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Abstract

For sensible progress in natural language pro-
cessing, it is important that we are aware of
the limitations of the evaluation metrics we
use. In this work, we evaluate how robust
metrics are to non-standardized dialects, i.e.
spelling differences in language varieties that
do not have a standard orthography. To in-
vestigate this, we collect a dataset of human
translations and human judgments for auto-
matic machine translations from English to two
Swiss German dialects. We further create a
challenge set for dialect variation and bench-
mark existing metrics’ performances. Our re-
sults show that existing metrics cannot reliably
evaluate Swiss German text generation outputs,
especially on segment level. We propose ini-
tial design adaptations that increase robustness
in the face of non-standardized dialects, al-
though there remains much room for further
improvement. The dataset, code, and mod-
els are available here: https://github.com/
textshuttle/dialect_eval

1 Introduction

As multilingual NLP models include more and
more languages, the community’s focus on low-
resource languages has also grown. This not only
includes languages for which we have “little data”
but also language varieties and dialects which often
pose additional challenges, especially if they do not
have a standardized orthography. Recent work has
shown some progress in classification tasks (e.g.
Wang et al., 2021; Touileb and Barnes, 2021; Aepli
and Sennrich, 2022) as well as generation tasks
where such language varieties appear on the input
side only (e.g. Zbib et al., 2012; Honnet et al., 2018;
Alam et al., 2023). For these scenarios, we can use
established evaluation schemes. However, for re-
search towards NLP models generating language
varieties, Sun et al. (2023) have shown that current
evaluation metrics are not robust to translations
into different dialects.

GSW ... ufere Webs ii te aa glueg e t w ä rd e .
GSW ... ufere Webs i te ah gluegt w e rd ä .
de ... auf einer Webseite angeschaut werden.
en ... viewed on a website.

Figure 1: Example sentence that shows the extent of
spelling variability in language varieties, here Swiss
German dialect (GSW), with German (de) and English
(en) translations.

What their evaluation does not consider is that
language varieties often lack a standardized orthog-
raphy and do not adhere to consistent spelling rules.
This implies that even within a single dialect, no-
table orthographic variations can be observed, as
illustrated in the Swiss German example in Figure
1. The same utterance with a similar but different
spelling would result in a high word error rate of 3

4 .
Many languages have multiple regional vari-

ants, such as Spanish (Mexican, Argentinean,
etc.), French (Canadian, Belgian, etc.), or En-
glish (British, American, Australian, Indian, etc.),
among others. Such language varieties exhibit
various lexical, grammatical, and orthographical
distinctions. Importantly, these differences are
standardized, meaning that they adhere to specific
spelling rules and conventions, albeit with varia-
tions specific to each variant. This suggests that if
a neural metric is exposed to a sufficient amount
of data encompassing various language varieties, it
should be able to develop similar representations
and provide comparable scores for a given sentence
in different varieties. Sun et al. (2023) show that
pre-training a metric on data from multiple dialects
indeed makes metrics more inter-dialect robust.

However, for a substantial number of languages
and language varieties, there exists no established
standard orthography. Many regions exhibit a di-
alect continuum where language varieties lack pre-
cise boundaries, and each dialect displays a signifi-
cant range of diversity within itself. Furthermore,
when speakers write in their dialect, they follow

https://github.com/textshuttle/dialect_eval
https://github.com/textshuttle/dialect_eval
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their individual writing styles. Such kinds of vari-
abilities, as can be observed in the example in Fig-
ure 1, are much less consistent and localized and
will differ significantly between different writers.
A metric designed to handle these kinds of varieties
must be capable of addressing frequent spelling dif-
ferences, which is considerably more challenging
to learn solely from data compared to the standard-
ized language variation differences mentioned in
the previous paragraph.

In recent years, embedding-based metrics have
gained increasing popularity (Sellam et al., 2020;
Rei et al., 2020a) which – in theory – could be
more appropriate for assessing non-standardized
language varieties than string-based MT metrics
like BLEU (Papineni et al., 2002) or chrF (Popović,
2015). However, these neural metrics are often not
trained on the language varieties in question. Addi-
tionally, recent work showed that reference-based
learned metrics still rely too much on subword
overlap with the reference (Hanna and Bojar, 2021;
Amrhein et al., 2022).

In this work, we follow Sun et al. (2023) and an-
alyze the dialect robustness of machine translation
metrics but specifically focus on non-standardized
language varieties that were not seen during pre-
training. Our contributions are:

• We collect a new dataset and design a chal-
lenge set for evaluating MT metrics on two
Swiss German dialects.

• We benchmark existing string-based and neu-
ral metrics on our dataset and find that they
are not reliable, especially on segment level.

• We propose initial adaptations to make metrics
more robust for Swiss German but find that
there is still a lot of room for improvement.

2 Related Work

There is a substantial amount of research on MT
into language varieties (Scherrer, 2011b; Had-
dow et al., 2013; Fancellu et al., 2014; Hassani,
2017; Costa-jussà et al., 2018; Lakew et al., 2018;
Myint Oo et al., 2019; Wan et al., 2020; Garcia
and Firat, 2022). Most of these works exclusively
evaluate with surface-level metrics like BLEU (Pa-
pineni et al., 2002) but some voice their concerns
over a lack of reliable evaluation metrics (Kumar
et al., 2021; Bapna et al., 2022).

Sun et al. (2023) confirm that existing machine
translation evaluation metrics are not dialect-robust.

They show that it is possible to train more robust
metrics by including a language and dialect identifi-
cation task in a second language model pre-training
phase. While they focus on inter-dialect robust-
ness between well-defined dialects, i.e. Brazilian
and Iberian Portuguese, our study focuses on a
setting where dialects lack standardized orthogra-
phy. This absence of standardization introduces
additional variability, resulting in distinct chal-
lenges and necessitating different solutions for MT
systems, which need to generalize to often lim-
ited data; MT metrics, which need to be robust
to spelling differences; and also meta-evaluation,
which has its own challenges when collecting hu-
man assessments for dialects without standardized
orthography as we outline in Section 3.1. To in-
vestigate how reliable MT metrics are for non-
standardized varieties, we collect a new dataset
with human translations and human judgments for
MT outputs from English to two Swiss German
dialects.

While other works also evaluate MT metrics on
language varieties and dialects, Sun et al. (2023) is
closest to our work: Alam et al. (2023) only look at
language varieties on the source side and Riley et al.
(2023) only evaluate language varieties for which
a standard was included in the language model pre-
training. Both studies also conclude that existing
metrics are not robust to dialects. Riley et al. (2023)
further propose a new automated lexical accuracy
metric based on term dictionaries, similar to met-
rics used for automatic speech recognition (ASR)
(Ali et al., 2017; Nigmatulina et al., 2020) which
allow for more flexible string matching by using a
look-up table of acceptable spellings. Riley et al.’s
approach may work well if there is a limited set of
term differences between dialects. However, such
a metric is difficult to employ for language vari-
eties without standardized spelling rules. Instead,
we experiment with increasing dialect robustness
by introducing character-level noise during met-
ric training which has been shown to be useful for
cross-lingual transfer to language varieties with-
out standardized orthography (Aepli and Sennrich,
2022; Srivastava and Chiang, 2023; Blaschke et al.,
2023).

3 Evaluation Data for Swiss German
Dialects

While we focus on Swiss German because there
are enough different MT systems that can be eval-
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uated, Swiss German is by no means the only lan-
guage where its varieties do not have standard-
ized spelling. Many medium to high-resource lan-
guages like Arabic (Darwish et al., 2021) or Italian
(Ramponi, 2022) include dialectal varieties that
lack a standardized orthography. Additionally, this
phenomenon extends to numerous low-resource
settings (Bird, 2022), encompassing a wide array
of language varieties across Africa (Adebara and
Abdul-Mageed, 2022), Asia (Roark et al., 2020;
Aji et al., 2022), Oceania (Solano et al., 2018) and
the Americas (Littell et al., 2018; Mager et al.,
2018). Historically, even many language varieties
that now have a standardized orthography did not
always have one, including English (Scragg, 1974).
This makes our work on robust metrics for non-
standardized dialects also relevant for NLP for his-
torical texts.

To measure robustness against non-standardized
dialects, we design two new datasets. With the first,
we investigate how metrics behave in a realistic
setup where we compare them against human judg-
ments. The second is a challenge set that allows
us to investigate score changes between different
spellings and compare them to score changes when
meaning is changed. This is inspired by similar
experiments in Sun et al. (2023).

3.1 Human Judgement Data

In order to realistically evaluate machine transla-
tion metrics on Swiss German dialects, it is essen-
tial to obtain human-translated reference segments
and human judgments for machine-translated trans-
lation hypotheses. Since no such data exists for
Swiss German, we compile our dataset based on
the English NTREX-128 data1 (Federmann et al.,
2022). We selected this dataset because it origi-
nates from a standard test set2, already contains
human translations into 128 languages including
some regional variants, has a permissive license3

and offers document context which is important for
collecting reliable human judgments (Läubli et al.,
2018; Toral et al., 2018).

Human reference translations: For the refer-
ence translations, we provided two Swiss German
translators with the English NTREX-128 source
data (i.e. 1997 sentences from 123 documents).

1https://github.com/MicrosoftTranslator/NTREX
2newstest2019 from the 2019 news translation shared

task at WMT (Barrault et al., 2019)
3Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Translators saw sentences in document context and
were asked to translate them into their respective na-
tive dialects (i.e. Bern and Zurich region). We pro-
vided translators with simple instructions where we
stated that they must not post-edit machine transla-
tion outputs to translate the texts.

Human judgment scores: The hypotheses come
from ten machine translation systems translating
from English to Bern dialect and ten systems trans-
lating from English to Zurich dialect. For each
dialect, we include nine neural MT systems in our
rating setup and one rule-based system.

The neural models are provided by Textshuttle.
They are based on a standard Transformer architec-
ture (Vaswani et al., 2017) trained using different
amounts of data, making use of data augmenta-
tion techniques like backtranslation (Sennrich et al.,
2016). Some of the systems use German as a pivot
language. In collaboration with Textshuttle, we de-
cided to evaluate models for which they expect no-
ticeable translation differences and not to compare
the nine models that they think would perform the
best. The rule-based system works by morphosyn-
tactically analyzing the standard German NTREX-
128 translation of the English source and then se-
quentially applying a set of dialect-specific rewrit-
ing rules to generate Swiss German output. The
system is described in detail in Scherrer (2011a).
The system version used for this task operates word
by word without taking syntax into account. No-
tably, this means that past tense and genitive forms
produce unpredictable output because they would
require larger changes in the sentence structure.

We translated the English NTREX-128 source
data with each neural system and the German
NTREX-128 translation with the rule-based sys-
tems and let native dialect speakers rate the outputs
via Appraise4 (Federmann, 2018), a framework
for the evaluation of machine translation outputs.
Raters only had access to the source for context
because providing the reference could incentivize
raters to “quickly compare the surface forms of
translation against reference without understanding”
(Freitag et al., 2022). Note that in order to mitigate
dialect preference biases as documented by Riley
et al. (2023) and Abu Farha and Magdy (2022),
the translators and raters were all native speakers
of the dialect they were asked to rate or translate
into. We collected continuous Direct Assessment
(DA) scores (Graham et al., 2013) where the slider

4https://github.com/AppraiseDev/Appraise

https://github.com/MicrosoftTranslator/NTREX
https://github.com/AppraiseDev/Appraise
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presented to the raters was annotated with Scalar
Quality Metric (SQM) labels which increases the
rating stability across annotators (Kocmi et al.,
2022). Raters viewed segments in a document con-
text and rated translations on the segment level as
well as the document level. The document-level
ratings are collected to enable future research on
document-level metrics; in this study, we only fo-
cus on segment-level ratings.

Ideally, we would recruit professional transla-
tors for both the translation and the rating tasks.
However, there exist no professional translators
for Swiss German. Instead, we recruited transla-
tors and annotators from a pool of reliable candi-
dates who already worked on similar Swiss German
projects. To ensure the quality of the ratings we col-
lect, we included control segments as implemented
in Appraise. Based on this control, no raters needed
to be excluded.

As Swiss German constitutes a dialect contin-
uum, its various variations lack precise boundaries,
and each dialect displays a significant range of
diversity within itself. Consequently, during the
recruitment process, we placed our trust in the an-
notators’ self-identification of their native dialects.
Furthermore, it is worth noting that all our contrib-
utors, comprising six women and five men, belong
to younger generations, with raters ranging in age
from 23 to 30, and translators aged 35 to 40, re-
spectively. This age factor has an impact on their
dialect. All translators and annotators were paid 30
CHF per hour for their work.

3.2 Challenge Set

As an additional evaluation, we compile a chal-
lenge set to directly pinpoint how robust metrics
are to dialect variability. In the creation of this chal-
lenge set, we draw inspiration from the work of Sun
et al. (2023), who propose measuring inter-dialect
robustness by comparing metric scores between
two language varieties and between one variety
and a version with significant meaning changes. If
segment pairs of the latter type are judged more or
equally similar by a metric than those of the two
varieties, Sun et al. (2023) argue the metric is not
dialect-robust.

We build our challenge set from the collected
data presented in the previous section. We filter
for all MT hypotheses that humans rated as perfect
(i.e. received a score of 100). If more than one
unique hypothesis exists for a segment, we create

all combinations of these hypotheses. For example,
if four different machine translation outputs for the
same source all receive a perfect human rating,
this results in six pairs of semantically equivalent
translation hypotheses that feature orthographic
differences. For each pair, we then manually create
a modified version of one of the hypotheses to
change its meaning. Following Sun et al. (2023),
we consider deletion, insertion, and substitution
operations for introducing meaning changes
which we randomly assign to each hypothesis
pair. All changes are made either to a single word
or if necessary a whole phrase. This process
results in hypothesis triples as seen in this example:

A: S e chs Mitarbeiter s i wäg e Verletzige behandlet worde.
B: S ä chs Mitarbeiter s y wäg Verletzige behandlet worde.

Six members of staff have been treated for injuries.

C: Sechs Mitarbeiter si wäge Verletzige beschtraft worde.

Six members of staff were punished because of injuries.

Hypotheses A and B are semantically equivalent
but exhibit spelling differences. Hypothesis C is
very similar to hypothesis A on the surface level but
differs significantly in meaning. During evaluation,
metrics will have access to one of these hypotheses,
as well as the reference and/or the source (depend-
ing on whether it is a reference-free or reference-
based metric). We describe how we compare the
different scores for these hypotheses in Section 4.3.

4 Experiment Setup

4.1 Benchmarking Existing Metrics

To document the performance of current MT met-
rics on dialects without a standard orthography, we
evaluate the following metrics:

• BLEU5 (Papineni et al., 2002), a string-based
metric with a brevity penalty that calculates
the word-level n-gram precision between a
translation and one or multiple references.

• chrF++6 (Popović, 2017), another string-
based metric that provides a character n-gram,
word unigram, and bigram F-score by com-
puting overlaps between the hypothesis and
reference translation.

5computed with SacreBLEU (Post, 2018), signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.0.

6computed with SacreBLEU (Post, 2018), signature:
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.0.

https: //github.com/mjpost/sacrebleu/
https: //github.com/mjpost/sacrebleu/
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We expect surface-level, string-based metrics to
perform badly on dialects without standard spelling
rules as they are entirely based on overlap with a
reference translation. These are also the metrics
used by most works that explored text generation
for language varieties without standardized orthog-
raphy (e.g. Jeblee et al., 2014; Meftouh et al., 2015;
Kumar et al., 2021). We further benchmark the
following neural metrics:

• COMET-207 (Rei et al., 2020b) and
COMET-228 (Rei et al., 2022), two reference-
based neural metrics built on the COMET
framework (Rei et al., 2020a). These are
trained neural metrics that are built on top of a
large, pre-trained language model and are fine-
tuned on human judgment data from previous
metric evaluation campaigns. COMET-20 is
fine-tuned to predict DA scores. COMET-22
is an ensemble between a COMET-20-like
model and a multi-task model that predicts
segment-level Multidimensional Quality Met-
ric (MQM) scores (Uszkoreit and Lommel,
2013) as well as word-level error tags.

• COMET-20-QE9 (Rei et al., 2020b) and
COMET-Kiwi10 (Rei et al., 2022), two
reference-free neural metrics for quality esti-
mation. COMET-20-QE is trained similarly to
COMET-20 and COMET-KIWI to COMET-
22, but both versions do not have access to
the reference during training on human judg-
ments.

While these metrics go beyond surface-level
comparisons to the reference due to their hidden
representations and embedding-based nature, we
expect that they still struggle to reliably evaluate
translations into Swiss German for several reasons:
First, no Swiss German data was included for pre-
training the language model (XLM-R; Conneau
et al., 2019) that is used as the basis for training
COMET. Second, neural metrics are often fine-
tuned on Standard German data which shares many
similar words with Swiss German and could falsely
bias metrics towards Standard German spelling.
Third, reference-based metrics have been shown
to still be influenced by surface overlap with the
reference (Hanna and Bojar, 2021; Amrhein et al.,

7wmt20-comet-da
8wmt22-comet-da
9wmt20-comet-qe-da

10wmt22-cometkiwi-da

2022) which is a disadvantage in situations where
numerous spelling variations exist.

4.2 Developing Dialect-Robust Metrics
Similar to Sun et al. (2023), we also experiment
with training more robust metrics but we focus on
robustness against non-standardized dialects rather
than inter-dialect robustness. The following list
summarizes our metrics:

• COMET-REF and COMET-QE, a baseline
trained as a reference to compare our modi-
fications to because our COMET models dif-
fer slightly from COMET-20 and COMET-22
(see details below).

• +gsw, same as the baseline but the pre-trained
model is fine-tuned on Swiss German data
before the COMET models are fine-tuned on
human judgment data. This is similar to the
second pre-training phase for the inter-dialect-
robust metric proposed in Sun et al. (2023).
However, we do not include the additional
language and dialect identification task during
continued pre-training as we do not have di-
alect labels for the Swiss German pre-training
data.

• +noise, same as the baseline but during the
fine-tuning process on human judgment data
we introduce character-level noise. This is in-
spired by previous work that showed that this
method allows for better cross-lingual trans-
fer to closely related languages (Aepli and
Sennrich, 2022; Srivastava and Chiang, 2023).
Blaschke et al. (2023) hypothesize that inject-
ing noise into standard language data results
in a similar tokenization rate as for unseen
dialects. We apply noise injection to all lan-
guages within the COMET fine-tuning dataset
that have an alphabetic writing system, there-
fore excluding languages like Chinese which
were not considered in the original work intro-
ducing character-level noise. Following Aepli
and Sennrich (2022), we inject character-level
noise (essentially typos) into a random selec-
tion of 15% of the tokens within each sen-
tence. Specifically, we alter, delete, or add
one character per chosen token. We execute
this process using the characters specific to
the relevant language, taking into account all
characters that occur more than 1,000 times
in the respective dataset. We apply this noise

https://huggingface.co/Unbabel/wmt20-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt20-comet-qe-da
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
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injection to all segments, including the source,
translation, and reference segments.

We provide details of how we trained those mod-
els here:

Continued pre-training of XLM-R To expose
our models to Swiss German data, we modify the
encoder model upon which COMET models are
usually based: XLM-RoBERTa11 (Conneau et al.,
2019). We continue the training of the XLM-R
model on SwissCrawl12 (Linder et al., 2020), a
corpus containing 500K dialect sentences crawled
from the web in late 2019. For the continued pre-
training, we work with the Huggingface Transform-
ers library13 (Wolf et al., 2020), following the de-
fault configurations for language model fine-tuning
which involves a training duration of three epochs.

Training COMET models We train COMET
models using the official code base14 with the de-
fault settings from version 2.0.2. We use the “re-
gression model” configuration for the reference-
based models and the “referenceless model” config-
uration for the reference-free models. Our models
are trained on the direct assessment data collected
by the organizers of the WMT news translation task
spanning the years 2017 to 2021 (2021 as dev set)15

(Bojar et al., 2017, 2018; Barrault et al., 2019, 2020;
Akhbardeh et al., 2021). It is important to highlight
that our models are not directly comparable to the
original WMT shared task COMET models, for
which the 2020 models were exclusively trained on
data from 2017-2019 and the 2022 models used a
different configuration.

4.3 Evaluation

We evaluate our metrics in five different ways. For
the human judgment data, we compute two scores
on system (sys) and two on segment (seg) level
using the reference implementation from the WMT
metrics shared task16 (Freitag et al., 2022), except
for success rate where we use our own implemen-
tation.

11xlm-roberta-base
12swisscrawl
13https://github.com/huggingface/transformers
14https://github.com/Unbabel/COMET
15https://github.com/Unbabel/COMET/tree/master/

data
16https://github.com/google-research/

mt-metrics-eval

System level The pairwise accuracy as defined
by Kocmi et al. (2021), measures the accuracy with
which a metric agrees with human preference be-
tween pairs of systems where the human ratings
are significantly different according to a two-sided
Wilcoxon test. Note that the score difference be-
tween the two systems is not important in this anal-
ysis. Furthermore, we provide results for the sys-
level Pearson correlation, quantifying the strength
of the linear relationship between metrics and hu-
man judgment scores for systems.

Segment level At the segment level, our evalua-
tion includes the seg-level accuracy with an opti-
mized tie threshold, which resembles a global ac-
curacy but also acknowledges metrics for correctly
predicting tied human judgment scores (Deutsch
et al., 2023). Further, we present the seg-level
Kendall correlation, akin to pairwise accuracy but
employing a distinct normalization technique.

Challenge set For the challenge set, we compute
the success rate (seg level) following Sun et al.
(2023). This measures the accuracy with which a
metric assigns more similar scores (s) to two equiv-
alent translations A and B compared to a version
with a semantic change C. Consequently, a metric
is considered robust to non-standardized dialects
for a segment if the score difference between sA
and sB is smaller than the score difference between
sC and either sA or sB (depending on which score
is smaller):

|sA − sB| < min(sA, sB)− sC (1)

5 Results

Table 1 provides a comprehensive summary of
our results with scores for existing metrics (top),
COMET models trained for this work (bottom),
system-level evaluations (left), and segment-level
evaluations (right). Additional results can be found
in the appendices. Appendix A.1 contains results
related to the incorporation of additional languages
in the pre-training process, Appendix B presents
an evaluation of performance on an official WMT
benchmark, and Appendix C presents pairwise ac-
curacy plots for our metrics.

Existing vs. GSW metrics As expected, the
surface-level metrics perform worse than trained
metrics in almost all evaluations. Our baseline
metrics often perform a bit worse than the exist-
ing COMET metrics, this is particularly true for

https://huggingface.co/xlm-roberta-base
https://icosys.ch/swisscrawl
https://github.com/huggingface/transformers
https://github.com/Unbabel/COMET
https://github.com/Unbabel/COMET/tree/master/data
https://github.com/Unbabel/COMET/tree/master/data
https://github.com/google-research/mt-metrics-eval
https://github.com/google-research/mt-metrics-eval
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system-level segment-level

pairwise Pearson tie-optim. Kendall success
accuracy correlation accuracy correlation rate

BE ZH BE ZH BE ZH BE ZH
BLEU 0.740 0.728 0.587 0.544 0.560 0.142 0.163 0.135 0.194

chrF 0.753 0.806 0.665 0.486 0.478 0.076 0.079 0.121 0.145
COMET-20 0.766 0.849 0.816 0.565 0.583 0.205 0.227 0.250 0.298
COMET-22 0.766 0.897 0.901 0.570 0.587 0.184 0.212 0.243 0.306

COMET-20-QE 0.675 0.875 0.872 0.508 0.516 0.134 0.134 0.131 0.161
COMET-KIWI 0.636 0.952 0.876 0.536 0.533 0.146 0.142 0.240 0.290

COMET-REF 0.740 0.864 0.793 0.567 0.570 0.180 0.194 0.221 0.234
+ gsw 0.792 0.906 0.862 0.611 0.627 0.286 0.317 0.320 0.347

+ noise 0.727 0.940 0.903 0.561 0.567 0.223 0.233 0.237 0.290
+ gsw + noise 0.792 0.917 0.868 0.597 0.621 0.271 0.304 0.287 0.323

COMET-QE-KIWI 0.636 0.781 0.689 0.486 0.507 0.104 0.099 0.127 0.145
+ gsw 0.844 0.978 0.987 0.595 0.587 0.257 0.283 0.292 0.298

+ noise 0.675 0.915 0.817 0.524 0.528 0.154 0.158 0.149 0.177
+ gsw + noise 0.896 0.968 0.981 0.582 0.596 0.246 0.269 0.273 0.274

Table 1: Results for the baselines metrics (above) and our trained metrics (below) on system level (left) and segment
level (right). Darker shades indicate lower scores. Bold denotes statistically significant improvement compared
to their respective baselines COMET-REF or COMET-QE-KIWI. There is no information about significance for
tie-optim. accuracy (columns 4-5) and success rate (columns 8-9). Note that BE and ZH represent the abbreviations
for the two Swiss German (GSW) dialect regions under consideration.

our reference-free model. However, continued pre-
training on Swiss German data improves their per-
formance considerably and they strongly outper-
form existing metrics. This highlights the impor-
tance of the model to have seen the target language
(variety) during the language model pre-training. It
also shows that metrics can be extended to include
new languages and language varieties with limited
effort although this impacts their performance on
other language pairs as we show in Appendix B.
Continued pre-training on multiple languages and
language varieties can mitigate this effect (see Ap-
pendix A.1).

Noise injection While continued LM pre-
training on Swiss German data generally outper-
forms noise injection during task fine-tuning, we
still see gains over the baselines. This suggests
that metrics that were trained on noised data are
more robust to unseen language (varieties) and may
be a good strategy for language (varieties) without
sufficient data for continued pre-training. Combin-
ing both continued pre-training and noise injection
generally does not lead to further improvements.

Reference-based vs reference-free While both
types of metrics perform similarly with contin-
ued pre-training on Swiss German, both existing
reference-free metrics perform worse than the ex-
isting reference-based metrics in the segment-level
evaluations. Since these metrics did not see any
Swiss German during the pre-training phase, hav-
ing access to the reference as an anchor might help
the reference-based metrics for unseen languages.
Amrhein et al. (2022) reported a similar finding
where the reference acted as an anchor when met-
rics were used to identify copied source sentences.

Challenge set The success rate for all metrics
is extremely low. Metrics assign more similar
scores to a hypothesis with a semantic change
than to a different translation hypothesis in the
majority of cases. Again, continued pre-training
on Swiss German results in the best metric
performance. However, even these scores are
lower than a random success rate of 50% by
far. Our findings highlight that even though
system-level correlations may seem convincing,
none of the metrics studied in this work are robust
to non-standardized dialect variations.
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Since our results show that there is still signifi-
cant room for improvement toward metric robust-
ness to non-standardized language varieties, we
provide suggestions for future work.

6 Open Questions

We hope that our benchmark inspires more work on
robust evaluation metrics for language varieties in
the future. In this section, we list several directions
we think are worthwhile exploring:

Expanding the benchmark: We were not able to
include additional language varieties in our bench-
mark at the time because we could not find enough
different machine translation systems that trans-
late into these varieties. While we recognize that
without reliable metrics this is a “chicken-and-egg”
problem, we still advocate for more MT research
that focuses on translating into language varieties.
Expanding our benchmark would not only allow us
to draw more general conclusions but would also
help with sample size for the pairwise accuracy
analysis (Kocmi et al., 2021) since we find that a
large number of systems are required for confident
results.

More focus on segment level: Segment-level
metric scores tend to be much less correlated with
human judgments when contrasted with system-
level correlations (Freitag et al., 2022) and have
also been shown to be unreliable in downstream
tasks (Moghe et al., 2023). We hope that future
work aimed at enhancing metric performance on
our challenge set will also contribute to greater
metric reliability on segment level in general, as
over-reliance on reference overlap is also a problem
for languages with standardized spelling (Hanna
and Bojar, 2021; Amrhein et al., 2022).

Training neural metrics that model character-
level similarities: A segment in a dialect often
resembles a reference in certain characters only
rather than in full words (see Figure 1 as an exam-
ple). As the underlying language models of neural
evaluation metrics use a fixed tokenization scheme
that was learned on text that likely does not include
many examples of language varieties, these simi-
larities might be hard to account for by the neural
metric. Thus, we believe that character-based lan-
guage models, such as Canine (Clark et al., 2022),
could provide a better basis for neural evaluation
metrics to model character-level similarities.

7 Conclusion

We evaluated the reliability of machine translation
metrics when evaluating dialects without standard
orthographies. As part of this work, we collected a
new dataset consisting of human translations, hu-
man judgments, and a challenge set from English to
two Swiss German dialects. We benchmark several
existing metrics and find that they are not robust
to variation featured by non-standardized dialects.
Based on this finding, we explore several modifi-
cations that allow us to train metrics that are more
robust towards spelling variation. Our results show
that there is still a lot of room for improvement and
we offer a set of recommendations for future work
on dialect robust metrics.

Limitations

The goal of this work is to evaluate and develop
machine translation metrics that take into account
the spelling variability of dialects and languages
without established writing norms. We recognize
that evaluating metrics on varieties from different
languages would help generalize our results. How-
ever, we were not able to find enough differing
machine translation systems that translate into the
same language variety for other languages. There-
fore, we had to limit this study to two Swiss Ger-
man dialects. We hope to include further language
varieties in our benchmark in the future (when such
machine translation systems become available) to
encourage research toward metrics that are reliable
for many non-standardized language varieties.

We did our best to avoid dialectal preference bias
within our annotators by selecting only annotators
who consider themselves native speakers of the
respective dialect. However, as Swiss German is a
dialect continuum, this can only be controlled to a
certain degree.

Ethics Statement

This work includes the compilation of a new dataset
as a test set for evaluating various machine trans-
lation metrics. All translators and annotators were
compensated at a rate of 30 CHF per hour. Our
dataset is based on a publicly available dataset and
will be released under the same license for future
use. Intended use: The dataset and the models
resulting from this work are intended to be used
by the research community to evaluate machine
translation metrics.
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In Proceedings of the Australasian Language Tech-
nology Association Workshop 2018, pages 26–33,
Dunedin, New Zealand.

Aarohi Srivastava and David Chiang. 2023. Fine-tuning
BERT with character-level noise for zero-shot trans-
fer to dialects and closely-related languages. In
Tenth Workshop on NLP for Similar Languages, Va-
rieties and Dialects (VarDial 2023), pages 152–162,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Jiao Sun, Thibault Sellam, Elizabeth Clark, Tu Vu, Tim-
othy Dozat, Dan Garrette, Aditya Siddhant, Jacob
Eisenstein, and Sebastian Gehrmann. 2023. Dialect-
robust evaluation of generated text. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6010–6028, Toronto, Canada. Association for
Computational Linguistics.

Antonio Toral, Sheila Castilho, Ke Hu, and Andy Way.
2018. Attaining the unattainable? reassessing claims
of human parity in neural machine translation. In Pro-
ceedings of the Third Conference on Machine Trans-
lation: Research Papers, pages 113–123, Brussels,
Belgium. Association for Computational Linguistics.

Samia Touileb and Jeremy Barnes. 2021. The interplay
between language similarity and script on a novel
multi-layer Algerian dialect corpus. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3700–3712, Online. Association
for Computational Linguistics.

Hans Uszkoreit and Arle Lommel. 2013. Multidimen-
sional quality metrics: A new unified paradigm for
human and machine translation quality assessment.
Localization World, London, pages 12–14.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://arxiv.org/abs/2209.09757
http://arxiv.org/abs/2209.09757
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://aclanthology.org/2020.wmt-1.101
https://aclanthology.org/2020.wmt-1.101
https://doi.org/10.1162/tacl_a_00568
https://doi.org/10.1162/tacl_a_00568
https://aclanthology.org/2020.lrec-1.294
https://aclanthology.org/2020.lrec-1.294
https://aclanthology.org/W11-2604
https://aclanthology.org/W11-2604
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://aclanthology.org/U18-1003
https://aclanthology.org/U18-1003
https://aclanthology.org/2023.vardial-1.16
https://aclanthology.org/2023.vardial-1.16
https://aclanthology.org/2023.vardial-1.16
https://doi.org/10.18653/v1/2023.acl-long.331
https://doi.org/10.18653/v1/2023.acl-long.331
https://doi.org/10.18653/v1/W18-6312
https://doi.org/10.18653/v1/W18-6312
https://doi.org/10.18653/v1/2021.findings-acl.324
https://doi.org/10.18653/v1/2021.findings-acl.324
https://doi.org/10.18653/v1/2021.findings-acl.324
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


1057

Yu Wan, Baosong Yang, Derek F. Wong, Lidia S. Chao,
Haihua Du, and Ben C.H. Ao. 2020. Unsupervised
neural dialect translation with commonality and diver-
sity modeling. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):9130–9137.

Xinyi Wang, Yulia Tsvetkov, Sebastian Ruder, and Gra-
ham Neubig. 2021. Efficient test time adapter en-
sembling for low-resource language varieties. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 730–737, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet:
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
4003–4012, Marseille, France. European Language
Resources Association.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Rabih Zbib, Erika Malchiodi, Jacob Devlin, David Stal-
lard, Spyros Matsoukas, Richard Schwartz, John
Makhoul, Omar F. Zaidan, and Chris Callison-Burch.
2012. Machine translation of Arabic dialects. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
49–59, Montréal, Canada. Association for Computa-
tional Linguistics.

A Appendix

A.1 Mixed Continued Pre-training

In our main experiments in Section 5, we evalu-
ate continued language model pre-training only on
Swiss German data. While this increases the per-
formance on our benchmark, it remains unclear
whether this leads to a “specialized” metric that
does not perform well on other language pairs.
We will evaluate this in the next section, but first,
we introduce a set of contrastive models that are
less specialized to Swiss German. Continued pre-
training for contrastive models involves incorpo-
rating mixed data from five languages apart from
Swiss German, namely: German (de), English (en),
French (fr), Hindi (hi), and Chinese (zh). We train
one metric based on XLM-R with continued pre-
training only on these five languages (“5 langs”),
and another one where we also add GSW to the
training data (“6 langs”). For both settings, we
also test character-level noise in the COMET fine-
tuning step, as described in Section 4.2. The data
for the five additional languages is sourced from the
CC-100 corpus17 (Wenzek et al., 2020), which is a
reconstructed version of XLM-R’s training dataset.
Specifically, we utilize the first 100,000 sentences
from the training data of each language.

Table 2 shows the results we obtained from in-
corporating mixed data into the continued LM pre-
training. We see a similar effect as when continuing
the pre-training only on GSW in the main results
in Section 5. The performance of the metrics in-
creases in all evaluations. Comparing these results
to the metric where we only continued pre-training
on Swiss German (+6 langs vs. +gsw ), the results
are comparable and often not significantly differ-
ent. In the next section, we investigate how these
metrics behave on other language pairs.

B Correlations on WMT Benchmarks

As discussed in the previous section, we evalu-
ate the performance of our metrics on an official
WMT benchmark to monitor their performance on
language pairs that do not involve Swiss German.
To do this, we reproduce the evaluations from the
WMT 2022 metrics task (Freitag et al., 2022) for
a subset of language pairs. We evaluate on the
following five language pairs:

17https://data.statmt.org/cc-100/
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system-level segment-level

pairwise Pearson tie-optim. Kendall success
accuracy correlation accuracy correlation rate

BE ZH BE ZH BE ZH BE ZH
COMET-REF 0.740 0.864 0.793 0.567 0.570 0.180 0.194 0.221 0.234

+ noise 0.727 0.940 0.903 0.561 0.567 0.223 0.233 0.237 0.290
+ gsw 0.792 0.906 0.862 0.611 0.627 0.286 0.317 0.320 0.347

+ gsw + noise 0.792 0.917 0.868 0.597 0.621 0.271 0.304 0.287 0.323
+ 5 langs 0.766 0.877 0.774 0.561 0.583 0.212 0.230 0.235 0.274

+ 5 langs + noise 0.766 0.938 0.890 0.570 0.593 0.241 0.256 0.265 0.290
+ 6 langs 0.805 0.932 0.887 0.592 0.616 0.286 0.316 0.357 0.452

+ 6 langs + noise 0.779 0.956 0.917 0.599 0.622 0.282 0.311 0.323 0.379

COMET-QE-KIWI 0.636 0.781 0.689 0.486 0.507 0.104 0.099 0.127 0.145
+ noise 0.675 0.915 0.817 0.524 0.528 0.154 0.158 0.149 0.177

+ gsw 0.844 0.978 0.987 0.595 0.587 0.257 0.283 0.292 0.298
+ gsw + noise 0.896 0.968 0.981 0.582 0.596 0.246 0.269 0.273 0.274

+ 5 langs 0.610 0.758 0.773 0.514 0.505 0.134 0.135 0.164 0.202
+ 5 langs + noise 0.701 0.898 0.831 0.513 0.521 0.178 0.184 0.166 0.266

+ 6 langs 0.831 0.985 0.984 0.583 0.605 0.261 0.284 0.304 0.331
+ 6 langs + noise 0.870 0.983 0.983 0.579 0.591 0.251 0.269 0.284 0.323

Table 2: Results for systems with continued pre-training only on Swiss German (+ gsw), on 5 other languages (+ 5
langs) and the same languages including Swiss German (+ 6 langs). Darker shades indicate lower scores. Bold
denotes statistically significant improvement compared to their respective baselines COMET-REF or COMET-QE-
KIWI. There is no information about significance for tie-optim. accuracy (columns 4-5) and success rate (columns
8-9). Note that BE and ZH represent the abbreviations for the two Swiss German (GSW) dialect regions under
consideration.
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• en-de: evaluation against MQM ratings col-
lected specifically for the metrics shared task.

• en-zh: evaluation against MQM ratings col-
lected specifically for the metrics shared task.

• de-en: evaluation against reference-based DA
scores collected for the translation shared task.

• cs-uk: evaluation against DA + SQM scores
collected for the translation shared task.

• en-liv: evaluation against DA + SQM scores
collected for the translation shared task.

Note that all these languages except for Livo-
nian (liv) are part of the CC-100 corpus18 (Wenzek
et al., 2020). Consequently, they form a part of the
training dataset for XLM-R and are thus included
in the COMET models. Moreover, English (en),
German (de), and Chinese (zh) were incorporated
into the mixed continued pre-training, as explained
in Section A.1. Lastly, all the languages mentioned
above, with the exception of Ukrainian (uk) and
Livonian (liv; a language of Latvia), are included
in the COMET training data.

This evaluation allows us to assess the effects of
our modifications both on language pairs that were
included during COMET training, during contin-
ued LM pre-training, and those that were not.

The results are shown in the following Tables:
3 (system-level Pearson correlation), 4 (segment-
level accuracy), and 5 (segment-level Kendall). We
do not report pairwise accuracy here because they
cannot be directly compared with the WMT22 re-
sults, given that we have only included a subset
of the language pairs. Versions of COMET-ref
that were continued pretrained on Swiss German
data demonstrate comparable or improved perfor-
mance compared to the baseline metrics. In con-
trast, continued pretrained COMET-qe performs
worse. When examining individual languages, we
observe that fine-tuning is advantageous for transla-
tions into Livonian (liv), which is the only language
in our selection not included in XLMR. Conversely,
for translations into English, continued pretrained
systems, particularly COMET-qe, tend to perform
slightly worse.

C Pairwise Comparison Plots

In the subsequent plots displayed in Figures 2 (ex-
isting metrics), 3 (our trained COMET-ref metrics),

18https://data.statmt.org/cc-100/

and 4 (our trained COMET-qe metrics), every point
represents a difference in average human judgment
(y-axis) and a difference in automatic metric (x-
axis) over a pair of systems. Metrics disagree
with human ranking for system pairs in pink quad-
rants. These plots follow the example of Figure 1
in (Kocmi et al., 2021).

https://data.statmt.org/cc-100/
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sys-level Pearson
correlation de-en en-de en-zh en-liv cs-uk

BLEU 0.353 0.178 0.065 -0.575 0.890
chrF++ 0.356 0.304 0.203 -0.517 0.925

COMET-20 0.424 0.876 0.744 0.893 0.985
COMET-22 0.450 0.873 0.756 -0.517 0.989

COMET-20-QE 0.443 0.577 0.752 0.564 0.953
COMET-KIWI 0.421 0.748 0.767 -0.563 0.987

COMET-ref 0.423 0.888 0.626 0.909 0.992
+ noise 0.420 0.931 0.618 0.912 0.991
+ gsw 0.410 0.904 0.450 0.693 0.983

+ gsw + noise 0.407 0.930 0.375 0.610 0.964
+ 5 langs 0.412 0.897 0.656 0.826 0.993

+ 5 langs + noise 0.415 0.933 0.658 0.689 0.991
+ 6 langs 0.417 0.908 0.636 0.892 0.992

+ 6 langs + noise 0.413 0.951 0.626 0.627 0.989

COMET-qe 0.384 0.453 0.639 0.598 0.954
+ noise 0.398 0.464 0.659 0.589 0.961
+ gsw 0.365 0.300 0.444 0.806 0.874

+ gsw + noise 0.387 0.354 0.446 0.859 0.893
+ 5 langs 0.371 0.434 0.650 0.621 0.923

+ 5 langs + noise 0.377 0.429 0.667 0.639 0.939
+ 6 langs 0.372 0.424 0.657 0.694 0.921

+ 6 langs + noise 0.380 0.440 0.640 0.725 0.939

Table 3: System-level Pearson correlation scores for baseline metrics (above) and our trained metrics (below) on a
subset of language pairs from the WMT 2022 metrics task. Bold denotes statistically significant improvement com-
pared to their respective baselines COMET-REF or COMET-QE-KIWI, underlined denotes statistically significant
decline.
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seg-level tie-optim.
accuracy de-en en-de en-zh en-liv cs-uk

BLEU 0.394 0.539 0.096 0.319 0.490
chrF++ 0.391 0.545 0.352 0.237 0.466

COMET-20 0.439 0.580 0.466 0.589 0.563
COMET-22 0.437 0.584 0.468 0.368 0.567

COMET-20-QE 0.442 0.566 0.460 0.513 0.556
COMET-KIWI 0.412 0.580 0.470 0.338 0.567

COMET-ref 0.439 0.565 0.462 0.540 0.556
+ noise 0.434 0.556 0.458 0.615 0.564
+ gsw 0.434 0.551 0.470 0.507 0.542

+ gsw + noise 0.432 0.543 0.470 0.453 0.531
+ 5 langs 0.444 0.570 0.471 0.593 0.543

+ 5 langs + noise 0.428 0.553 0.478 0.500 0.552
+ 6 langs 0.445 0.567 0.475 0.461 0.551

+ 6 langs + noise 0.430 0.560 0.483 0.523 0.545

COMET-qe 0.433 0.550 0.470 0.545 0.555
+ noise 0.436 0.561 0.470 0.520 0.544
+ gsw 0.445 0.546 0.472 0.583 0.518

+ gsw + noise 0.441 0.552 0.463 0.505 0.500
+ 5 langs 0.445 0.561 0.467 0.522 0.530

+ 5 langs + noise 0.439 0.550 0.462 0.526 0.520
+ 6 langs 0.443 0.555 0.480 0.520 0.528

+ 6 langs + noise 0.453 0.552 0.470 0.517 0.526

Table 4: Segment-level accuracy scores (the darker the lower) for baseline metrics (above) and our trained metrics
(below) on a subset of language pairs from the WMT 2022 metrics task. There is no information about significance.
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seg-level Kendall
correlation de-en en-de en-zh en-liv cs-uk

BLEU 0.009 0.169 0.032 -0.158 0.133
chrF++ 0.007 0.146 0.056 -0.158 0.086

COMET-20 0.018 0.319 0.141 0.208 0.280
COMET-22 0.019 0.343 0.137 -0.111 0.295

COMET-20-QE 0.022 0.234 0.123 0.126 0.254
COMET-KIWI 0.016 0.231 0.123 -0.147 0.281

COMET-ref 0.015 0.320 0.139 0.213 0.267
+ noise 0.019 0.310 0.125 0.165 0.251
+ gsw 0.016 0.293 0.120 0.096 0.225

+ gsw + noise 0.020 0.298 0.101 0.059 0.213
+ 5 langs 0.017 0.316 0.131 0.127 0.252

+ 5 langs + noise 0.018 0.321 0.128 0.095 0.238
+ 6 langs 0.017 0.309 0.133 0.140 0.246

+ 6 langs + noise 0.018 0.309 0.126 0.070 0.234

COMET-qe 0.017 0.225 0.121 0.152 0.235
+ noise 0.014 0.228 0.114 0.137 0.217
+ gsw 0.013 0.178 0.093 0.146 0.161

+ gsw + noise 0.013 0.182 0.094 0.102 0.162
+ 5 langs 0.020 0.214 0.115 0.145 0.214

+ 5 langs + noise 0.019 0.217 0.117 0.142 0.203
+ 6 langs 0.015 0.216 0.117 0.167 0.198

+ 6 langs + noise 0.016 0.212 0.114 0.147 0.186

Table 5: Segment-level Kendall correlation scores for baseline metrics (above) and our trained metrics (below) on a
subset of language pairs from the WMT 2022 metrics task. Bold denotes statistically significant improvement com-
pared to their respective baselines COMET-REF or COMET-QE-KIWI, underlined denotes statistically significant
decline.
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Figure 2: Pairwise comparison plots for existing metrics.
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Figure 3: Pairwise comparison plots for the COMET-ref metrics trained for this work.



1065

−0.2 −0.1 0.0 0.1 0.2

Metric Score Diff

−20

0

20

H
u

m
an

S
co

re
D

iff

COMET− qe

−0.2 −0.1 0.0 0.1 0.2

Metric Score Diff

−20

0

20

H
u

m
an

S
co

re
D

iff

COMET− qe + 5langs

−0.4 −0.2 0.0 0.2 0.4

Metric Score Diff

−20

0

20

H
u

m
an

S
co

re
D

iff

COMET− qe + 5langs + noise

−0.4 −0.2 0.0 0.2 0.4

Metric Score Diff

−20

0

20

H
u

m
an

S
co

re
D

iff
COMET− qe + 6langs

−0.4 −0.2 0.0 0.2 0.4

Metric Score Diff

−20

0

20

H
u

m
an

S
co

re
D

iff

COMET− qe + 6langs + noise

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Metric Score Diff

−20

0

20

H
u

m
an

S
co

re
D

iff

COMET− qe + gsw

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Metric Score Diff

−20

0

20

H
u

m
an

S
co

re
D

iff

COMET− qe + gsw + noise

−0.4 −0.2 0.0 0.2 0.4

Metric Score Diff

−20

0

20

H
u

m
an

S
co

re
D

iff

COMET− qe + noise

Figure 4: Pairwise comparison plots for the COMET-qe metrics trained for this work.


