themselves been victims of online
abuse, and we do not find evidence of the authors
engaging with GBV-focused organisations to en-
sure victims are represented.
Data perspectivism: We find only six datasets
(10%) released with multiple labels preserved (Cer-
cas Curry et al., 2021; Hoefels et al., 2022;
Kennedy et al., 2020; Kirk et al., 2023; Leite et al.,
2020; Talat, 2016), with the others providing only
aggregated labels, hence losing any potentially in-
formative minority judgements.
Annotator welfare: Very few publications re-
port any measures taken to ensure annotator wel-
fare. Those that do follow welfare guidelines by
Kennedy et al. (2020) (Strathern and Pfeffer, 2022);
Vidgen et al. (2019) (Vidgen et al., 2021); the
ACL Code of Ethics (Lee et al., 2022); Kirk et al.
(2022) (Kirk et al., 2023); and Rivers and Lewis
(2014) (Das et al., 2022). Despite the fact that any
research with human subjects (including annota-
tors) requires approval by an Institutional Review
Board (IRB) (particularly when dealing with po-
tentially upsetting material) (Shmueli et al., 2021),
only two papers reports their studies having passed
ethical review (Cercas Curry et al., 2021; Jeong
et al., 2022).

Platforms While GBV is prevalent in all online
spaces, most NLP research tends to collect data
from freely accessible social media sources such as
Twitter and Facebook. We ask: for which platforms
are datasets available, and what is the modality of
the data (i.e. text or multi-modal)? We find that the
resources are very heavily skewed towards textual

data from Twitter.

The majority of GBV resources are sourced from
social media such as Twitter, Reddit, and Gab (a
platform known for its right-wing user base). Twit-
ter is by far the most accessible platform that pro-
vides an API and more lenient policies for gath-
ering and disseminating data, with almost half
of the available datasets (51.8%) being obtained
exclusively or in combination with other sources
from it. Reddit (7.1%) and Gab (7.1%) are also
widely sourced with relatively lax moderation poli-
cies for user-generated content. Other popular plat-
forms for procuring GBV datasets include Youtube
(8.2%), Facebook (5.9%), and news website (7.1%)
And around 34.9% of resources collect data from
mixed sources.

Almost all the resources directly collect user-
generated content online, except for Vidgen et al.
(2021)’s set of human-generated synthetic data that
mimics real-world social media posts, and another
employing a semi-synthetic collection approach by
iteratively refining a generative language model
to create new samples that experts review and/or
post-edit (Fanton et al., 2021). The only multi-
modal datasets are those of Fersini et al. (2022),
who released a set of misogynistic memes, and
Gomez et al. (2020), who collected and labelled
tweets that include text and images for attacks on
different communities including the label ‘sexist’.

Overall, we find no evidence that researchers’
choices of which media platforms to target are
driven by stakeholders’ requirements.

Data sampling A strong motivation for engaging
stakeholders in annotation is that, following stand-
point theory (Harding, 1991), in many cases, those
with relevant lived experience are the only peo-
ple capable of recognising subtle, implicit abuse
such as stereotypes and micro-aggressions. How-
ever, it is recognised that commonly used data sam-
pling techniques do not account for this type of
language, meaning that it is sparsely represented in
datasets (Vidgen and Derczynski, 2021).

Indeed, we find that, where reported, nearly all
the resources (20) have been sampled using key-
word search. Those that have not, were generally
gathered from specific sources known to consist
predominantly of text espousing hateful ideologies
such as Gab (Kennedy et al., 2022; Mathew et al.,
2021; Plaza et al., 2023; Rodríguez-Sánchez et al.,
2022) or particular forums on Reddit (Fersini et al.,
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2022; Guest et al., 2021; Kennedy et al., 2020;
Kirk et al., 2023; Mollas et al., 2022). Alternative
strategies are to collect items on topics that attract
toxic comments (Bhattacharya et al., 2020), items
already flagged by community moderators (Assen-
macher et al., 2021), or those addressed to people
known to be victims of online abuse (Basile et al.,
2019; Fersini et al., 2022; García-Díaz et al., 2021;
Mulki and Ghanem, 2021; Strathern and Pfeffer,
2022; Yadav et al., 2023). Only Lee et al. (2022)
rely on random selection to produce a more real-
istic but sparse data representation, while Zeinert
et al. (2021) explore a range of sampling techniques
in an effort to obtain a balanced representation of
positively labelled (i.e. misogynistic) examples.

Languages As NLP research is heavily skewed
towards English (Bender, 2009; Hovy and Prab-
humoye, 2021), negatively affecting its ability to
benefit diverse communities, we report on the lan-
guages represented in the available resources.

The resources cover a total of 16 languages, the vast
majority of which are Indo-European (49 datasets,
77.8%). Specifically, most available resources are
exclusively in English (26, 41.3%), followed by
Spanish (8, 12.7%), Arabic (8, 12.7%), and French
(5, 7.9%). There are also nine multilingual datasets
covering a variety of languages including Arabic,
French, German, Hindi, Italian, and Spanish, all
of which include English as one of the languages.
Overall, coverage of non-English languages is poor,
with only one dataset even for a language as widely
spoken as Chinese (Jiang et al., 2022).

Temporality While language use evolves, new
societal events occur, and abusers use creative
ways to circumvent content moderation (Talat et al.,
2017), NLP datasets are usually collected over a
specific time frame, limiting the ability of systems
to make correct predictions on new instances (Kiela
et al., 2021). We report on the time frames and
scales over which the datasets were collected and
whether they are static or dynamic.

25 (39.7%) of the datasets do not report collection
dates. Time spans of those that do are presented
in Figure 38. The majority were collected in the
past five years. The variation in the time frames
covered by GBV datasets could be due to a variety
of factors, such as the release of new platforms

8For space, we exclude Lynn et al. (2019) (collected 1999-
2006) and show Samory et al. (2021) (2008-2019) from 2015.

Figure 3: Data time spans. Those labeled a/b are data
subsets from the same resource but different platforms
and periods.

or tools for data collection, the emergence of new
GBV-related topics, and changes in the policy or
accessibility of social media platforms. The fact
that Twitter is the most commonly used platform
for data collection, as previously mentioned in the
analysis of platforms, could be one factor in the
time spans distribution. Twitter’s popularity, user
activity, and high volume of user-generated content
may make it easier for researchers to collect data
over shorter time frames. And the distribution of
time frames is also likely influenced by factors
such as the scope of GBV data and the size of the
datasets.

All but one of the resources are collected on a
static time scale, with only one gathered dynami-
cally in a human-in-the-loop setting (Vidgen et al.,
2021). Current classification systems are com-
monly trained on these static datasets over fixed
time frames, which has negative implications for
their effectiveness, generalisability, and robustness
in identifying instances of GBV in real-time.

5 Discussion and recommendations

This review has uncovered several limitations in
the available resources and the approaches of NLP
researchers towards constructing them. We sum-
marise these and make future recommendations.

177



Conceptualisation With a couple of exceptions
(e.g. Samory et al., 2021; Strathern and Pfeffer,
2022), the phenomena targeted in the reviewed re-
sources are not clearly defined or strongly rooted
in theory or expertise from outside computer sci-
ence. Similar observations have been made for
operationalisation of related concepts, such as bias
and stereotypes (Blodgett et al., 2021), and value
alignment (Irving and Askell, 2019).
Recommendation: Resource creators should collab-
orate with social scientists to ground them in expert
knowledge of the target phenomena. We advocate
for the use of GBV as a framework, which encom-
passes several facets currently operationalised in
different ways by computer science researchers. It
recognises how all forms of online abuse affect
people of every gender both online and off, and has
been widely adopted by policymakers.

Stakeholder participation Parker and Ruths
(2023) propose that computer scientists should:

stop thinking about online hate speech as some-
thing requiring methods, and start thinking
about it as something that demands solutions.
This change — treating hate speech less like a
task and more like the real-world problem it is
— would orient CS research towards the con-
cerns of other stakeholders, and thus begin the
collaborative pursuit toward a safe Internet.

However, we find little evidence of such a paradigm
shift having occurred when it comes to designing
these resources, with stakeholder participation lim-
ited to the recruitment of loosely defined ‘expert’
annotators—where it occurs at all.
Recommendations: Resource development projects
should, as far as possible, strive to include stake-
holders from the outset by including representa-
tives in research teams. Stakeholder participation
should be integrated throughout development, and
is especially important in the design of taxonomies,
guidelines, and at annotation, when judgements
about what constitutes GBV are made. Due to the
risks involved, annotator welfare should be priori-
tised by following guidelines such as those of Kirk
et al. (2022), and IRB approval sought before any
data collection. In documenting resources, authors
should provide full data statements or similar (e.g.
Bender and Friedman, 2018; Díaz et al., 2022), and,
to preserve minority voices, dataset releases should
includenon-aggregated labels (Prabhakaran et al.,
2021).

Data collection Media data for these resources is
not sourced from diverse sources, with the majority
from Twitter, the choice of which does not appear
to be driven by stakeholders. Furthermore, as the
datasets are static in nature, their relevance as ref-
erence sources for automated classification decays
over time; and, due to data sampling methods, pos-
itively labelled (i.e. abusive) examples are skewed
towards the more explicit forms of online GBV.
Recommendation: There is a great need for the de-
velopment of new methods to surface the diversity
of GBV found online. One solution is to create plat-
forms to which victims of abuse and bystanders can
submit examples. This could facilitate creation of
improved resources on many of the limiting dimen-
sions we outline in this review: dynamic datasets
to which new examples are regularly added; stake-
holder participation in data and platform selection
and labelling; and inclusion of implicit and subtle
examples of GBV, as well as multimedia data.

Limitations and ethical considerations

We use a systematic review methodology in or-
der to provide a reproducible and objective snap-
shot of the current research situation. How-
ever, we acknowledge that the choices made
(such as search repositories and eligibility crite-
ria) may not have captured every existing relevant
resource. We aim to regularly update the repository
of GBV resources at https://github.com/
HWU-NLP/GBV-Resources and open it to sub-
missions via push requests in order to provide a
dynamic and comprehensive record.

Following D’Ignazio and Klein (2020), we ac-
knowledge that this research is influenced by the
positionalities of its authors. To situate our per-
spective, we are four Computer Science and one
Social Science academic researchers working in
public institutions in Europe. Three of us identify
as women and two as men, and we are of European
and Asian nationalities. This work forms part of
a project conducted in partnership with charitable
organisations that work on combating GBV and
supporting its victims.

In this paper, we make a number of recommenda-
tions that complicate typical NLP resource creation
workflows, and could have the unintended conse-
quence of dissuading researchers from working on
these problems. However, we appreciate that inter-
disciplinary work is difficult to instigate, organise,
and carry out, and that it is not usually motivated by
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typical academic or industry reward structures. Our
intention is to point out practical ways in which re-
source development can be improved and to encour-
age researchers to move towards more participatory
solutions.
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A Figures of Analysis

We present visualisations of resource statistics in
Figures 4, 5, 6, 7, and 8.

Figure 4: The distribution of GBV dataset sizes.

Figure 5: The distribution of characterisation of GBV.

Figure 6: The distribution of platforms for GBV data
collection.

Figure 7: Number of GBV datasets across languages, in-
cluding numbers if the language in multilingual datasets.
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Figure 8: The distribution of time spans in GBV re-
sources, excluding resources that are not reported col-
lection time.
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