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Abstract

This paper presents the results of the WMT23
Metrics Shared Task. Participants submitting
automatic MT evaluation metrics were asked
to score the outputs of the translation systems
competing in the WMT23 News Translation
Task. All metrics were evaluated on how well
they correlate with human ratings at the sys-
tem and segment level. Similar to last year,
we acquired our own human ratings based on
expert-based human evaluation via Multidimen-
sional Quality Metrics (MQM). Following last
year’s success, we also included a challenge
set subtask, where participants had to create
contrastive test suites for evaluating metrics’
ability to capture and penalise specific types of
translation errors. Furthermore, we improved
our meta-evaluation procedure by considering
fewer tasks and calculating a global score by
weighted averaging across the various tasks.

We present an extensive analysis on how
well metrics perform on three language pairs:
Chinese→English, Hebrew→English on the
sentence-level and English→German on the
paragraph-level. The results strongly confirm
the results reported last year, that neural-based
metrics are significantly better than non-neural
metrics in their levels of correlation with human
judgments. Further, we investigate the impact
of bad reference translations on the correlations
of metrics with human judgment. We present
a novel approach for generating synthetic ref-
erence translations based on the collection of
MT system outputs and their corresponding
MQM ratings, which has the potential to miti-
gate bad reference issues we observed this year
for some language pairs. Finally, we also study
the connections between the magnitude of met-
ric differences and their expected significance
in human evaluation, which should help the
community to better understand and adopt new
metrics.

Metric avg corr

XCOMET-Ensemble 1 0.825
XCOMET-QE-Ensemble* 2 0.808
MetricX-23 2 0.808
GEMBA-MQM* 2 0.802
MetricX-23-QE* 2 0.800
mbr-metricx-qe* 3 0.788
MaTESe 3 0.782
CometKiwi* 3 0.782
COMET 3 0.779
BLEURT-20 3 0.776
KG-BERTScore* 3 0.774
sescoreX 3 0.772
cometoid22-wmt22* 4 0.772
docWMT22CometDA 4 0.768
docWMT22CometKiwiDA* 4 0.767
Calibri-COMET22 4 0.767
Calibri-COMET22-QE* 4 0.755
YiSi-1 4 0.754
MS-COMET-QE-22* 5 0.744
prismRef 5 0.744
mre-score-labse-regular 5 0.743
BERTscore 5 0.742
XLsim 6 0.719
f200spBLEU 7 0.704
MEE4 7 0.704
tokengram_F 7 0.703
embed_llama 7 0.701
BLEU 7 0.696
chrF 7 0.694
eBLEU 7 0.692
Random-sysname* 8 0.529
prismSrc* 9 0.455

Table 1: Official ranking of primary submissions to the
WMT23 Metric Task. The final score is the weighted av-
erage correlation over 10 different tasks. Starred metrics
are reference-free, and underlined metrics are baselines.
See Table 18 for the pairwise comparisons from which
the ranks were derived.

1 Introduction

The metrics shared task1 has been a key component
of WMT since 2008, serving as a way to validate
the use of automatic MT evaluation metrics and
drive the development of new metrics. We eval-

1https://wmt-metrics-task.github.io/

https://wmt-metrics-task.github.io/
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uate reference-based automatic metrics that score
MT output by comparing the translations with a
reference translation generated by human transla-
tors, who are instructed to translate “from scratch”
without post-editing from MT. In addition, we also
invited submissions of reference-free metrics (qual-
ity estimation metrics or QE metrics) that compare
MT outputs directly with the source segments. All
metrics are evaluated based on their agreement with
human rating when scoring MT systems and hu-
man translations at the system and sentence level.
The final ranking of this year’s submitted primary
metrics is shown in Table 1. Below are some key
details and changes for this year’s metric shared
task:

• Language Pairs: For this year, we focus on
three main language pairs: (i) One language pair
with paragraph-level test sets: English→German
(en→de), (i) one low-resource language pair
with sentence-level test sets: Hebrew→English
(he→en), (iii) one high-resource language pair
with sentence-level test sets: Chinese→English
(zh→en).

• Human Evaluation: Like last year, we col-
lected our own human ratings for our three lan-
guage pairs from professional translators via
MQM (Lommel et al., 2014; Freitag et al., 2021).
We released and uploaded2 all MQM annotations,
and we recommend using Marot3 for looking into
this data.

• Meta Evaluation: This year’s meta-evaluation is
significantly streamlined from last year’s. Instead
of 201 tasks, we use just 10, designed to capture
complementary ranking and linearity properties
at system- and segment-level granularity. We
replace Kendall’s tau at the segment level with
a version of pairwise accuracy that gives met-
rics credit for correctly predicting ties in human
scores, while automatically calibrating for each
metric’s natural scale (Deutsch et al., 2023). In-
stead of averaging per-task ranks to derive an
overall score for each metric, we simply average
correlation/accuracy scores across tasks. This
places metric scores on an absolute scale, and
makes them independent of the performance of

2https://github.com/google/
wmt-mqm-human-evaluation

3https://github.com/google-research/
google-research/tree/master/marot

other metrics. Finally, we compute top-level sig-
nificance clusters to provide a clearer global rank-
ing of participating metrics.

• Synthetic Reference: The MQM scores for the
human reference translation for zh→en were un-
expectedly low, ranking humans below almost
all WMT submissions. We investigate the im-
pact of bad reference translations on reference-
based metrics and propose a novel approach
to create a synthetic reference translation from
all WMT submissions and their corresponding
MQM scores.

• Challenge Sets Subtask: For the second year,
we include a decentralized sub-task on challenge
sets, in which test sets are submitted by different
research teams targeting to reveal metrics’ abil-
ities or the weaknesses in evaluating particular
translation phenomena. We received three chal-
lenge sets covering a wide range of translation
errors and linguistic phenomena in more than a
hundred translation directions.

• Understand Magnitude of Score Difference:
This year, we include two analyses to understand
the meaning of the score differences that metrics
present with respect to the statistical significance
of MT system rankings according to human an-
notations and metric scores. These analyses pro-
vide additional assistance for MT researchers to
build an intuition on the relationship between the
magnitude of metric score differences and the
reliability of the improved translation quality.

• MTME: Similar to last year, all the data has been
uploaded to MTME4, and all results in this pa-
per are calculated with this analysis tool. We
encourage every metric developer to use MTME
to calculate contrastive scores to enhance consis-
tency and comparability going forward.

Our main findings are:

• XCOMET-Ensemble is the winner of the
WMT23 Metrics Shared Task (Table 1).

• High correlations between automatic metrics
and human judgments at the segment level do
not necessarily guarantee high correlations at
the system level (Figure 5).

4https://github.com/google-research/
mt-metrics-eval

https://github.com/google/wmt-mqm-human-evaluation
https://github.com/google/wmt-mqm-human-evaluation
https://github.com/google-research/google-research/tree/master/marot
https://github.com/google-research/google-research/tree/master/marot
https://github.com/google-research/mt-metrics-eval
https://github.com/google-research/mt-metrics-eval
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• Reference quality matters: The low quality
reference for zh→en significantly lowered the
correlation of all metrics with human judge-
ment (Section 8).

• We determined the magnitude of score differ-
ences required to produce a statistically signif-
icant difference in human judgment for each
metric, revealing that even minor score dif-
ferences of the top performing metrics can
be statistical significant with high probability
(Section 7).

• Results from the challenge sets independently
agreed with our findings that the quality of
reference matters. Developing reference-free
metrics is worth further exploration, and met-
ric researchers are advised to investigate into
the influence of language-agnostic multilin-
gual embeddings on MT evaluation. It is
equally important for metric researchers to
test the performance of metrics in diverse col-
lection of linguistic phenomena and wider
landscape of translation quality in order to
minimize unexpected behaviours of metrics
(Section 10).

The rest of the paper is organized as follows:
Section 2 describes the test data and additional
MT systems that we trained. Section 3 presents
an overview of the conducted expert-based human
evaluation. Section 4 describes the metrics evalu-
ated this year (baselines and participants). Sec-
tion 5 describes the conducted meta-evaluation.
Section 6 reports our main results. Section 7 inter-
prets and evaluates metrics’ scores beyond correla-
tions. Section 8 analyses the impact of bad refer-
ence translations on the various metrics. Section 9
summarizes our results for additional WMT23
Translation task language-pairs based on their Di-
rect Assessment human evaluation. Section 10
presents a description of the submitted challenge
sets along with their findings. Finally, Section 11
presents our most relevant conclusions.

2 Translation Systems

Similar to previous years’ editions, the source, ref-
erence texts, and MT system outputs for the metrics
task are mainly derived from the WMT23 General
MT Shared Task. In addition to the MT system
outputs from the WMT evaluation campaign, we
included translations from two additional MT sys-
tems which we deemed interesting for evaluation.

2.1 WMT Test Sets

We use test sets prepared by the WMT23 General
MT Shared Task (Kocmi et al., 2023). For our
three main language pairs, the test sets contain 557
en→de, 1910 he→en, and 1976 zh→en segments.
This year, the test sets cover up to five domains
from the following list: news, conversational, user
reviews, manuals, and social. Each language pair
contains a comparable number of sentences from
each domain, resulting in reasonably balanced test
sets.

English→German contains four balanced do-
mains: news, social, conversational, and user re-
views. In contrast to other language pairs, segments
are paragraphs rather than sentences.

Hebrew→English contains only news and user
reviews domains. This language pair has two hu-
man references, but one of them (refA) is suspected
of being a post-edited Online-B system output.

Chinese→English contains news, user reviews,
and manuals. The first two domains contain around
750 sentences, while manuals contains around 500.

The reference translations provided for the test
sets are produced by professional translators.

For more details regarding the news test sets, we
refer the reader to the WMT23 General MT Shared
Task findings paper (Kocmi et al., 2023).

2.2 Additional MT Output

Similar to last year, we made an effort to expand the
pool of translations beyond the WMT submissions,
which can potentially be quite similar to each other.
We added translations which we expected to differ
in two main ways from the submissions: 1) by
using a massively multilingual model; and 2) by
generating with MBR decoding;

For our multilingual model, we selected the 3.3B
parameter NLLB200 model (NLLB Team et al.,
2022) via the huggingface (Wolf et al., 2020) inter-
face. We found NLLB200 to significantly outper-
form the M2M100 (Fan et al., 2021) that we used
last year.

Minimum Bayes Risk (MBR) decoding has re-
cently gained attention in MT as a decision rule,
with the potential to overcome some of the bi-
ases of MAP decoding in NMT (Eikema and Aziz,
2020; Müller and Sennrich, 2021; Eikema and Aziz,
2021; Freitag et al., 2022; Fernandes et al., 2022).
MBR decoding centrally relies on a reference-
based utility metric: its goal is to identify a hy-
pothesis with a high estimated utility (expectation



581

under model distribution) with the hope that a high
estimated utility translates into a high actual utility
(with respect to a human reference). In practice,
this means generating several candidate transla-
tions and finding the translation that is most similar
to the rest of the candidate translations.

We produced both the top-1 greedy transla-
tion and MBR outputs. For MBR, we sampled
100 translation candidates from the model via Ep-
silon sampling (Hewitt et al., 2022; Freitag et al.,
2023). We used epsilon_cutoff=0.02 and
eta_cutoff=0.0. This year, we used sentence-
level BLEU from sacreBLEU (Post, 2018) with the
default ‘a13’ tokenizer and the ‘floor’ smoothing
method as utility function only.

3 MQM Human Evaluation

Automatic metrics are usually evaluated by measur-
ing correlations with human ratings. The quality
of the underlying human ratings is critical, and re-
cent findings (Freitag et al., 2021) have shown that
crowdsourced human ratings are not reliable for
high quality MT output. Furthermore, an evalua-
tion schema based on MQM (Lommel et al., 2014),
which requires explicit error annotation, is prefer-
able to an evaluation schema that only asks raters
for a single scalar value per translation. Similar to
last year, we decided to conduct our own MQM-
based human evaluation on a subset of submissions
and language pairs that are most interesting for
evaluating current metrics.

MQM is a general framework that provides a
hierarchy of translation errors which can be tai-
lored to specific applications. Google and Unba-
bel sponsored the human evaluation for this year’s
metrics task for a subset of language pairs using
either professional translators (English→German,
Chinese→English) or trusted and trained raters
(Hebrew→English). The error annotation typology
and guidelines used by Google’s and Unbabel’s
annotators differ slightly and are described in the
following two sections.

3.1 English→German and Chinese→English

Annotations for English→German and
Chinese→English were sponsored and exe-
cuted by Google, using 18 professional translators
(10 for English→German, 8 for Chinese→English)
having access to the full document context. Each
segment gets annotated by a single rater. Instead
of assigning a scalar value to each translation,

annotators were instructed to label error spans
within each segment in a document, paying
particular attention to document context. Each
error was highlighted in the text, and labelled
with an error category and a severity. Segments
that are too badly garbled to permit reliable
identification of individual errors are assigned a
special Non-translation error. Error severities are
assigned independent of category, and consist of
Major, Minor, and Neutral levels, corresponding
respectively to actual translation or grammatical
errors, smaller imperfections and purely subjective
opinions about the translation. Since we are
ultimately interested in scoring segments, we adopt
the weighting scheme shown in Table 2. For more
details, exact annotator instructions and a list of
error categories, we refer the reader to Freitag et al.
(2021) as the exact same setup was used for the
previous two metrics tasks.

Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Neutral all 0

Table 2: Google’s MQM error weighting.

3.2 Hebrew→English

The annotations for the Hebrew→English language
pair were sourced from Unbabel, who engaged four
professional native language annotators possess-
ing extensive translation experience. Much like
Google’s approach, these annotators were provided
with the full document context, comprising up to
ten segments. Their task was to identify and clas-
sify errors by highlighting them, following Unba-
bel’s MQM 3.0 typology5.

The annotators were instructed to classify the
errors based on severity, with Unbabel’s classifica-
tion encompassing not only “Minor” and “Major”
error severities (analogous to Google’s criteria) but
also a “Critical” error severity. However, to ensure
consistency in our evaluation process, we opted
to align with the Google methodology outlined
previously. Specifically, we treated all annotated
“Critical” errors as “Major” errors, and we applied
a weighting scheme for punctuation errors, as de-
tailed in Table 2.

5see Unbabel Annotation Guidelines - Typology 3.0

https://help.unbabel.com/hc/en-us/articles/6444304419479-Annotation-Guidelines-Typology-3-0


582

3.3 Human Evaluation Results

Due to the fact that we ran our own human eval-
uation, we were only able to evaluate a subset of
the test segments. In Table 3, you can see the num-
ber of segments and documents for each language
pair and test set that we used for human evaluation.
We followed a simple and consistent approach to
downsample the data: we considered each docu-
ment, while only keeping the first 10 sentences of
each document. By doing this, we did not need
to discard most of the documents and only needed
to crop longer documents. The English→German
test is on the paragraph-level, and we had to dis-
card two documents as the first paragraph already
contained more than 10 sentences. In all cases, the
MQM score for a segment is the sum of the scores
for the errors in that segment, and the MQM score
for a test set is the average of the MQM scores of
the segments that were annotated.

The results of the MQM human evaluation
can be seen in Table 4. Most of the reference
translations are ranked first, except for refA for
Chinese→English. Not ranking the human evalua-
tion on top of the MT output is usually a signal for
a corrupt human evaluation. We double-checked
the annotation for refA and can confirm that the
reference translation indeed contained many errors.

4 Baselines and Submissions

We computed scores for several baseline metrics
in order to compare submissions against previous
well-studied metrics. We will start by describing
those baselines, and then we will describe the sub-
missions from participating teams. An overview of
the evaluated metrics can be seen in Table 5.

4.1 Baselines

SacreBLEU baselines We use the following met-
rics from SacreBLEU (Post, 2018) as baselines:

• BLEU (Papineni et al., 2002) is based on the
precision of n-grams between the MT output
and its reference weighted by a brevity penalty.
Using SacreBLEU we obtained sentence-
BLEU values using the sentence_bleu
Python function and for corpus-level BLEU

we used corpus_bleu (both with default
arguments6).

6lnrefs.1|case.mixed|lang.LANGPAIR|tok.13a|smooth.exp|
version.2.3.0

• F200SPBLEU (NLLB Team et al., 2022)
are BLEU scores computed with sub-
word tokenization done by the standardized
FLORES-200 Sentencepiece models. We used
the command line SacreBLEU to compute the
sentence level F200SPBLEU7 and we average
the segment-level scores to obtain a corpus-
level score.

• CHRF (Popović, 2015) uses character
n-grams instead of word n-grams to compare
the MT output with the reference. For CHRF
we used the SacreBLEU sentence_chrf
function (with default arguments8) for
segment-level scores and we average those
scores to obtain a corpus-level score.

BERTSCORE (Zhang et al., 2020) leverages
contextual embeddings from pre-trained transform-
ers to create soft-alignments between words in can-
didate and reference sentences using cosine similar-
ity. Based on the alignment matrix, BERTSCORE

returns a precision, recall and F1 score. We used
F1 without TF-IDF weighting.

BLEURT (Sellam et al., 2020) is a learned metric
fine-tuned on Direct Assessments (DA). Unlike
COMET, BLEURT encodes the translation and the
reference together and utilizes the [CLS] token as
an embedding to represent the pair. We employed
the BLEURT20 checkpoint (Pu et al., 2021), which
was trained on top of RemBERT using DA data
from previous shared tasks spanning from 2015 to
2019, along with additional synthetic data created
from Wikipedia articles.

COMET (Rei et al., 2022a) is a learned metric
fine-tuned using DA from previous WMT Trans-
lation shared tasks. This metric relies on sentence
embeddings from the source, translation, and ref-
erence to produce a final score. We utilized the de-
fault model wmt22-comet-da provided in ver-
sion 2.0.2 of the Unbabel/COMET framework.
This model employs XLM-R large as its backbone
model and is trained on data from the 2017 to 2019
WMT shared tasks, in combination with the MLQE-
PE corpus (Fomicheva et al., 2022).

COMETKIWI (Rei et al., 2022b) is a reference-
free learned metric that functions similarly to

7nrefs:1|case:mixed|eff:yes|tok:flores200|smooth:exp| ver-
sion:2.3.0

8chrF2|lang.LANGPAIR|nchars.6|space.false|version.2.3.0
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language news social speech user reviews manuals

en→de 104/139 (30/30) 206/212 (79/79) 58/113 (23/25) 92/93 (58/58) n/a
he→en 619/1558 (68/70) n/a n/a 201/352 (26/26) n/a
zh→en 377/763 (38/38) n/a n/a 677/726 (127/127) 123/487 (14/14)

Table 3: Numbers of MQM-annotated segments per domain (number of docs in brackets).

English→German ↓
System all news social speech user-reviews

refA 2.96 3.12 2.02 4.74 3.77
GPT4-5shot 3.72 4.00 2.41 6.51 4.60
ONLINE-W 3.95 2.69 2.62 5.90 7.13
ONLINE-B 4.71 4.35 3.14 5.96 7.85
ONLINE-Y 5.64 4.45 3.67 7.48 10.26
ONLINE-A 5.67 4.40 3.84 7.78 9.87
ONLINE-G 6.57 6.43 4.12 7.93 11.38
ONLINE-M 6.94 4.87 4.41 8.30 14.08
Lan-BridgeMT 8.67 7.99 5.55 9.72 15.78
LanguageX 9.25 8.43 5.74 14.23 14.92
NLLB_Greedy 9.54 8.29 5.20 14.82 17.35
NLLB_MBR_BLEU 10.79 9.93 5.53 17.75 19.18
AIRC 14.23 14.32 8.34 20.34 23.45

Hebrew→English ↓
System all news user-reviews

refA 1.17 1.28 0.86
GPT4-5shot 1.33 1.29 1.48
ONLINE-A 1.38 1.34 1.50
ONLINE-B 1.55 1.60 1.39
GTCOM_DLUT 1.89 1.85 1.99
UvA-LTL 1.92 1.80 2.30
ONLINE-G 2.06 2.06 2.04
ONLINE-Y 2.35 2.42 2.12
LanguageX 2.38 2.33 2.53
Samsung_Research_Philippines 3.23 3.62 2.05
NLLB_MBR_BLEU 3.68 3.83 3.20
NLLB_Greedy 3.79 3.98 3.19
Lan-BridgeMT 3.79 3.81 3.74

Chinese→English ↓
System all news manuals user-reviews

Lan-BridgeMT 2.10 2.31 1.28 2.13
GPT4-5shot 2.31 2.26 2.01 2.39
Yishu 3.23 3.34 1.67 3.46
ONLINE-B 3.39 3.27 1.78 3.74
HW-TSC 3.40 3.40 1.83 3.68
ONLINE-A 3.79 2.90 1.83 4.63
ONLINE-Y 3.79 3.47 2.84 4.14
ONLINE-G 3.86 3.58 2.02 4.34
ONLINE-W 4.06 3.84 2.16 4.53
LanguageX 4.23 4.05 2.84 4.59
IOL_Research 4.59 3.60 1.85 5.63
refA 4.83 5.04 5.17 4.65
ONLINE-M 5.43 4.71 2.98 6.28
ANVITA 6.08 5.17 2.97 7.15
NLLB_MBR_BLEU 6.36 6.57 3.39 6.78
NLLB_Greedy 6.57 6.70 2.95 7.16

Table 4: MQM human evaluations for generalMT2023.
Lower average error counts represent higher MT quality.
Systems above any solid line are significantly better
than those below, based on all domains with p < 0.05.

BLEURT, but instead of encoding the transla-
tion along with its reference, it uses the source.
We utilized the wmt22-cometkiwi-da model,
which was a top-performing reference-free met-
ric from last year’s shared task. This reference-
free metric is fine-tuned on the same data as
wmt22-comet-da using the version 2.0.2 of the
Unbabel/COMET framework.

DOCWMT22COMETDA (Vernikos et al.,
2022) is the document-level version of
wmt22-comet-da, which computes the BERT
embeddings using multi-sentence context instead
of just the single sentence.

DOCWMT22COMETKIWIDA is the document-
level version of WMT22-COMETKIWI-DA (QE)
which computes the BERT embeddings using multi-
sentence context instead of just the single sentence.

MS-COMET-QE-22 (Kocmi et al., 2022b) is
built on top of COMET by Microsoft Research us-
ing proprietary data. This metric is trained on a
several times larger set of human judgements com-
pared to COMET-baseline, covering 113 languages
and 15 domains. Furthermore, the authors propose
filtering of human judgement with potentially low
quality to further improve the model. The metric
calculated scores in quality estimation fashion with
only source segment and MT hypothesis.

PRISMREF and PRISMSRC (Thompson and
Post, 2020a,b) PRISMREF is the reference-based
PRISM that uses a multilingual MT model in zero-
shot paraphrase model to score the candidate trans-
lation conditioned on the reference sentence, and
the reference sentence conditioned on the candidate
translation, and averages the two scores. PRISM-
SRC is the source-based (i.e. QE as a metric)
PRISM that uses a multilingual MT model to force-
decode and score the candidate translation condi-
tioned on the source sentence.

RANDOM-SYSNAME is a random metric that
takes the system name as the only parameter. For
each translation system, the metric computes the
mean value X as sha256(sysname)[0]%10. It
uses discrete scores. Segment-level scores follow
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Gaussian distribution around mean value X (in a
range 0-9) and standard deviation of 2.

YISI-1 (Lo, 2019) is a MT evaluation metric that
measures the semantic similarity between a ma-
chine translation and human references by aggre-
gating the IDF-weighted lexical semantic similari-
ties based on the contextual embeddings extracted
from pre-trained language models (e.g. RoBERTa,
CamemBERT, XLM-RoBERTa, etc.).

4.2 Metric Submissions

The rest of this section summarizes the participat-
ing metrics.

CALIBRI-COMET22 and CALIBRI-
COMET22-QE apply a post-processing
approach to ratings provided by COMET. It
uses Unbabel/wmt22-comet-da as the
backbone for the referenced CALIBRI-COMET22
and Unbabel/wmt22-cometkiwi-da as
the backbone for the unreferenced CALIBRI-
COMET22-QE metric. The information whether
a translation is error-free from MQM ratings (e.g.
under Google’s MQM error weighting, error-free
translations have a score of 0) can be recovered. It
then aims to calibrate the scores of the backbone
model with respect to this binary error-freeness
label using isotonic regression. During test time,
it takes the samples for a given tuple (lang-pair,
test-set, domain, ref, system-id) and employs a
heuristic strategy to select samples from previous
years that match the test sample score distribution.
It then fits an isotonic regression model to the
selected samples and transforms the test scores
accordingly. The main idea is that in this way, the
averaged system-level score can be interpreted as
the fraction of error-free translations.

COMETOID22 (Gowda et al., 2023) is a
reference-free metric created using knowledge
distillation from reference-based metrics. Using
COMET-22 as a teacher metric, it scores the MT
outputs submitted to the WMT News/General Ma-
chine Translation task since 2009. A student met-
ric, called COMETOID22, is then trained to mimic
the teacher scores without using reference transla-
tion. The student metric has the same architecture
as COMET-QE, and is initialized with pretrained
weights from InfoXLM, a multilingual language
model. We submit three variants: COMETOID22-
WMT{21,22,23}, where the suffix indicates the
training data cut-off year.

COMETKIWI XL/XXL (Rei et al., 2023)
shares the same architecture as the COMETKIWI

baseline but replaces InfoXLM with XLM-R
XL (3.5B) and XXL (10.7B). In terms of training
data, these models are trained on the same dataset
as COMETKIWI, along with newly released Di-
rect Assessments (DA) for Indian languages, which
were introduced as additional training data for this
year’s Quality Estimation (QE) shared task (Blain
et al., 2023).

EBLEU (ElNokrashy and Kocmi, 2023) String-
based metrics such as BLEU and CHRF depend on
string similarity as proxy for meaning similarity
between candidate and target sentences. EBLEU
stands for ‘Embedded BLEU’ and is loosely in-
spired by it. In EBLEU, we match candidate and
target tokens approximately using non-contextual
word embeddings and a word-to-word similarity
map in a form we have dubbed “relative meaning
diffusion tensors”.

EMBED_LLAMA (Dreano et al., 2023a) relies
on pretrained Llama2 embeddings, without any
fine-tuning, to transform sentences into a vector
space that establishes connections between geomet-
ric and semantic proximities. This metrics draws
inspiration from Word2vec, and utilizes cosine dis-
tance for the purpose of estimating similarity or
dissimilarity between sentences.

GEMBA-MQM (Kocmi and Federmann, 2023)
is a LLM-enabled metric for error quality span
marking. It uses three-shot prompting with the
GPT4 model. In contrast to EAPrompt (Lu et al.,
2023), it does not require language specific exam-
ples and requires only a single prompt.

HWTSC-EE-METRIC and KG-
BERTSCORE (Wu et al., 2023) EE stands
for Entropy Enhanced MT Metrics and aims at
achieving a more balanced system-level rating by
assigning weights to segment-level scores pro-
duced by MT metrics. The weights are determined
by the difficulty of a segment determined by the
entropy between the hypothesis-reference pair.
This year, the COMET metric is utilized as the
backbone of our EE metrics. The model we use is
WMT22-COMET-DA.

KG-BERTSCORE incorporates multilingual
knowledge graph into BERTSCORE and generates
the final evaluation score by linearly combining the
results of KGSCORE and BERTSCORE, in which
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we use COMET-QE to calculate BERTSCORE

this year.

MATESE (Perrella et al., 2022) leverages
transformer-based encoders to identify error spans
in translations, and classify their severity between
Minor and Major. Differently from last year’s ver-
sion, MATESE is now based on DeBERTa for eval-
uating translations towards English, and InfoXLM
for German and Russian. Furthermore, it has been
re-trained using also the MQM data released at
WMT2022.

MBR-METRICX-QE (Naskar et al., 2023) MBR
decoding with neural utility metrics like BLEURT

is known to be effective in generating high qual-
ity machine translations. We use the underlying
technique of MBR decoding and develop an MBR
based reference-free quality estimation metric. Our
method uses an evaluator machine translation sys-
tem and a reference-based utility metric (specifi-
cally BLEURT and METRICX) to calculate a quality
estimation score of a model. We report results re-
lated to comparing different MBR configurations
and utility metrics.

MEE4 (Mukherjee and Shrivastava, 2023) is
an unsupervised, reference-based metric (an im-
proved version of MEE) focusing on computing
contextual and syntactic equivalences, along with
lexical, morphological, and semantic similarity.
The goal is to comprehensively evaluate the fluency
and adequacy of MT outputs while also consider-
ing the surrounding context. Fluency is determined
by analysing syntactic correlations, while context
is evaluated by comparing sentence similarities us-
ing sentence embeddings. The ultimate score is
derived from a weighted amalgamation of three
distinct similarity measures: a) Syntactic similarity,
which is established using a modified BLEU score.
b) Lexical, morphological, and semantic similar-
ity, quantified through explicit unigram matching.
c) Contextual similarity, gauged by sentence simi-
larity scores obtained from the Language-Agnostic
BERT model.

METRICX-23 and METRICX-23-QE (Juraska
et al., 2023) are learned reference-based and
reference-free (respectively) regression metrics
based on the mT5 encoder-decoder language model.
They further fine-tune the mT5-XXL checkpoint on
direct assessment data from 2015-2020 and MQM
data from 2020 to 2021 as well as synthetic data.
There are two contrastive submissions, “b” and

“c”, for both the reference-based and QE metrics.
The “b” variant additionally trains on MQM data
from 2022 and the “c” variant uses the PaLM-2
language model (Anil et al., 2023) to initialize the
metric instead of mT5.

MRE-SCORE (Viskov et al., 2023) is a trained
metric that is based on the encoder part of mT0-
large model. We use a concatenation of source, ref-
erence and hypothesis texts for input. Additionally,
some of the variants of the model uses contextual
embeddings from LaBSE.

SESCOREX (Xu et al., 2023b) and IN-
STRUCTSCORE (Xu et al., 2023c) SESCOREX
is an improved version of SESCORE2 (Xu et al.,
2023a). Building upon the established strengths
of SESCORE2, we utilize its framework for syn-
thetic data generation to pre-train our scoring
model. To further elevate the performance of
SESCOREX, we introduce two key modifications:
fine-tuning human rating data and transitioning the
scoring backbone model to the MT5-xl model. IN-
STRUCTSCORE is an open-source, explainable eval-
uation metric for text generation. Utilizing explicit
human guidelines and GPT4’s implicit knowledge,
we fine-tune an Llama model to provide evaluation
metrics along with diagnostic reports that align
with human assessments. Unlike traditional neural
metrics, INSTRUCTSCORE evaluates text genera-
tion by providing a quality score based on detailed
error explanations.

SLIDE (Raunak et al., 2023) Building metrics
explicitly for document-level MT quality estima-
tion has been challenging owing to the lack of large-
scale document-level human annotated datasets. In
this submission, we present a metric named SLIDE

(Sliding Document Evaluator), which operates at
the span of multiple sentences or paragraphs by
way of an overlapping sliding window. SLIDE

feeds each chunk into a source-based COMET

model, with scores over overlapping chunks ac-
cumulated to produce a system-level score. SLIDE

is motivated by two ideas: (1) Since COMET’s un-
derlying encoder is trained on wider contexts, we
might observe generalizable evaluation behaviour
beyond typical sentences-level lengths, within cer-
tain length limits and (2) since a sentence’s evalua-
tion will differ at different positions within a docu-
ment, it may be helpful to evaluate each sentence
in multiple different contexts.
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TOKENGRAM_F (Dreano et al., 2023b) is an
F-score-based evaluation metric for machine trans-
lation that is heavily inspired by CHRF++. By
replacing word-grams with token-grams obtained
from contemporary tokenization algorithms, TO-
KENGRAM_F captures similarities between words
sharing the same semantic roots and thus obtains
more accurate ratings.

XCOMET-XL/XXL (Guerreiro et al., 2023) is
a new COMET (Rei et al., 2020) model that is de-
signed to identify error spans in sentences and gen-
erate a final quality score, making it a more inter-
pretable learnt metric. This metric is optimized for
both regression and sequence tagging, and it can
be used with or without references. XCOMET-QE

submission results from the same model but run-
ning inference without a reference. These models
utilize XLM-R XL or XXL as their backbone mod-
els, with XCOMET-XL having 3.5B parameters and
XCOMET-XXL having 10.7B parameters. The train-
ing process for this metric occurs in stages, starting
with DAs and then is fine-tuning on MQM data.
XCOMET-ENSEMBLE is an ensemble between 1
XL and 2 XXL checkpoints that result from the
different training stages.

XLSIM (Mukherjee and Shrivastava, 2023)
is a supervised reference-based metric that re-
gresses on human scores provided by WMT (2017-
2022). Using a cross-lingual language model XLM-
RoBERTa, we train a supervised model using a
Siamese network architecture with cosine similar-
ity loss.

5 Meta Evaluation

Our main goal in evaluating metrics is to establish a
ranking that reflects a metric’s performance across
a range of settings and applications. Combining re-
sults from different settings is challenging because
correlations with human gold scores have different
ranges and may be subject to differing degrees of
noise. There are also many ways of measuring cor-
relation, with different strengths and weaknesses,
and it is often not clear which is best in a given
setting.

Last year, our approach was to define a large
number of “tasks” (201 in total) that varied along
dimensions such as language pair, domain, granu-
larity, correlation statistic, etc. For each task, we
used pairwise significance tests to establish a dense
clustered ranking of participating metrics (e.g., 1,

1, 1, 2, 3, 3, ...). Motivated by theoretical results
pertaining to combining rankings from different
knowledge sources (Colombo et al., 2022; Dwork
et al., 2001), we established an overall ranking by
simply averaging the per-task ranks.

This approach has several disadvantages. First,
it is difficult to incorporate new metrics into the
comparison, since this requires not only comput-
ing the score of a new metric on 201 tasks, but
also comparing it to all existing metrics on each
task using expensive resampling significance tests.
Adding a new metric also has the undesirable effect
of potentially causing other metrics to swap places
in the overall rankings. While rank averaging has
theoretical underpinnings, as noted above, these
apply to settings in which the constituent tasks pro-
vide only ranking information themselves. In order
to take advantage of richer information available
from correlation statistics, we derived dense ranks
from pairwise significance tests, but this relies on
an ad hoc clustering algorithm, and it is not clear to
what extent our average ranks are supported by the
original theory. They also lack confidence infor-
mation, making it difficult to quantify conclusions
about the overall superiority of one metric over
another.

This year we adopted a much simpler approach
in order to address these difficulties. We use just 10
main tasks, and compute an overall score by taking
a weighted average of results from each task. We
perform significance tests on each pair of metrics
for each task as before, but also do so for each pair
of metrics on the overall average score, allowing us
to establish a clearer global ranking. The average
score for a new metric can be computed relatively
quickly, and it does not affect the scores of other
metrics. Significance tests still require the expen-
sive step of comparing to all other metrics, but they
are no longer necessary for computing a metric’s
raw overall score.

We acknowledge that this approach is not per-
fect. One problem is that we need to combine
correlations and accuracies that may have differ-
ent dynamic ranges. For example, the mean Pear-
son correlation across all metrics for en→de at the
system level is 0.88 with standard deviation 0.24,
while at the segment level it is 0.39 with a stan-
dard deviation of 0.17. Averaging system-level and
segment-level correlations will therefore effectively
upweight the system-level contribution. We experi-
mented with different weightings to compensate for
this, but found that they did not make a large differ-
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language ref used scored ref

en→de A –
he→en B A
zh→en A –

Table 6: Use of reference translations.

ence, and decided to use equal weights for simplic-
ity. Another problem is that we do not account for
dependencies among tasks. Although all tasks are
at least somewhat complementary, many–such as
system-level and segment-level correlations—are
based on the same underlying data, and thus violate
the assumptions of our hypothesis tests. We leave
more sophisticated inference approaches such as
proposed by Dror et al. (2017) or Hagmann and
Riezler (2023) for future work.

5.1 Task Attributes

Tasks are identified by unique value assignments
for each of the following attributes: language, level,
and correlation statistic. Unlike last year, we no
longer have tasks specific to different domains, as
domains differ across languages this year. We also
drop the "include-human" vs "no-human" distinc-
tion, and always score reference translations that
are not used by the metrics. As shown in Table 6,
Hebrew→English is the only language pair for
which such a reference is available. Finally, last
year we used three different averaging methods for
each correlation statistic at the segment level; this
year we choose only one method for each segment-
level correlation.

Attributes are as follows:

Language
Language pairs include those for which
we have MQM ratings—English→German,
Hebrew→English, and Chinese→English—plus
all, which indicates all pairs pooled together.

Level
We computed correlations at the system level and
the segment level. For English→German, segments
are paragraphs; for the two other language pairs,
they are sentences. System-level scores for hu-
man ratings and for all metrics that did not supply
an explicit system-level score are averages over
segment-level scores.

Correlation/accuracy
We computed three correlation/accuracy statistics
selected to provide complementary information:

task lang level correlation wt

1 all system accuracy 3

2 en→de system Pearson 1
3 en→de segment Pearson 1
4 en→de segment acc∗eq 1

5 he→en system Pearson 1
6 he→en segment Pearson 1
7 he→en segment acc∗eq 1

8 zh→en system Pearson 1
9 zh→en segment Pearson 1
10 zh→en segment acc∗eq 1

Table 7: Tasks and weighting.

• System-level pairwise ranking accuracy (as
proposed by Kocmi et al., 2021). This is com-
puted over data pooled across all three lan-
guage pairs.

• Segment-level pairwise ranking accuracy with
tie calibration (as proposed by Deutsch et al.,
2023). We use the acc∗eq variant to compare
vectors of metric and gold scores for each seg-
ment, then average the results over segments.

• System- and segment-level Pearson correla-
tion. At the segment level, we flatten matrices
of system × segment scores into vectors be-
fore comparing them.

5.2 Tasks and Weighting

Table 7 shows the complete list of tasks and their
weights. All tasks receive a weight of 1, except
for system-level accuracy, which has a weight of 3
because it combines data from all three language
pairs.

To compute a global score for each metric across
all tasks, we first map Pearson correlations from
their natural range of [−1, 1] into the [0, 1] range of
the accuracy scores, then take a weighted average
of the results.

5.3 Rank Assignment

For each task, we assign ranks to metrics based
on their significance clusters. To do so, we com-
pare all pairs of metrics and determine whether the
difference in their correlation scores is significant,
according to the PERM-BOTH hypothesis test of
Deutsch et al. (2021). We use 1000 re-sampling
runs and set p = 0.05. As advocated by Wei et al.
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(2022), we divide the sample into blocks of 100,
compute significance after each block (cumulative
over all blocks sampled so far), and stop early if
the p-value is < 0.02 or > 0.50.

The acc∗eq statistic creates a problem for signifi-
cance testing because it optimizes a latent tie thresh-
old for each metric on each test set (just one thresh-
old for all item-wise score vectors). Since the per-
mutation test for comparing two metrics creates
two new vectors by randomly swapping elements
of the original vectors on each draw, this necessi-
tates the very expensive step of finding two new tie
thresholds for each draw. To reduce the expense,
we used the following approximate procedure. First
find an optimal threshold for each input metric on
the current test set, then create all pairs of item-wise
scores and assign a correct/incorrect status to each
pair by examining whether the metric’s ranking
matches the human ranking. Then perform the per-
mutation test on these pairwise status vectors rather
than the original score vectors. This approximation
has more degrees of freedom than the original test,
and can sample pairs that would never result from
swapping the original score vectors, but our experi-
ments showed that it is a reasonable proxy for the
correct procedure.

To compute overall p-values based on weighted
average scores of two metrics across all tasks, we
cache the results of the draws for the per-task sig-
nificance tests. In all cases, these are vectors of K
pairs of correlation or accuracy statistics. Where
K < 1000 due to early stopping, we duplicate ele-
ments to get 1000 examples. Then for i in 1..1000
we compare the weighted average of the pairs from
the ith draw across all tasks, and record the results
to produce an overall p-value.

Clustering

Given significance results (p-values) for all pairs
of metrics, we assign ranks as follows. Starting
with the highest-scoring metric, we move down
the list of metrics in descending order by score,
and assign rank 1 to all metrics until we encounter
the first metric that is significantly different from
any that have been visited so far. That metric is
assigned rank 2, and the process is repeated. This
continues until all metrics have been assigned a
rank. Note that this is a greedy algorithm, and
hence it can place two metrics that are statistically
indistinguishable in different clusters.

6 Main Results

As we have seen in Section 5, the main results are
the overall scores by taking a weighted average
of the results from the ten main tasks, including
system-level and segment-level tasks in different
translation directions. Similar to last year, since
the main use case of automatic metrics is to rank
systems, system-level accuracy has a 1/4 weight on
the final score with the remaining 3/4 distributed
over 9 different settings.

Table 1 shows the official scores and rankings of
all baselines and primary submissions. Table 8 and
9 show the scores and rankings of each individual
task at system level and segment level, respectively.
Similar to last year’s results, neural metrics per-
form significantly better than lexical metrics. Of
the 32 evaluated metrics, BLEU, F200SPBLEU and
CHRF are ranked 28th, 24th and 29th respectively.
On the other hand, fine-tuned neural baseline met-
rics, like COMET and BLEURT-20, remain ranked
higher than several of the new primary submissions.
They are surpassed only by submissions relying on
significantly larger models.

It is worth noting that the best-performing base-
line, COMETKIWI, along with four of the seven
top-performing primary submissions, are reference-
free. As we will elaborate on in a later section
(Section 8), there are quality issues with human ref-
erence translations. This highlights the challenge
of ensuring robustness to poor-quality references
for reference-based metrics. In cases where a high-
quality human reference is not available, reference-
free metrics can serve as more robust alternatives.

Overall, XCOMET-Ensemble is the best per-
forming metric in terms of average scores over
the 10 meta-evaluation settings, with a statistically
significant advantage over all other metrics. It con-
sistently correlates best with human MQM scores
at segment level for all translation directions, and
it is ranked at worst in the 2nd significance cluster
for all system-level meta-evaluation tasks.

Figure 1 shows the correlation scores split by
translation direction. There are two key observa-
tions: 1) a majority of the metrics have higher
correlations for en→de among the three transla-
tion directions, except for MRE-SCORE-LABSE-
REGULAR and EBLEU, that perform substantially
better for he→en, and YISI-1 and BERTSCORE,
that perform equally in en→de and he→en; 2)
reference-based metrics struggle for zh→en due
to the reference quality, except for XCOMET-
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en→de,he→en,zh→en en→de he→en zh→en
accuracy pearson pearson pearson

Metric avg-corr task1 task2 task5 task8

XCOMET-Ensemble 1 0.825 1 0.928 2 0.980 1 0.950 2 0.927
XCOMET-QE-Ensemble* 2 0.808 1 0.908 2 0.974 2 0.909 3 0.892
MetricX-23 2 0.808 1 0.908 2 0.977 2 0.910 4 0.873
GEMBA-MQM* 2 0.802 1 0.944 1 0.993 2 0.939 1 0.991
MetricX-23-QE* 2 0.800 2 0.892 2 0.969 3 0.858 4 0.859
mbr-metricx-qe* 3 0.788 2 0.880 2 0.976 2 0.915 2 0.936
MaTESe 3 0.782 2 0.904 4 0.918 2 0.906 3 0.889
CometKiwi* 3 0.782 1 0.904 3 0.946 3 0.860 2 0.963
COMET 3 0.779 2 0.900 1 0.990 2 0.940 3 0.898
BLEURT-20 3 0.776 2 0.892 1 0.990 2 0.937 4 0.880
KG-BERTScore* 3 0.774 2 0.884 4 0.926 2 0.908 2 0.962
sescoreX 3 0.772 2 0.892 3 0.952 3 0.901 5 0.797
cometoid22-wmt22* 4 0.772 2 0.880 2 0.973 4 0.839 2 0.940
docWMT22CometDA 4 0.768 2 0.904 1 0.990 2 0.922 3 0.907
docWMT22CometKiwiDA* 4 0.767 2 0.900 2 0.970 2 0.906 2 0.965
Calibri-COMET22 4 0.767 1 0.904 2 0.963 2 0.930 4 0.863
Calibri-COMET22-QE* 4 0.755 2 0.863 2 0.978 4 0.778 2 0.934
YiSi-1 4 0.754 2 0.871 4 0.925 2 0.917 4 0.823
MS-COMET-QE-22* 5 0.744 2 0.871 3 0.959 5 0.721 3 0.901
prismRef 5 0.744 2 0.851 4 0.920 1 0.956 6 0.762
mre-score-labse-regular 5 0.743 2 0.888 3 0.942 1 0.958 3 0.903
BERTscore 5 0.742 2 0.871 5 0.891 3 0.895 5 0.810
XLsim 6 0.719 2 0.855 4 0.925 3 0.887 5 0.796
f200spBLEU 7 0.704 3 0.819 4 0.919 4 0.805 6 0.772
MEE4 7 0.704 3 0.823 5 0.861 3 0.879 6 0.743
tokengram_F 7 0.703 3 0.815 5 0.858 3 0.878 5 0.795
embed_llama 7 0.701 3 0.831 5 0.861 4 0.841 5 0.785
BLEU 7 0.696 3 0.815 4 0.917 5 0.769 7 0.734
chrF 7 0.694 3 0.795 5 0.866 4 0.776 5 0.809
eBLEU 7 0.692 2 0.859 4 0.918 2 0.911 7 0.727
Random-sysname* 8 0.529 4 0.578 6 0.357 6 0.209 8 0.093
prismSrc* 9 0.455 5 0.386 6 -0.327 6 -0.017 8 -0.406

Table 8: Results on system-level tasks for main language pairs. Rows are sorted by the overall average correlation
across all 10 tasks (leftmost column). Starred metrics are reference-free, and underlined metrics are baselines.

ENSEMBLE and SESCOREX. The reason for the
significant drop in correlation for he→en is unclear.
This drop is observed across almost all metrics,
whether they are trained or untrained, reference-
free or reference-based, and they exhibit varying
degrees of degradation.

We continue to be interested in metrics’ ability to
generalise across domains. In Figure 2, 3 and 4 we
present the performance of each metric across dif-
ferent domains in each translation direction. Most
metrics perform well in evaluating translation in the
user reviews domain across translation direction,
despite lacking annotated data in that domain. Fur-
ther investigation is required to understand whether
this is because the translation quality of MT output
is more diverse in the user reviews domain, making
it easier for metrics to accurately discriminate.

Figure 5 shows the average correlations of met-
rics when grouped separately by system-level and
segment-level tasks. Many metrics fall into the
same significance cluster when evaluated on the

system-level, as we only have a limited number
of MT systems. Although most of the metrics
compute the system-level score by averaging their
segment-level scores, we observe that high cor-
relations between automatic metrics and human
judgments at the segment level do not necessarily
guarantee high correlations at the system level. For
example, PRISMSRC is in the middle of the pack
and has moderate Pearson’s correlation at segment
level for en→de. However, it is negatively corre-
lating with human judgements when evaluating the
same language pair at system level.

7 Understanding metrics’ scores beyond
correlation

In the past few years, we demonstrated that new
metrics correlate better with human judgments than
BLEU does. Some new baseline metrics even con-
sistently outperform BLEU for consecutive years
across translation directions and domains. How-
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en→de en→de he→en he→en zh→en zh→en
pearson acc-t pearson acc-t pearson acc-t

Metric task3 task4 task6 task7 task9 task10

XCOMET-Ensemble 1 0.695 1 0.604 1 0.556 1 0.586 1 0.650 1 0.543
XCOMET-QE-Ensemble* 2 0.679 3 0.588 3 0.498 4 0.554 1 0.647 3 0.533
MetricX-23 4 0.585 1 0.603 1 0.548 2 0.577 2 0.625 3 0.531
GEMBA-MQM* 6 0.502 5 0.572 5 0.401 3 0.564 6 0.449 5 0.522
MetricX-23-QE* 3 0.626 2 0.596 2 0.520 3 0.564 1 0.647 4 0.527
mbr-metricx-qe* 4 0.571 3 0.584 5 0.411 4 0.553 5 0.489 2 0.537
MaTESe 5 0.554 9 0.528 4 0.459 5 0.550 4 0.511 12 0.479
CometKiwi* 7 0.475 5 0.569 7 0.387 6 0.544 6 0.442 4 0.525
COMET 8 0.432 4 0.574 5 0.401 8 0.532 8 0.396 7 0.514
BLEURT-20 7 0.484 5 0.572 8 0.382 10 0.519 9 0.378 6 0.518
KG-BERTScore* 8 0.451 7 0.556 8 0.382 7 0.537 7 0.430 6 0.516
sescoreX 5 0.519 6 0.563 7 0.385 15 0.484 3 0.536 9 0.499
cometoid22-wmt22* 8 0.441 4 0.578 9 0.365 11 0.515 5 0.479 7 0.515
docWMT22CometDA 10 0.394 7 0.559 10 0.339 13 0.497 10 0.353 10 0.493
docWMT22CometKiwiDA* 8 0.444 8 0.547 12 0.286 14 0.489 8 0.387 10 0.493
Calibri-COMET22 9 0.413 10 0.522 5 0.401 11 0.515 8 0.396 14 0.474
Calibri-COMET22-QE* 8 0.441 12 0.483 6 0.395 12 0.506 6 0.443 10 0.491
YiSi-1 11 0.366 8 0.542 6 0.395 8 0.529 11 0.290 8 0.504
MS-COMET-QE-22* 12 0.310 8 0.546 12 0.295 13 0.498 9 0.367 9 0.498
prismRef 6 0.516 10 0.518 11 0.319 9 0.528 14 0.183 8 0.504
mre-score-labse-regular 17 0.111 9 0.530 8 0.378 10 0.522 16 0.145 12 0.481
BERTscore 12 0.325 9 0.528 10 0.335 11 0.515 12 0.236 9 0.499
XLsim 13 0.239 9 0.527 14 0.233 16 0.480 17 0.111 15 0.464
f200spBLEU 14 0.237 9 0.526 14 0.230 18 0.447 18 0.108 13 0.476
MEE4 16 0.202 9 0.529 13 0.256 19 0.441 18 0.105 12 0.480
tokengram_F 15 0.227 10 0.520 14 0.226 17 0.461 20 0.060 11 0.485
embed_llama 13 0.250 12 0.483 15 0.215 20 0.430 15 0.161 16 0.447
BLEU 16 0.192 10 0.520 15 0.220 19 0.442 17 0.119 14 0.472
chrF 14 0.232 10 0.519 15 0.221 17 0.460 19 0.063 11 0.485
eBLEU 19 -0.011 11 0.512 16 0.131 18 0.445 22 -0.084 14 0.473
Random-sysname* 18 0.064 14 0.409 17 0.041 20 0.428 21 0.018 18 0.381
prismSrc* 9 0.425 13 0.426 16 0.140 19 0.441 13 0.223 17 0.421

Table 9: Results on segment-level tasks for main language pairs. Rows are sorted by the overall average correlation
across all 10 tasks (leftmost column in Table 8). Starred metrics are reference-free, and underlined metrics are
baselines.

ever, the research community is still reluctant to
adopt newer and better automatic MT evaluation
metrics in practice. One of the reasons is that MT
researchers have established some “common be-
liefs” about the relationship between BLEU and ac-
tual translation quality, and similar intuitions about
new metrics have yet to crystallize. Thus, this year,
we conduct two additional analyses beyond correla-
tion with human to understand the meaning of the
score differences that metrics present with respect
to the statistical significance of MT system rank-
ings according to human annotations and metric
scores. Our results should NOT be used as argu-
ments to forego significance tests or appropriate
human evaluation. These analyses only support
an intuitive sense of metric score meanings to en-
courage broader adoption of new automatic MT
evaluation metrics.

7.1 Correspondence to MQM scores
significance

First, we follow Lo et al. (2023a) to study the re-
lationship between statistically significant differ-
ences in human scores and the magnitude of metric
differences. Specifically, we run a one-sided paired
t-test with an equal variance assumption for each
system pair on segment-level MQM scores. After
that, we fit the corresponding metric score differ-
ences and the p-values of the t-test on the MQM
scores to an isotonic regression (Robertson et al.,
1988), that predicts whether the human MQM score
difference will be significant given the metric’s
score difference. Isotonic regression produces a
non-decreasing function where the classifier output
can be interpreted as a confidence level.9 We set
pmqm < 0.05 as the significance level of MQM

9https://scikit-learn.org/stable/
modules/isotonic.html

https://scikit-learn.org/stable/modules/isotonic.html
https://scikit-learn.org/stable/modules/isotonic.html
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Figure 1: Average metrics’ meta-evaluation scores in
tasks grouped by translation direction. The “mixed“
group is the accuracy score of the metrics in task 1.

Figure 2: Average metrics’ correlation with human in
tasks grouped by domain in en→de. The “mixed“ group
is the average correlation in all en→de tasks.

Figure 3: Average metrics’ correlation with human in
tasks grouped by domain in he→en. The “mixed“ group
is the average correlation in all he→en tasks.

Figure 4: Average metrics’ correlation with human in
tasks grouped by domain in zh→en. The “mixed“ group
is the average correlation in all zh→en tasks.
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Figure 5: Average metrics’ correlation with human in
tasks grouped by granularity level.

scores. Thus, the output of the isotonic regression
function can be viewed as Pr(pmqm < 0.05|∆M)
where pmqm is the p-value of the t-test on the MQM
scores for each system pair and ∆M is the metric
score difference.

Figure 6 shows the (log) p-value of one-sided
paired t-test on the MQM scores against the cor-
responding BLEU and COMET score difference
for each system pair in en→de. Figures 9-14 in
appendix D, show the same analyses for all met-
rics and translation directions. For each metric, we
can choose a particular level of confidence (i.e., a
point along the y-axis on the right) to give metric
score difference cut-offs (i.e., a point along the x-
axis) that this metric difference reflects significant
MQM score differences. Drawing a horizontal line
from the confidence level, say 80%, to the red line
enables us to find the minimum metric difference
cut-off required at the corresponding x-value down
from the red line, i.e. 11 for BLEU in Figure 6.
Using this lookup method, Table 10 shows the cut-

offs of ∆M when Pr(pmqm < 0.05|∆M) = 0.8
for each metric and translation directions.

We run the leave-one-system-out cross valida-
tion and Table 10 shows that the range of preci-
sion in the cross validation are consistently high
across metrics, with the exception of BLEU, CHRF,
PRISMSRC, RANDOM-SYSNAME and SLIDE. This
means the metric cut-offs we find using the regres-
sion model are reliable.

Contrary to the common belief that 2 BLEU im-
provement represents “significant” or “notable by
human” improvement in the actual translation qual-
ity, our analyses show that 2.2 BLEU is the mini-
mum required improvement for a high confidence
(80%) that MQM annotators to mark significant
differences in the translation output for one trans-
lation direction (zh→en) and that threshold would
be as high as 11 BLEU for en→de. Table 10 serves
as a reference between BLEU differences and dif-
ferences in some of the modern metrics, and assists
metric users in understanding scores provided by
modern metrics. For example, when evaluating
he→en translation quality, we see that a BLEU

difference of 3.5 corresponds to 80% confidence
that the metric’s ranking of the two MT systems
will match with the decision made by human an-
notators with a significant difference. Meanwhile,
a COMET score difference of 0.014 would have
the same 80% chance of human judged significant
difference.

7.2 Correspondence to metric scores
significance

Inspired by Marie (2022), we run a study similar
to that in the previous subsection but on the rela-
tions between statistically significant differences
in metric scores and the magnitude of metric dif-
ferences. Instead of one-sided t-test on MQM, the
p-values are now obtained by running statistical
significance tests with bootstrap resampling on the
metric scores for each system pair. Similarly, we
fit the corresponding metric score differences and
the p-values of the significance test to an isotonic
regression for predicting whether the translation
quality improvement as indicated by the metric will
be significant given the metric score difference. We
set pM < 0.05 and thus, the output of the isotonic
regression function is now Pr(pM < 0.05|∆M),
where pM is the p-value of the significance test on
the metric scores for each system pair and ∆M is
the metric score difference.

Figure 7 shows the (log) p-value of the signifi-
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Figure 6: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the metric (left: BLEU, right:
COMET) score difference for each system pair in en→de. The red line is the isotonic regression fit to all data
points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when
they are less than 0.0001.

en→de he→en zh→en
Metric min ∆M c.v. precision min ∆M c.v. precision min ∆M c.v. precision
BERTSCORE 0.011 [75-100%] 0.0053 [83-100%] 0.0033 [75-100%]
BLEU 11 [33-100%] 3.5 [82-100%] 2.2 [75-100%]
BLEURT-20 0.041 [75-100%] 0.019 [100-100%] 0.013 [82-100%]
CALIBRI-COMET22 0.068 [71-100%] 0.031 [89-100%] 0.043 [80-100%]
CALIBRI-COMET22-QE 0.072 [82-100%] 0.020 [86-100%] 0.025 [67-100%]
CHRF 2.8 [25-100%] 3.2 [83-100%] 2.6 [86-100%]
COMET 0.030 [78-100%] 0.014 [88-100%] 0.013 [80-100%]
COMETKIWI 0.022 [67-100%] 0.014 [64-100%] 0.0098 [62-100%]
COMETOID22-WMT22 0.018 [86-100%] 0.0077 [71-100%] 0.011 [67-100%]
DOCWMT22COMETDA 0.027 [78-100%] 0.012 [82-100%] 0.014 [82-100%]
DOCWMT22COMETKIWIDA 0.026 [75-100%] 0.012 [64-100%] 0.0096 [71-100%]
EBLEU 0.022 [57-100%] 0.019 [83-100%] 0.017 [86-100%]
EMBED_LLAMA 0.062 [67-100%] 0.019 [80-100%] 0.020 [80-100%]
F200SPBLEU 4.6 [60-100%] 3.6 [75-100%] 3.5 [86-100%]
GEMBA-MQM 2.0 [89-100%] 1.0 [82-100%] 2.0 [69-100%]
KG-BERTSCORE 0.0097 [50-100%] 0.0097 [86-100%] 0.0079 [62-100%]
MATESE 0.99 [71-100%] 0.77 [75-100%] 0.70 [73-100%]
MBR-METRICX-QE 0.047 [75-100%] 0.026 [82-100%] 0.022 [75-100%]
MEE4 0.013 [71-100%] 0.024 [78-100%] 0.020 [86-100%]
METRICX-23 0.73 [100-100%] 0.29 [76-100%] 0.55 [83-100%]
METRICX-23-QE 0.53 [71-100%] 0.092 [67-100%] 0.49 [60-100%]
MRE-SCORE-LABSE-REGULAR 0.010 [67-100%] 0.016 [100-100%] 0.0064 [62-100%]
MS-COMET-QE-22 1.5 [80-100%] 1.4 [67-100%] 1.2 [60-100%]
PRISMREF 0.081 [75-100%] 0.14 [88-100%] 0.19 [83-100%]
PRISMSRC 0.036 [73-100%] 0.040 [33-100%] 0.022 [64-100%]
RANDOM-SYSNAME 7.8 [0-100%] 0.082 [67-90%] 5.0 [50-90%]
SESCOREX 0.38 [73-100%] 0.50 [89-100%] 0.62 [73-100%]
SLIDE 0.049 [78-100%] 0.017 [78-100%] 0.013 [58-100%]
XCOMET-ENSEMBLE 0.029 [88-100%] 0.0092 [83-100%] 0.012 [75-100%]
XCOMET-QE-ENSEMBLE 0.038 [86-100%] 0.012 [83-100%] 0.021 [67-100%]
XLSIM 0.015 [67-100%] 0.0073 [82100%] 0.0091 [70-100%]
YISI-1 0.0049 [67-100%] 0.0060 [80-100%] 0.0054 [75-100%]

Table 10: Minimum ∆M when Pr(pmqm < 0.05|∆M) = 0.8 for each metric in different translation directions
round to 2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out
cross validation.

cance test with bootstrap resampling on the metric
scores for BLEU and COMET score difference of
each system pair in en→de. Additional figures
(Figures 15-20 in appendix Appendix D) show the
same analyses for all metrics and translation direc-

tions. Using the same lookup method described in
the previous subsection, Table 11 shows the cut-
offs of ∆M when Pr(pM < 0.05|∆M) = 0.8 for
each metric and translation directions.

We run the leave-one-system-out cross valida-
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Figure 7: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (left: BLEU, right: COMET) score difference for each system pair in en→de. The red line is the
isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability, values of pM are
rounded up to 0.0001 when they are less than 0.0001.

en→de he→en zh→en
Metric min ∆M c.v. precision min ∆M c.v. precision min ∆M c.v. precision
BERTSCORE 0.0026 [100-100%] 0.0012 [100-100%] 0.00085 [100-100%]
BLEU 1.1 [100-100%] 0.79 [100-100%] 0.58 [93-100%]
BLEURT-20 0.0081 [100-100%] 0.0041 [100-100%] 0.0024 [100-100%]
CALIBRI-COMET22 0.010 [91-100%] 0.0063 [100-100%] 0.0064 [100-100%]
CALIBRI-COMET22-QE 0.015 [100-100%] 0.0086 [89-100%] 0.0078 [92-100%]
CHRF 0.99 [100-100%] 0.68 [100-100%] 0.48 [100-100%]
COMET 0.0038 [100-100%] 0.0038 [90-100%] 0.0029 [100-100%]
COMETKIWI 0.0074 [91-100%] 0.0019 [100-100%] 0.0025 [93-100%]
COMETOID22-WMT22 0.0062 [82-100%] 0.0026 [100-100%] 0.0019 [100-100%]
DOCWMT22COMETDA 0.0033 [100-100%] 0.0013 [100-100%] 0.0023 [100-100%]
DOCWMT22COMETKIWIDA 0.0028 [100-100%] 0.0021 [100-100%] 0.0015 [100-100%]
EBLEU 0.0076 [90-100%] 0.0048 [100-100%] 0.0050 [100-100%]
EMBED_LLAMA 0.013 [100-100%] 0.0079 [100-100%] 0.0054 [100-100%]
F200SPBLEU 1.0 [100-100%] 0.94 [100-100%] 0.65 [100-100%]
GEMBA-MQM 0.52 [100-100%] 0.38 [100-100%] 0.35 [100-100%]
KG-BERTSCORE 0.0051 [100-100%] 0.0016 [100-100%] 0.00029 [93-100%]
MATESE 0.33 [100-100%] 0.20 [100-100%] 0.15 [100-100%]
MBR-METRICX-QE 0.0073 [100-100%] 0.0039 [100-100%] 0.0023 [100-100%]
MEE4 0.0029 [90-100%] 0.0067 [100-100%] 0.0054 [100-100%]
METRICX-23 0.23 [100-100%] 0.083 [90-100%] 0.089 [92-100%]
METRICX-23-QE 0.19 [100-100%] 0.072 [89-100%] 0.11 [100-100%]
MRE-SCORE-LABSE-REGULAR 0.0034 [100-100%] 0.0028 [100-100%] 0.0010 [100-100%]
MS-COMET-QE-22 0.49 [100-100%] 0.45 [88-100%] 0.18 [100-100%]
PRISMREF 0.018 [100-100%] 0.031 [100-100%] 0.020 [100-100%]
PRISMSRC 0.028 [100-100%] 0.025 [75-100%] 0.016 [100-100%]
RANDOM-SYSNAME 0.21 [100-100%] 0.14 [100-100%] 0.12 [100-100%]
SESCOREX 0.039 [100-100%] 0.10 [100-100%] 0.085 [100-100%]
XCOMET-ENSEMBLE 0.010 [90-100%] 0.0035 [100-100%] 0.0033 [100-100%]
XCOMET-QE-ENSEMBLE 0.0065 [100-100%] 0.0027 [100-100%] 0.0042 [93-100%]
XLSIM 0.0019 [100-100%] 0.0018 [100-100%] 0.0022 [100-100%]
YISI-1 0.0013 [100-100%] 0.0033 [73-100%] 0.00074 [100-100%]

Table 11: Minimum ∆M when Pr(pM < 0.05|∆M) = 0.8 for each metric in different translation directions
round to 2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out
cross validation.

tion, and Table 11 shows that the range of precision
in the cross validation are consistently high across
metrics. This means the metric cut-offs we find
using the regression model are reliable.

Our results, agreeing with Marie (2022), show
that to claim significant differences (pM < 0.05)

in BLEU with high confidence (80%), the BLEU

differences should be greater than 1.1 BLEU for
en→de. Table 11 serves as a reference of metric
differences with respect to statistical significance
with high confidence. For example, when evaluat-
ing en→de translation quality, we see that a BLEU
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difference of 1.1 corresponds to 80% confidence
the difference is statistical significant. Meanwhile,
a COMET score difference of 0.0038 would have
the same 80% chance of statistical significance.

We have to emphasize again that our result
should NOT be interpreted as evidence to forego
significance tests or appropriate human evaluation.
Instead, we are only providing assistance to build
an intuition on the meaning of the scores provided
by the new metrics to encourage the transition away
from BLEU.

8 Synthetic Reference Translations

Reference-based metrics compare machine trans-
lations of source segments to human translations
of those same source segments to determine how
good they are. The quality of the underlying human
translation is crucial and can impact the quality of
the predicted scores more than the choice of met-
ric (Freitag et al., 2020). Motivated by the low hu-
man ratings of refA for Chinese→English (Table 4)
and the relatively high rankings of reference-free
metrics (in comparison to other language pairs)
for this language-pair, we investigate a method for
generating a synthetic reference translation based
on the MT output and the corresponding MQM
ratings.

8.1 Synthetic Reference Generation

The main idea is straightforward: Given the set of
translations of WMT23 General MT Shared Task
(generalMT2023) from the WMT campaign and
their corresponding MQM ratings, we generate a
new synthetic reference translation by choosing
for each segment the translation that received the
lowest MQM error score as the selected reference.
The original human reference translation (i.e. refA)
is considered as one of the possible translations
in this process, and MQM score ties are broken
randomly. Table 12 shows the resulting MQM
score of the synthetic reference translations. We
were able to reduce the MQM score to below 1 for
both tested language pairs (en→de and zh→en),
which corresponds to an average of less than one
minor error per segment. While this may seem like
a significant improvement, we must caution the
reader that this is in essence "cherry-picking" based
on the MQM ratings and may therefore introduce
many hidden issues.

It is also interesting to understand how many
segments come from each of the individual MT

zh→en en→de

synthetic Ref. 0.66 0.87
best MT 2.10 3.72
refA 4.83 2.96

Table 12: MQM scores of the synthetic references.

systems in this selection process. Table 13 shows
the number of segments contributed by each sys-
tem to the generated synthetic reference transla-
tions. Unsurprisingly, the top performing MT sys-
tems are also the main contributors to the selected
synthetic reference translation. For en→de, refA
(the original human-generated reference transla-
tion) provided the majority of the selected trans-
lations, while for zh→en GPT4-5shot is the main
contributor, reflecting that the human-generated
reference refA for zh→en was indeed error-prone.
However, it is interesting to note that despite the
overall low quality of this human-generated ref-
erence, our method still selected 209 segments
from this translation as the lowest-error translation.
This would appear to indicate that these human-
generated reference translations are not uniformly
bad, and only a subset of the translations were un-
reliable and contained major errors. A possible ex-
planation could be that multiple translators worked
on the reference, however, we confirmed with the
sponsor translating zh→en that all segments were
translated with the same translator.

zh→en en→de

GPT4-5shot 314 refA 243
refA 209 GPT4-5shot 57
Lan-BridgeMT 157 ONLINE-B 36
ANVITA 142 ONLINE-A 20
HW-TSC 105 AIRC 20
IOL_Research 42 ONLINE-W 19
ONLINE-W 33 NLLB_Greedy 14
ONLINE-Y 28 NLLB_MBR_BLEU 13
ONLINE-B 26 ONLINE-G 10
ONLINE-A 24 ONLINE-Y 9
ONLINE-G 21 Lan-BridgeMT 9
NLLB_Greedy 20 ONLINE-M 8
ZengHuiMT 18 ZengHuiMT 2
Yishu 18
NLLB_MBR_BLEU 14
ONLINE-M 6

Table 13: Number of segments contributed by each
system towards the synthetic reference.

8.2 Impact on Metrics

Figure 8 compares the segment-level and system-
level Pearson correlations of all submitted metrics
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Figure 8: Pearson Correlation when using either the synthetic ref or the original human translation as reference
translation. QE metrics are coloured in yellow; ref-based metrics are coloured in blue.

when using either the original or the synthetic ref-
erence translation. Reference-based metrics are
coloured in blue, while QE metrics are coloured
in orange. Obviously, as QE metrics do not use
reference translations, their correlations are ex-
actly the same. For Chinese→English, replac-
ing the human-generated reference translation by
the synthetic reference translation has a dramatic
impact. All reference-based metrics increased
their correlation levels with human judgements at
both the segment-level and the system-level. This
clearly indicates how critically important a high
quality reference translation is for reference-based
metrics, but moreover, it also highlights the ad-
vantages of QE metrics in cases where human-
generated references have major quality issues. For
the English→German language pair, the human-
generated reference translation is of higher quality
than any submitted MT system. Consequently, the
synthetic reference translation had almost no im-
pact on the segment-level correlations and only a
mixed impact on the system-level correlations.

The main takeaways from this study are (i) poor
human-generated reference translations can dramat-
ically hurt the performance and reliability of your
metric, (ii) strong QE metrics can be better alterna-
tives in such scenarios, and (iii) generating a syn-
thetic reference translation from all system outputs

can be used to mitigate bad reference translations,
although it assumes obtaining MQM annotations
and suffers from cherry-picking bias.10

An open unanswered question remains: is it al-
ways necessary for a reference translation to be of
higher quality than the translation generated by the
MT system, in order to have a reliable reference-
based metric? This would imply that generating
a synthetic reference translation with any errors
is problematic, since for any reference-based au-
tomatic metric, these synthetic references would
become useless for evaluating any MT system that
generates translations that surpasses the reference
in quality.

9 DA+SQM Human Evaluation

In addition to our MQM annotations and as a con-
trastive evaluation to cover more language pairs,
we look into the performance of metrics when com-
pared to the human evaluation campaign conducted
by the WMT23 General MT Shared Task (Kocmi
et al., 2023), who ran human evaluation for all 14
translation directions and all WMT23 submissions.

In contrast to previous years, they no longer use

10Among other issues, any practical strategy for creating
synthetic references would need to have a way of avoiding bias
toward systems that are similar to the ones used for reference
creation.
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MTurk neither reference-based evaluation for into-
English language pairs. They no longer use z-score
normalization because the user interface decision
to not track users (i.e., only maintaining HIT in-
formation) means that the z-scores are likely to be
influenced by the distribution of system quality in
the HITs rather than only annotator variation.

They employ the Direct Assessment Scalar Qual-
ity Metrics (DA+SQM) technique as presented in
Kocmi et al. (2022a).

DA+SQM asks bilingual raters to annotate sys-
tem translations against original sources on a 0–
100 labelled scale. The scale is marked with seven
points representing expected quality.

At the time of writing, the WMT23 General
MT Shared Task had collected data only for 8
translation directions: Chinese↔English (zh↔en),
German↔English (de↔en), Japanese↔English
(ja↔en), English→Czech (en→cz), and
Czech→Ukrainian (cz→uk).

We present system-level accuracy results for
both MQM and DA+SQM in Table 14. There are
many factors that could affect the ranking. Apart
from using a different human annotation protocol,
MQM compares 3 translation directions whereas
the DA+SQM compares 8 translation directions,
containing also the non-English low-resource pair
of cz→uk. There is an overlap of only two trans-
lation directions between the two: en→de and
zh→en. The main difference in ranking is for met-
rics XCOMET-Ensemble and MetricX-23 ranking
significantly lower than for MQM. Investigating
system-level Pearson’s correlation for individual
languages in Tables 19 to 27 shows that both met-
rics are performing considerably lower across all
languages (except en→cz and cz→uk) and we do
not see any pattern behind the drop in performance.

10 Challenge Sets Sub-task

For the second year, we included a sub-task on chal-
lenge sets. This sub-task is inspired by the Build it
or break it: The Language Edition shared task (Et-
tinger et al., 2017) which aimed at testing the gener-
alizability of NLP systems beyond the distributions
of their training data. Whereas the standard evalua-
tion of the shared task runs on test sets containing
generic text from real-world content, the challenge
set evaluation is based on test sets designed with
the aim of revealing the abilities or the weaknesses
of the metrics on evaluating particular translation
phenomena. In order to shed light on different per-

Metric MQM DA+SQM
Translation directions 3 8
System pairs (N) 237 793

GEMBA-MQM* 0.944 (1) 0.899 (1)
XCOMET-Ensemble 0.928 (2) 0.870 (10)
MetricX-23 0.908 (3) 0.863 (11)
XCOMET-QE-Ensemble* 0.908 (4) 0.871 (8)
CometKiwi* 0.904 (5) 0.887 (3)
COMET 0.900 (6) 0.890 (2)
BLEURT-20 0.892 (7) 0.880 (6)
MetricX-23-QE* 0.892 (8) 0.870 (9)
mre-score-labse-regular 0.888 (9) 0.861 (12)
KG-BERTScore* 0.884 (10) 0.884 (4)
cometoid22-wmt22* 0.880 (11) 0.884 (5)
BERTscore 0.871 (12) 0.799 (16)
MS-COMET-QE-22* 0.871 (13) 0.879 (7)
YiSi-1 0.871 (14) 0.832 (13)
eBLEU 0.859 (15) 0.781 (19)
XLsim 0.855 (16) 0.831 (14)
prismRef 0.851 (17) 0.808 (15)
embed_llama 0.831 (18) 0.778 (20)
f200spBLEU 0.819 (19) 0.786 (17)
BLEU 0.815 (20) 0.770 (22)
tokengram_F 0.815 (21) 0.786 (18)
chrF 0.795 (22) 0.777 (21)
Random-sysname* 0.578 (23) 0.580 (23)
prismSrc* 0.386 (24) 0.412 (24)

Table 14: Comparison between system-level pairwise
accuracy using MQM and DA+SQM gold scores. MQM
results pool data from our 3 main language pairs;
DA+SQM results pool data from the 8 language pairs
for which DA+SQM scores are available. Rows are
sorted by MQM accuracy, with the pure rank order indi-
cated in brackets. Starred metrics are reference-free and
underlined metrics are baselines.

spectives on evaluation, the sub-task takes place
in a decentralized manner, where, contrary to the
main metric task, the test sets are not provided by
the organizers but by different research teams, who
are also responsible for analysing and presenting
the results.

This subtask is made of three consecutive phases;
1) the Breaking Round, 2) the Scoring Round and
3) the Analysis Round:

1. In the Breaking Round, every challenge set
participant (Breaker) submits their challenge
set S composed of contrastive examples for
different phenomena, where every example
(s, t̂, t, r) ∈ S contains one source sentence s,
one incorrect translation t̂, one correct transla-
tion t and one reference r.

2. In the Scoring Round, the organizers decom-
pose the S into a blind test set S′, where each
example includes either an incorrect transla-
tion (s, t̂, r) or a correct translation (s, t, r)
along with the source and the reference. The
separated contrastive examples are shuffled,
and the golden truth of which samples are cor-
rect or incorrect is kept in a separate set. The
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challenge set directions phenomena items citation availability (https://github.com/)

ACES 146 translation errors 36476 Amrhein et al. (2023) EdinburghNLP/ACES

DFKI-CS 3 linguistic phenomena 20993 Avramidis et al. (2023) DFKI-NLP/mt-testsuite

MSLC23 4 low quality MT 9345 Lo et al. (2023b) nrc-cnrc/MSLC23

Table 15: Overview of the participation at the metrics challenge sets sub-task

metrics participants from the main task (the
Builders) are asked to score with their met-
rics the translations in the given blind test set
without knowing which ones are correct or
incorrect. Also, in this phase, the organizers
score all data with the baseline metrics.

3. Finally, after having gathered all metric scores,
the organizers return the respective scored
translations to the Breakers for the Analysis
round, where they look at which metrics are
able to correctly rank the correct translations
higher than the incorrect ones for the phenom-
ena being tested.

There were 3 submissions this year, covering a
wide range of phenomena and 146 different trans-
lation directions. An overview of the submitted
challenge sets can be seen in Table 15. A short
description of every submission follows:

ACES Challenge Set The Translation Accuracy
ChallengE Set (ACES, Amrhein et al., 2023) con-
sists of 36K examples representing challenges from
68 phenomena and covering 146 translation direc-
tions. The phenomena range from simple perturba-
tions at the word/character level to more complex
errors based on discourse and real-world knowl-
edge. We benchmark the performance of segment-
level metrics submitted to WMT 2023 using ACES.
For each metric, the authors provide a detailed pro-
file of performance across the ten top-level accu-
racy error categories in ACES as well as an overall
ACES-Score for quick comparison. They also mea-
sure the incremental performance of the metrics
submitted to both WMT 2023 and 2022.

They find that:

• there is no clear winner among the metrics
submitted to WMT 2023,

• neural metrics also tend to focus more on lex-
ical overlap than semantic content,

• reference-free metrics using language-
agnostic multilingual embeddings struggle
with detecting untranslated or sentences
translated in the wrong direction, and

• performance change between the 2023 and
2022 versions of the metrics is highly variable.

The authors’ recommendations are similar to
those from WMT 2022. Metric developers should
focus on: building ensembles of metrics from
different design families, developing metrics that
pay more attention to the source and rely less on
surface-level overlap, and carefully determining
the influence of multilingual embeddings on MT
evaluation.

DFKI Challenge Set The submission by DFKI
(Avramidis et al., 2023) employs a linguistically
motivated challenge set that includes about 21,000
items extracted from 155 machine translation sys-
tems for three language directions (de→en, en→de,
en→ru), covering more than 100 linguistically-
motivated phenomena organized in 14 categories.
The metrics that have the best performance with re-
gard to our linguistically motivated analysis are the
COMETOID22-WMT23 for de→en and METRICX-
23-C for en→de and en→ru. Some of the most
difficult phenomena for the metrics to score are
passive voice for de→en, named entities, termi-
nology and measurement units for en→de and fo-
cus particles, adverbial clause and stripping for
en→ru.

MSLC23 Challenge Set The Metric Score Land-
scape Challenge (MSLC23; Lo et al., 2023b) data
set aims to gain insight into metric scores on a
broader/wider landscape of MT quality. Recent
development of MT evaluation metrics has focused
on improving their correlation with human judg-
ment on translations of high-quality systems (e.g.,
participants in the WMT News/General MT Shared
Tasks). This means that metric performance may
be untested on low- to medium-quality MT out-
put. MSLC23 provides a collection of low- to
medium-quality MT output on the news portion
of the WMT23 General MT Shared Task test set.
Together with the high quality systems submitted
to the General MT Shared Task, this enables bet-
ter interpretation of metric scores across a range
of different levels of translation quality. With this

https://github.com/EdinburghNLP/ACES
https://github.com/DFKI-NLP/mt-testsuite
https://github.com/nrc-cnrc/MSLC23
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wider range of MT quality, the authors also visual-
ize and analyse metric characteristics beyond just
correlation.

The authors find that the smaller variations in
segment-level scores given by some metrics at the
low end of quality could indicate that these metrics
struggle to discriminate between low-quality MT
systems. This is further shown by the observation
that some metrics rank the low-quality systems in
reverse order at system level. A “universal score”
phenomenon for some metrics, where a small sub-
set of non-minimum/maximum distinct scores are
assigned to a variety of translation output, has been
discovered. There is also an observation of diverse
behaviours from different metrics on empty string
translation. These results highlight the need for
metric researchers to check their metrics’ perfor-
mance on a wider landscape of translation quality,
or to indicate to potential users that they should be
cautious about using their metric on a wide range
of quality.

11 Conclusion

This paper summarizes the results of the WMT23
shared task on automated machine translation
evaluation, the Metrics Shared Task. We pre-
sented an extensive analysis on how well met-
rics perform on our three main translation direc-
tions: English→German, Hebrew→English and
Chinese→English. The results, based on 10 differ-
ent tasks, confirm the superiority of neural-based
learned metrics over overlap-based metrics like
BLEU, SPBLEU or CHRF. These results are con-
firmed with DA+SQM human judgement. We also
found that reference-free metrics were strong con-
tenders this year, partly because they do not rely on
the quality of reference translations, an increasingly
important issue as MT systems under evaluation
become better. In addition, we continued the chal-
lenge set subtask, where participants had to create
contrastive test suites for evaluating metrics’ ability
to capture and penalise specific types of translation
errors.

12 Ethical Considerations

MQM annotations and additional reference transla-
tions in this paper are done by professional transla-
tors. They are all paid at professional rates.

Organizers from the National Research Council
Canada and Unbabel have submitted to this task
the frozen stable versions of their metrics (YiSi

and COMET) dated before this year’s shared task
and publicly available. Newer versions of COMET
were developed without using any of the test set,
test suite or challenge sets. We ensured that the
metrics co-authored by Tom Kocmi were imple-
mented without using any privileged test sets or
insider information.
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A Correlations with MQM for all metrics

Tables 16 and 17 contain system- and segment-level results for all metrics (including contrastive sub-
missions) on the 10 standard tasks described in Table 7. No pairwise significance tests were carried
out for these results, so the per-task ranks only indicate each metric’s order on that task, rather than its
significance cluster as in Tables 8 and 9.

lang: en→de,he→en,zh→en en→de he→en zh→en
corr_fcn: accuracy pearson pearson pearson
metric avg-corr task1 task2 task5 task8

XCOMET-Ensemble 1 0.825 6 0.928 9 0.980 4 0.950 14 0.927
XCOMET-XXL 2 0.824 5 0.932 7 0.982 1 0.964 16 0.911
MetricX-23-QE-b* 3 0.823 2 0.940 8 0.982 5 0.947 15 0.926
XCOMET-XL 4 0.816 7 0.924 18 0.973 11 0.937 26 0.884
MetricX-23-QE-c* 5 0.813 4 0.932 20 0.972 8 0.939 4 0.974
MetricX-23-b 6 0.811 9 0.916 4 0.990 15 0.928 19 0.902
XCOMET-QE-Ensemble* 7 0.808 13 0.908 16 0.974 23 0.909 23 0.892
MetricX-23 8 0.808 12 0.908 12 0.977 22 0.910 28 0.873
GEMBA-MQM* 9 0.802 1 0.944 1 0.993 9 0.939 1 0.991
MetricX-23-QE* 10 0.800 24 0.892 22 0.969 35 0.858 30 0.859
cometoid22-wmt23* 11 0.794 3 0.936 10 0.979 16 0.928 8 0.956
mbr-metricx-qe* 12 0.788 29 0.880 13 0.976 19 0.915 11 0.936
CometKiwi-XXL* 13 0.786 11 0.912 6 0.986 14 0.929 2 0.978
CometKiwi-XL* 14 0.786 8 0.916 14 0.975 29 0.900 3 0.974
MaTESe 15 0.782 17 0.904 36 0.918 25 0.906 25 0.889
CometKiwi* 16 0.782 16 0.904 27 0.946 34 0.860 6 0.963
COMET 17 0.779 20 0.900 3 0.990 7 0.940 21 0.898
MetricX-23-c 18 0.778 10 0.916 28 0.944 6 0.946 9 0.953
instructscore 19 0.777 22 0.896 25 0.952 21 0.910 31 0.825
BLEURT-20 20 0.776 23 0.892 5 0.990 12 0.937 27 0.880
KG-BERTScore* 21 0.774 27 0.884 30 0.926 24 0.908 7 0.962
sescoreX 22 0.772 25 0.892 26 0.952 28 0.901 35 0.797
cometoid22-wmt22* 23 0.772 28 0.880 17 0.973 37 0.839 10 0.940
cometoid22-wmt21* 24 0.768 30 0.871 19 0.973 38 0.832 13 0.929
docWMT22CometDA 25 0.768 18 0.904 2 0.990 17 0.922 17 0.907
docWMT22CometKiwiDA* 26 0.767 21 0.900 21 0.970 26 0.906 5 0.965
Calibri-COMET22 27 0.767 15 0.904 23 0.963 13 0.930 29 0.863
Calibri-COMET22-QE* 28 0.755 34 0.863 11 0.978 40 0.778 12 0.934
YiSi-1 29 0.754 33 0.871 31 0.925 18 0.917 32 0.823
MS-COMET-QE-22* 30 0.744 32 0.871 24 0.959 43 0.721 20 0.901
prismRef 31 0.744 37 0.851 33 0.920 3 0.956 40 0.762
mre-score-labse-regular 32 0.743 26 0.888 29 0.942 2 0.958 18 0.903
BERTscore 33 0.742 31 0.871 38 0.891 30 0.895 33 0.810
XLsim 34 0.719 36 0.855 32 0.925 31 0.887 36 0.796
f200spBLEU 35 0.704 40 0.819 34 0.919 39 0.805 39 0.772
MEE4 36 0.704 39 0.823 41 0.861 32 0.879 41 0.743
tokengram_F 37 0.703 42 0.815 43 0.858 33 0.878 37 0.795
embed_llama 38 0.701 38 0.831 42 0.861 36 0.841 38 0.785
BLEU 39 0.696 41 0.815 37 0.917 42 0.769 42 0.734
chrF 40 0.694 43 0.795 40 0.866 41 0.776 34 0.809
eBLEU 41 0.692 35 0.859 35 0.918 20 0.911 43 0.727
Random-sysname* 42 0.529 44 0.578 44 0.357 44 0.209 44 0.093
prismSrc* 43 0.455 45 0.386 45 -0.327 45 -0.017 45 -0.406
HuaweiTSC_EE_Metric – – 19 0.900 39 0.878 27 0.903 22 0.894
slide* – – 14 0.904 15 0.975 10 0.938 24 0.890

Table 16: Results for all metrics on system-level tasks for main language pairs. Rows are sorted by the overall
average correlation across all 10 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→de en→de he→en he→en zh→en zh→en
corr_fcn: pearson acc-t pearson acc-t pearson acc-t
metric task3 task4 task6 task7 task9 task10

XCOMET-Ensemble 2 0.695 3 0.604 1 0.556 1 0.586 2 0.650 2 0.543
XCOMET-XXL 1 0.695 4 0.603 2 0.556 4 0.577 5 0.627 3 0.541
MetricX-23-QE-b* 5 0.628 1 0.606 6 0.529 3 0.580 1 0.661 4 0.539
XCOMET-XL 3 0.680 6 0.601 5 0.536 7 0.568 7 0.624 9 0.531
MetricX-23-QE-c* 11 0.525 11 0.581 7 0.526 6 0.576 9 0.581 1 0.545
MetricX-23-b 9 0.566 2 0.604 4 0.537 2 0.581 8 0.612 6 0.535
XCOMET-QE-Ensemble* 4 0.679 8 0.588 9 0.498 10 0.554 4 0.647 7 0.533
MetricX-23 7 0.585 5 0.603 3 0.548 5 0.577 6 0.625 8 0.531
GEMBA-MQM* 16 0.502 17 0.572 13 0.401 9 0.564 16 0.449 14 0.522
MetricX-23-QE* 6 0.626 7 0.596 8 0.520 8 0.564 3 0.647 11 0.527
cometoid22-wmt23* 20 0.448 9 0.586 16 0.397 15 0.544 19 0.439 15 0.520
mbr-metricx-qe* 8 0.571 10 0.584 12 0.411 11 0.553 13 0.489 5 0.537
CometKiwi-XXL* 28 0.417 13 0.578 19 0.390 13 0.550 24 0.390 10 0.528
CometKiwi-XL* 21 0.446 18 0.571 22 0.384 18 0.533 21 0.430 13 0.522
MaTESe 10 0.554 30 0.528 10 0.459 12 0.550 11 0.511 34 0.479
CometKiwi* 18 0.475 19 0.569 20 0.387 14 0.544 18 0.442 12 0.525
COMET 25 0.432 15 0.574 14 0.401 19 0.532 22 0.396 19 0.514
MetricX-23-c 15 0.508 27 0.539 31 0.313 20 0.531 27 0.371 21 0.507
instructscore 12 0.519 20 0.563 11 0.458 17 0.536 12 0.499 40 0.459
BLEURT-20 17 0.484 16 0.572 24 0.382 24 0.519 26 0.378 16 0.518
KG-BERTScore* 19 0.451 23 0.556 23 0.382 16 0.537 20 0.430 17 0.516
sescoreX 13 0.519 21 0.563 21 0.385 33 0.484 10 0.536 24 0.499
cometoid22-wmt22* 23 0.441 14 0.578 26 0.365 25 0.515 14 0.479 18 0.515
cometoid22-wmt21* 26 0.428 12 0.581 27 0.360 26 0.515 15 0.458 20 0.514
docWMT22CometDA 30 0.394 22 0.559 28 0.339 31 0.497 29 0.353 28 0.493
docWMT22CometKiwiDA* 22 0.444 24 0.547 33 0.286 32 0.489 25 0.387 27 0.493
Calibri-COMET22 29 0.413 34 0.522 15 0.401 27 0.515 23 0.396 36 0.474
Calibri-COMET22-QE* 24 0.441 41 0.483 18 0.395 29 0.506 17 0.443 29 0.491
YiSi-1 31 0.366 26 0.542 17 0.395 21 0.529 30 0.290 22 0.504
MS-COMET-QE-22* 33 0.310 25 0.546 32 0.295 30 0.498 28 0.367 26 0.498
prismRef 14 0.516 38 0.518 30 0.319 22 0.528 33 0.183 23 0.504
mre-score-labse-regular 41 0.111 28 0.530 25 0.378 23 0.522 35 0.145 32 0.481
BERTscore 32 0.325 31 0.528 29 0.335 28 0.515 31 0.236 25 0.499
XLsim 35 0.239 32 0.527 35 0.233 34 0.480 37 0.111 39 0.464
f200spBLEU 36 0.237 33 0.526 36 0.230 37 0.447 38 0.108 35 0.476
MEE4 39 0.202 29 0.529 34 0.256 41 0.441 39 0.105 33 0.480
tokengram_F 38 0.227 35 0.520 37 0.226 35 0.461 41 0.060 31 0.485
embed_llama 34 0.250 40 0.483 40 0.215 42 0.430 34 0.161 41 0.447
BLEU 40 0.192 36 0.520 39 0.220 39 0.442 36 0.119 38 0.472
chrF 37 0.232 37 0.519 38 0.221 36 0.460 40 0.063 30 0.485
eBLEU 43 -0.011 39 0.512 42 0.131 38 0.445 43 -0.084 37 0.473
Random-sysname* 42 0.064 43 0.409 43 0.041 43 0.428 42 0.018 43 0.381
prismSrc* 27 0.425 42 0.426 41 0.140 40 0.441 32 0.223 42 0.421

Table 17: Results for all metrics on segment-level tasks for main language pairs. Rows are sorted by the overall
average correlation across all 10 tasks (leftmost column in Table 16). Starred metrics are reference-free, underlined
metrics are baselines, and italicized metrics are contrastive submissions.
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metric avg corr p-values

XCOMET-Ensemble 1 0.825 . 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
XCOMET-QE-Ensemble* 2 0.808 . . 46 20 26 00 00 00 01 01 01 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-23 2 0.808 . . . 24 25 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
GEMBA-MQM* 2 0.802 . . . . 43 03 00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-23-QE* 2 0.800 . . . . . 13 07 05 03 00 06 02 00 00 00 00 01 01 00 00 02 00 00 00 00 00 00 00 00 00 00 00
mbr-metricx-qe* 3 0.788 . . . . . . 31 24 17 10 16 09 02 02 00 00 00 03 00 02 01 00 00 00 00 00 00 00 00 00 00 00
MaTESe 3 0.782 . . . . . . . 48 38 26 19 24 12 09 04 06 03 03 00 01 03 00 00 00 00 00 00 00 00 00 00 00
CometKiwi* 3 0.782 . . . . . . . . 39 25 26 23 04 07 01 02 02 02 00 00 01 00 00 00 00 00 00 00 00 00 00 00
COMET 3 0.779 . . . . . . . . . 22 34 25 23 01 19 11 11 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BLEURT-20 3 0.776 . . . . . . . . . . 46 34 35 10 20 16 13 04 02 00 00 01 00 00 00 00 00 00 00 00 00 00
KG-BERTScore* 3 0.774 . . . . . . . . . . . 43 49 24 29 32 16 08 00 04 07 02 00 00 00 00 00 00 00 00 00 00
sescoreX 3 0.772 . . . . . . . . . . . . 49 30 37 31 18 06 08 03 04 04 00 00 00 00 00 00 00 00 00 00
cometoid22-wmt22* 4 0.772 . . . . . . . . . . . . . 34 22 22 07 14 03 04 07 01 00 00 00 00 00 00 00 00 00 00
docWMT22CometDA 4 0.768 . . . . . . . . . . . . . . 51 44 24 10 03 03 03 04 00 00 00 00 00 00 00 00 00 00
docWMT22CometKiwiDA* 4 0.767 . . . . . . . . . . . . . . . 48 14 20 07 09 12 03 00 00 00 00 00 00 00 00 00 00
Calibri-COMET22 4 0.767 . . . . . . . . . . . . . . . . 17 23 10 16 11 01 00 00 00 00 00 00 00 00 00 00
Calibri-COMET22-QE* 4 0.755 . . . . . . . . . . . . . . . . . 45 30 36 30 18 07 01 04 02 01 00 00 00 00 00
YiSi-1 4 0.754 . . . . . . . . . . . . . . . . . . 30 13 22 31 00 00 00 00 00 00 00 00 00 00
MS-COMET-QE-22* 5 0.744 . . . . . . . . . . . . . . . . . . . 52 49 43 12 01 02 02 02 01 00 00 00 00
prismRef 5 0.744 . . . . . . . . . . . . . . . . . . . . 44 44 00 00 01 00 00 00 00 00 00 00
mre-score-labse-regular 5 0.743 . . . . . . . . . . . . . . . . . . . . . 49 06 01 04 01 00 00 00 00 00 00
BERTscore 5 0.742 . . . . . . . . . . . . . . . . . . . . . . 18 03 07 05 01 02 02 00 00 00
XLsim 6 0.719 . . . . . . . . . . . . . . . . . . . . . . . 04 10 01 06 01 01 00 00 00
f200spBLEU 7 0.704 . . . . . . . . . . . . . . . . . . . . . . . . 51 48 39 06 13 12 00 00
MEE4 7 0.704 . . . . . . . . . . . . . . . . . . . . . . . . . 46 46 33 23 16 00 00
tokengram_F 7 0.703 . . . . . . . . . . . . . . . . . . . . . . . . . . 45 22 15 11 00 00
embed_llama 7 0.701 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 30 29 00 00
BLEU 7 0.696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 35 00 00
chrF 7 0.694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 00 00
eBLEU 7 0.692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 00
Random-sysname* 8 0.529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04
prismSrc* 9 0.455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 18: Results of pairwise metric significance tests for primary submissions using permutation resampling. Each
value gives the 100 × estimated probability of the null hypothesis that the average correlation of the metric in the
current row is ≤ the average correlation of the metric in the current column. Starred metrics are reference-free, and
underlined metrics are baselines.

B Significance comparisons for main results

Table 18 contains the results of pairwise comparisons for the results in Table 1.

C Correlations with WMT DA-SQM for all metrics

Tables 19 to 27 give correlations with WMT direct assessment (DA-SQM) scores on all 8 translation
directions for which those scores are available. In all cases, reference A was used, and no additional
metrics were available to be scored by the metrics. We evaluate metrics on a task setup similar to that
of Table 7: one system-level pairwise accuracy task involving all languages (with a weight of 8), and
system-level Pearson, segment-level Pearson, and segment-level acc∗eq tasks for each translation direction
(24 tasks in total, each with a weight of 1). Each table shows overall average correlation, along with the
results for the tasks for one translation direction. Metrics that did not participate in all tasks do not have
an average correlation, and are displayed at the end of each table.

We wish to emphasize that the DA+SQM is considerably noisier than MQM. This increased variability
may influence the outcomes observed in the following spotlight evaluation. Consequently, readers should
exercise considerable caution when drawing conclusions from these results.
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lang: cs→uk,de→en,en→cs,en→de,en→ja,en→zh,ja→en,zh→en
corr_fcn: accuracy
metric avg-corr task1

CometKiwi-XXL* 1 0.798 1 0.912
CometKiwi-XL* 2 0.795 2 0.905
COMET 3 0.787 8 0.890
CometKiwi* 4 0.787 10 0.887
cometoid22-wmt23* 5 0.786 6 0.897
KG-BERTScore* 6 0.784 12 0.884
MetricX-23-QE-c* 7 0.780 9 0.887
BLEURT-20 8 0.778 15 0.880
MetricX-23-QE-b* 9 0.777 14 0.880
cometoid22-wmt22* 10 0.776 13 0.884
MetricX-23-c 11 0.775 5 0.898
cometoid22-wmt21* 12 0.774 11 0.885
XCOMET-Ensemble 13 0.774 20 0.870
MetricX-23-b 14 0.768 17 0.873
MetricX-23-QE* 15 0.768 19 0.870
MS-COMET-QE-22* 16 0.767 16 0.879
XCOMET-QE-Ensemble* 17 0.766 18 0.871
MetricX-23 18 0.762 22 0.863
YiSi-1 19 0.749 25 0.832
XCOMET-XL 20 0.748 24 0.860
XLsim 21 0.745 26 0.831
XCOMET-XXL 22 0.743 21 0.866
GEMBA-MQM* 23 0.739 4 0.899
prismRef 24 0.736 27 0.808
mre-score-labse-regular 25 0.734 23 0.861
BERTscore 26 0.732 28 0.799
tokengram_F 27 0.714 30 0.786
chrF 28 0.712 33 0.777
f200spBLEU 29 0.708 29 0.786
embed_llama 30 0.701 32 0.778
eBLEU 31 0.694 31 0.781
BLEU 32 0.660 34 0.770
Random-sysname* 33 0.537 35 0.580
prismSrc* 34 0.514 36 0.412
HuaweiTSC_EE_Metric – – 7 0.892
slide* – – 3 0.902

Table 19: Correlations with WMT DA-SQM scores for all metrics on all-pairs data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: cs→uk cs→uk cs→uk
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 12 0.889 4 0.462 6 0.555
CometKiwi-XL* 2 0.795 18 0.866 15 0.412 10 0.548
COMET 3 0.787 5 0.899 6 0.454 8 0.553
CometKiwi* 4 0.787 23 0.788 8 0.429 13 0.536
cometoid22-wmt23* 5 0.786 7 0.898 11 0.420 15 0.534
KG-BERTScore* 6 0.784 24 0.788 9 0.429 16 0.530
MetricX-23-QE-c* 7 0.780 3 0.920 2 0.502 9 0.553
BLEURT-20 8 0.778 2 0.926 7 0.443 12 0.538
MetricX-23-QE-b* 9 0.777 6 0.898 16 0.410 4 0.559
cometoid22-wmt22* 10 0.776 19 0.851 19 0.403 19 0.528
MetricX-23-c 11 0.775 1 0.932 1 0.523 5 0.558
cometoid22-wmt21* 12 0.774 21 0.822 14 0.414 23 0.521
XCOMET-Ensemble 13 0.774 8 0.897 3 0.482 3 0.560
MetricX-23-b 14 0.768 13 0.888 17 0.410 1 0.568
MetricX-23-QE* 15 0.768 11 0.889 21 0.382 7 0.555
MS-COMET-QE-22* 16 0.767 20 0.851 23 0.322 24 0.519
XCOMET-QE-Ensemble* 17 0.766 17 0.873 5 0.462 11 0.540
MetricX-23 18 0.762 15 0.879 20 0.395 2 0.567
YiSi-1 19 0.749 26 0.753 25 0.315 20 0.526
XCOMET-XL 20 0.748 14 0.882 10 0.423 18 0.529
XLsim 21 0.745 22 0.792 24 0.318 21 0.526
XCOMET-XXL 22 0.743 9 0.897 18 0.407 33 0.436
GEMBA-MQM* 23 0.739 4 0.913 12 0.419 34 0.323
prismRef 24 0.736 27 0.694 22 0.372 17 0.530
mre-score-labse-regular 25 0.734 25 0.772 13 0.417 14 0.534
BERTscore 26 0.732 32 0.544 26 0.292 22 0.524
tokengram_F 27 0.714 30 0.626 28 0.268 25 0.518
chrF 28 0.712 29 0.637 27 0.273 26 0.517
f200spBLEU 29 0.708 28 0.676 30 0.221 28 0.504
embed_llama 30 0.701 34 0.511 33 0.157 30 0.492
eBLEU 31 0.694 33 0.512 31 0.188 27 0.511
BLEU 32 0.660 31 0.548 32 0.184 31 0.480
Random-sysname* 33 0.537 35 0.343 34 0.047 32 0.469
prismSrc* 34 0.514 36 -0.236 29 0.261 29 0.495
HuaweiTSC_EE_Metric – – 10 0.893 – – – –
slide* – – 16 0.877 – – – –

Table 20: Correlations with WMT DA-SQM scores for all metrics on cs→uk data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: de→en de→en de→en
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 15 0.931 14 0.411 11 0.571
CometKiwi-XL* 2 0.795 12 0.934 17 0.402 13 0.569
COMET 3 0.787 6 0.953 2 0.480 2 0.584
CometKiwi* 4 0.787 14 0.933 9 0.447 16 0.559
cometoid22-wmt23* 5 0.786 17 0.913 3 0.471 12 0.571
KG-BERTScore* 6 0.784 13 0.933 7 0.447 20 0.553
MetricX-23-QE-c* 7 0.780 30 0.835 8 0.447 7 0.574
BLEURT-20 8 0.778 3 0.965 1 0.486 5 0.578
MetricX-23-QE-b* 9 0.777 21 0.893 12 0.425 4 0.579
cometoid22-wmt22* 10 0.776 23 0.881 6 0.449 17 0.558
MetricX-23-c 11 0.775 9 0.944 27 0.298 24 0.544
cometoid22-wmt21* 12 0.774 26 0.856 10 0.437 19 0.556
XCOMET-Ensemble 13 0.774 28 0.842 15 0.408 9 0.573
MetricX-23-b 14 0.768 27 0.850 18 0.389 1 0.590
MetricX-23-QE* 15 0.768 24 0.876 13 0.418 8 0.574
MS-COMET-QE-22* 16 0.767 29 0.841 32 0.256 23 0.545
XCOMET-QE-Ensemble* 17 0.766 34 0.813 19 0.385 18 0.556
MetricX-23 18 0.762 31 0.831 20 0.382 3 0.584
YiSi-1 19 0.749 1 0.970 5 0.451 10 0.572
XCOMET-XL 20 0.748 35 0.780 22 0.341 25 0.544
XLsim 21 0.745 8 0.947 23 0.340 15 0.560
XCOMET-XXL 22 0.743 32 0.828 21 0.375 31 0.517
GEMBA-MQM* 23 0.739 10 0.938 4 0.463 34 0.426
prismRef 24 0.736 4 0.963 16 0.403 14 0.565
mre-score-labse-regular 25 0.734 16 0.916 34 0.121 26 0.540
BERTscore 26 0.732 2 0.969 11 0.434 6 0.576
tokengram_F 27 0.714 22 0.891 25 0.319 21 0.551
chrF 28 0.712 25 0.860 24 0.328 22 0.550
f200spBLEU 29 0.708 19 0.904 28 0.291 27 0.539
embed_llama 30 0.701 18 0.913 29 0.275 30 0.525
eBLEU 31 0.694 5 0.954 33 0.207 28 0.538
BLEU 32 0.660 20 0.897 31 0.270 29 0.534
Random-sysname* 33 0.537 37 0.185 35 0.044 33 0.472
prismSrc* 34 0.514 36 0.449 30 0.273 32 0.502
HuaweiTSC_EE_Metric – – 7 0.950 – – – –
slide* – – 11 0.934 – – – –
MaTESe – – 33 0.816 26 0.308 35 0.373

Table 21: Correlations with WMT DA-SQM scores for all metrics on de→en data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→cs en→cs en→cs
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 1 0.922 7 0.367 5 0.548
CometKiwi-XL* 2 0.795 5 0.897 6 0.369 7 0.541
COMET 3 0.787 14 0.865 4 0.377 10 0.524
CometKiwi* 4 0.787 22 0.790 13 0.350 11 0.518
cometoid22-wmt23* 5 0.786 13 0.865 11 0.352 16 0.507
KG-BERTScore* 6 0.784 21 0.790 12 0.350 17 0.507
MetricX-23-QE-c* 7 0.780 6 0.893 3 0.391 8 0.540
BLEURT-20 8 0.778 20 0.793 5 0.373 12 0.510
MetricX-23-QE-b* 9 0.777 10 0.881 18 0.338 2 0.551
cometoid22-wmt22* 10 0.776 17 0.825 16 0.341 18 0.506
MetricX-23-c 11 0.775 23 0.750 19 0.316 13 0.510
cometoid22-wmt21* 12 0.774 18 0.824 17 0.340 14 0.508
XCOMET-Ensemble 13 0.774 3 0.903 1 0.402 6 0.543
MetricX-23-b 14 0.768 11 0.880 15 0.344 1 0.552
MetricX-23-QE* 15 0.768 12 0.878 14 0.348 4 0.549
MS-COMET-QE-22* 16 0.767 19 0.797 21 0.286 21 0.497
XCOMET-QE-Ensemble* 17 0.766 2 0.908 2 0.395 9 0.528
MetricX-23 18 0.762 7 0.891 9 0.361 3 0.550
YiSi-1 19 0.749 26 0.568 24 0.245 24 0.492
XCOMET-XL 20 0.748 4 0.898 8 0.362 15 0.507
XLsim 21 0.745 25 0.627 23 0.259 20 0.503
XCOMET-XXL 22 0.743 8 0.890 10 0.353 33 0.439
GEMBA-MQM* 23 0.739 16 0.852 20 0.309 34 0.327
prismRef 24 0.736 27 0.557 22 0.265 22 0.495
mre-score-labse-regular 25 0.734 24 0.718 33 0.130 19 0.504
BERTscore 26 0.732 30 0.480 25 0.228 23 0.493
tokengram_F 27 0.714 34 0.409 26 0.203 26 0.481
chrF 28 0.712 33 0.450 27 0.201 27 0.480
f200spBLEU 29 0.708 29 0.496 28 0.199 29 0.475
embed_llama 30 0.701 32 0.466 30 0.172 28 0.476
eBLEU 31 0.694 31 0.467 32 0.169 25 0.483
BLEU 32 0.660 28 0.519 29 0.186 30 0.460
Random-sysname* 33 0.537 35 0.015 34 0.002 32 0.452
prismSrc* 34 0.514 36 -0.042 31 0.171 31 0.456
HuaweiTSC_EE_Metric – – 15 0.862 – – – –
slide* – – 9 0.885 – – – –

Table 22: Correlations with WMT DA-SQM scores for all metrics on en→cs data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→de en→de en→de
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 13 0.972 4 0.506 1 0.595
CometKiwi-XL* 2 0.795 5 0.984 3 0.512 3 0.589
COMET 3 0.787 21 0.953 5 0.496 5 0.588
CometKiwi* 4 0.787 1 0.990 1 0.537 6 0.586
cometoid22-wmt23* 5 0.786 26 0.944 6 0.491 12 0.580
KG-BERTScore* 6 0.784 3 0.990 2 0.523 17 0.578
MetricX-23-QE-c* 7 0.780 39 0.859 12 0.465 19 0.576
BLEURT-20 8 0.778 25 0.945 15 0.452 18 0.577
MetricX-23-QE-b* 9 0.777 33 0.910 19 0.437 4 0.588
cometoid22-wmt22* 10 0.776 32 0.911 16 0.447 21 0.575
MetricX-23-c 11 0.775 2 0.990 8 0.482 13 0.580
cometoid22-wmt21* 12 0.774 34 0.905 20 0.433 22 0.574
XCOMET-Ensemble 13 0.774 38 0.861 25 0.399 20 0.576
MetricX-23-b 14 0.768 35 0.896 30 0.377 8 0.583
MetricX-23-QE* 15 0.768 37 0.867 18 0.443 11 0.582
MS-COMET-QE-22* 16 0.767 28 0.942 33 0.371 28 0.558
XCOMET-QE-Ensemble* 17 0.766 41 0.849 29 0.382 27 0.564
MetricX-23 18 0.762 40 0.855 28 0.389 9 0.582
YiSi-1 19 0.749 6 0.980 13 0.456 23 0.571
XCOMET-XL 20 0.748 42 0.845 34 0.365 32 0.552
XLsim 21 0.745 7 0.979 27 0.391 25 0.566
XCOMET-XXL 22 0.743 36 0.868 24 0.399 39 0.525
GEMBA-MQM* 23 0.739 17 0.961 7 0.488 42 0.434
prismRef 24 0.736 16 0.963 37 0.321 36 0.544
mre-score-labse-regular 25 0.734 30 0.927 42 0.144 35 0.548
BERTscore 26 0.732 12 0.973 23 0.417 24 0.567
tokengram_F 27 0.714 27 0.943 32 0.371 30 0.556
chrF 28 0.712 24 0.945 31 0.374 31 0.553
f200spBLEU 29 0.708 14 0.970 36 0.324 29 0.557
embed_llama 30 0.701 23 0.951 35 0.348 34 0.550
eBLEU 31 0.694 31 0.920 41 0.159 37 0.542
BLEU 32 0.660 18 0.958 38 0.275 38 0.541
Random-sysname* 33 0.537 44 0.278 43 0.075 41 0.482
prismSrc* 34 0.514 45 -0.364 40 0.190 40 0.485
HuaweiTSC_EE_Metric – – 10 0.975 – – – –
instructscore – – 8 0.977 10 0.473 15 0.578
slide* – – 4 0.984 – – – –
Calibri-COMET22 – – 22 0.953 21 0.425 7 0.584
Calibri-COMET22-QE* – – 19 0.957 17 0.445 33 0.551
MEE4 – – 15 0.968 22 0.421 26 0.565
MaTESe – – 43 0.791 39 0.272 43 0.375
docWMT22CometDA – – 29 0.941 14 0.454 2 0.593
docWMT22CometKiwiDA* – – 11 0.973 26 0.392 14 0.579
mbr-metricx-qe* – – 20 0.954 9 0.477 10 0.582
sescoreX – – 9 0.977 11 0.473 16 0.578

Table 23: Correlations with WMT DA-SQM scores for all metrics on en→de data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→ja en→ja en→ja
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 3 0.993 2 0.527 2 0.592
CometKiwi-XL* 2 0.795 2 0.993 1 0.528 1 0.593
COMET 3 0.787 12 0.969 6 0.462 11 0.580
CometKiwi* 4 0.787 6 0.984 4 0.516 4 0.588
cometoid22-wmt23* 5 0.786 11 0.979 10 0.449 13 0.574
KG-BERTScore* 6 0.784 5 0.984 3 0.516 7 0.583
MetricX-23-QE-c* 7 0.780 22 0.955 8 0.456 9 0.580
BLEURT-20 8 0.778 4 0.990 15 0.417 15 0.569
MetricX-23-QE-b* 9 0.777 21 0.956 14 0.428 3 0.590
cometoid22-wmt22* 10 0.776 20 0.960 11 0.449 14 0.569
MetricX-23-c 11 0.775 28 0.918 23 0.371 25 0.545
cometoid22-wmt21* 12 0.774 16 0.964 12 0.442 16 0.568
XCOMET-Ensemble 13 0.774 26 0.920 5 0.470 6 0.586
MetricX-23-b 14 0.768 23 0.941 16 0.413 5 0.587
MetricX-23-QE* 15 0.768 30 0.898 17 0.411 10 0.580
MS-COMET-QE-22* 16 0.767 9 0.983 7 0.458 18 0.565
XCOMET-QE-Ensemble* 17 0.766 31 0.895 9 0.455 12 0.574
MetricX-23 18 0.762 29 0.916 18 0.401 8 0.580
YiSi-1 19 0.749 7 0.984 21 0.382 20 0.561
XCOMET-XL 20 0.748 34 0.821 19 0.397 21 0.558
XLsim 21 0.745 27 0.918 24 0.354 22 0.557
XCOMET-XXL 22 0.743 32 0.871 20 0.394 31 0.485
GEMBA-MQM* 23 0.739 8 0.983 13 0.429 33 0.389
prismRef 24 0.736 25 0.922 22 0.371 19 0.561
mre-score-labse-regular 25 0.734 10 0.979 31 0.120 17 0.566
BERTscore 26 0.732 18 0.962 26 0.317 23 0.550
tokengram_F 27 0.714 13 0.969 27 0.227 24 0.548
chrF 28 0.712 14 0.966 28 0.220 26 0.543
f200spBLEU 29 0.708 19 0.961 30 0.190 29 0.523
embed_llama 30 0.701 15 0.964 29 0.212 28 0.524
eBLEU 31 0.694 24 0.926 32 0.073 30 0.522
BLEU 32 0.660 33 0.833 34 0.001 34 0.070
Random-sysname* 33 0.537 36 0.307 33 0.064 32 0.484
prismSrc* 34 0.514 35 0.764 25 0.322 27 0.530
HuaweiTSC_EE_Metric – – 17 0.963 – – – –
slide* – – 1 0.995 – – – –

Table 24: Correlations with WMT DA-SQM scores for all metrics on en→ja data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→zh en→zh en→zh
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 14 0.982 7 0.559 3 0.601
CometKiwi-XL* 2 0.795 8 0.988 4 0.588 1 0.601
COMET 3 0.787 3 0.995 6 0.575 8 0.589
CometKiwi* 4 0.787 4 0.994 1 0.635 7 0.590
cometoid22-wmt23* 5 0.786 1 0.997 5 0.588 11 0.584
KG-BERTScore* 6 0.784 5 0.994 2 0.635 10 0.584
MetricX-23-QE-c* 7 0.780 28 0.913 18 0.468 12 0.582
BLEURT-20 8 0.778 9 0.988 8 0.550 18 0.571
MetricX-23-QE-b* 9 0.777 19 0.963 19 0.456 2 0.601
cometoid22-wmt22* 10 0.776 7 0.989 9 0.537 15 0.574
MetricX-23-c 11 0.775 24 0.937 12 0.507 23 0.563
cometoid22-wmt21* 12 0.774 10 0.988 10 0.527 16 0.573
XCOMET-Ensemble 13 0.774 21 0.944 14 0.493 4 0.596
MetricX-23-b 14 0.768 27 0.926 23 0.420 5 0.595
MetricX-23-QE* 15 0.768 22 0.943 22 0.439 6 0.594
MS-COMET-QE-22* 16 0.767 2 0.996 3 0.610 19 0.570
XCOMET-QE-Ensemble* 17 0.766 30 0.908 21 0.450 14 0.577
MetricX-23 18 0.762 33 0.885 24 0.411 9 0.588
YiSi-1 19 0.749 15 0.977 15 0.493 20 0.566
XCOMET-XL 20 0.748 35 0.790 26 0.366 28 0.542
XLsim 21 0.745 12 0.985 11 0.524 17 0.572
XCOMET-XXL 22 0.743 32 0.885 25 0.391 31 0.517
GEMBA-MQM* 23 0.739 18 0.973 16 0.489 33 0.385
prismRef 24 0.736 17 0.975 13 0.496 21 0.564
mre-score-labse-regular 25 0.734 11 0.986 32 0.177 13 0.577
BERTscore 26 0.732 16 0.975 17 0.474 22 0.563
tokengram_F 27 0.714 20 0.945 27 0.343 24 0.558
chrF 28 0.712 25 0.934 29 0.326 25 0.550
f200spBLEU 29 0.708 31 0.905 28 0.327 26 0.547
embed_llama 30 0.701 26 0.927 30 0.297 27 0.542
eBLEU 31 0.694 29 0.912 31 0.210 29 0.535
BLEU 32 0.660 34 0.804 33 0.093 34 0.141
Random-sysname* 33 0.537 36 0.046 34 0.018 32 0.462
prismSrc* 34 0.514 23 0.941 20 0.452 30 0.527
HuaweiTSC_EE_Metric – – 6 0.992 – – – –
slide* – – 13 0.982 – – – –

Table 25: Correlations with WMT DA-SQM scores for all metrics on en→zh data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: ja→en ja→en ja→en
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 2 0.984 1 0.474 2 0.578
CometKiwi-XL* 2 0.795 3 0.982 4 0.446 6 0.573
COMET 3 0.787 16 0.968 5 0.445 3 0.576
CometKiwi* 4 0.787 10 0.975 3 0.455 10 0.568
cometoid22-wmt23* 5 0.786 19 0.966 7 0.435 15 0.560
KG-BERTScore* 6 0.784 9 0.975 2 0.455 12 0.561
MetricX-23-QE-c* 7 0.780 21 0.965 11 0.418 7 0.572
BLEURT-20 8 0.778 22 0.964 6 0.436 9 0.570
MetricX-23-QE-b* 9 0.777 12 0.972 16 0.383 4 0.575
cometoid22-wmt22* 10 0.776 25 0.946 8 0.432 19 0.550
MetricX-23-c 11 0.775 11 0.972 22 0.342 24 0.547
cometoid22-wmt21* 12 0.774 26 0.944 9 0.431 20 0.549
XCOMET-Ensemble 13 0.774 24 0.947 12 0.410 5 0.574
MetricX-23-b 14 0.768 29 0.938 21 0.343 1 0.578
MetricX-23-QE* 15 0.768 30 0.936 20 0.344 11 0.567
MS-COMET-QE-22* 16 0.767 34 0.916 14 0.388 22 0.548
XCOMET-QE-Ensemble* 17 0.766 31 0.935 13 0.388 16 0.557
MetricX-23 18 0.762 33 0.918 24 0.332 8 0.572
YiSi-1 19 0.749 6 0.978 15 0.383 13 0.561
XCOMET-XL 20 0.748 32 0.922 25 0.327 23 0.547
XLsim 21 0.745 1 0.989 23 0.342 18 0.552
XCOMET-XXL 22 0.743 27 0.941 18 0.352 31 0.492
GEMBA-MQM* 23 0.739 4 0.982 10 0.421 34 0.395
prismRef 24 0.736 13 0.971 19 0.351 17 0.557
mre-score-labse-regular 25 0.734 5 0.980 33 0.186 21 0.548
BERTscore 26 0.732 7 0.977 17 0.357 14 0.560
tokengram_F 27 0.714 18 0.967 27 0.290 25 0.546
chrF 28 0.712 20 0.966 26 0.292 26 0.545
f200spBLEU 29 0.708 23 0.955 29 0.226 28 0.528
embed_llama 30 0.701 14 0.969 31 0.203 29 0.524
eBLEU 31 0.694 15 0.969 32 0.202 27 0.530
BLEU 32 0.660 28 0.939 30 0.221 30 0.517
Random-sysname* 33 0.537 36 0.288 35 0.061 32 0.481
prismSrc* 34 0.514 37 -0.747 34 0.171 33 0.470
HuaweiTSC_EE_Metric – – 17 0.967 – – – –
slide* – – 8 0.976 – – – –
MaTESe – – 35 0.904 28 0.242 35 0.326

Table 26: Correlations with WMT DA-SQM scores for all metrics on ja→en data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: zh→en zh→en zh→en
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 1 0.938 3 0.435 4 0.540
CometKiwi-XL* 2 0.795 3 0.936 6 0.427 9 0.535
COMET 3 0.787 21 0.811 11 0.378 15 0.525
CometKiwi* 4 0.787 4 0.931 1 0.460 10 0.534
cometoid22-wmt23* 5 0.786 9 0.913 10 0.402 16 0.523
KG-BERTScore* 6 0.784 5 0.927 2 0.448 18 0.521
MetricX-23-QE-c* 7 0.780 14 0.843 13 0.373 6 0.537
BLEURT-20 8 0.778 25 0.766 17 0.331 21 0.520
MetricX-23-QE-b* 9 0.777 17 0.823 21 0.298 1 0.544
cometoid22-wmt22* 10 0.776 8 0.918 5 0.432 19 0.520
MetricX-23-c 11 0.775 7 0.924 16 0.339 24 0.512
cometoid22-wmt21* 12 0.774 10 0.908 7 0.419 20 0.520
XCOMET-Ensemble 13 0.774 20 0.816 18 0.322 7 0.537
MetricX-23-b 14 0.768 26 0.759 26 0.261 3 0.540
MetricX-23-QE* 15 0.768 24 0.770 22 0.284 5 0.538
MS-COMET-QE-22* 16 0.767 6 0.927 8 0.418 22 0.519
XCOMET-QE-Ensemble* 17 0.766 22 0.803 19 0.315 17 0.522
MetricX-23 18 0.762 30 0.735 24 0.264 8 0.536
YiSi-1 19 0.749 31 0.715 25 0.263 28 0.511
XCOMET-XL 20 0.748 28 0.758 27 0.254 27 0.512
XLsim 21 0.745 32 0.702 33 0.218 26 0.512
XCOMET-XXL 22 0.743 23 0.787 23 0.275 39 0.463
GEMBA-MQM* 23 0.739 11 0.873 14 0.370 41 0.356
prismRef 24 0.736 41 0.632 31 0.229 25 0.512
mre-score-labse-regular 25 0.734 18 0.817 38 0.146 30 0.509
BERTscore 26 0.732 33 0.702 30 0.236 23 0.515
tokengram_F 27 0.714 37 0.670 37 0.167 31 0.503
chrF 28 0.712 35 0.701 35 0.168 32 0.503
f200spBLEU 29 0.708 39 0.651 39 0.139 36 0.483
embed_llama 30 0.701 34 0.702 41 0.123 34 0.494
eBLEU 31 0.694 42 0.629 42 0.107 35 0.494
BLEU 32 0.660 43 0.610 40 0.134 37 0.475
Random-sysname* 33 0.537 44 -0.144 43 -0.026 40 0.446
prismSrc* 34 0.514 45 -0.457 28 0.248 38 0.471
HuaweiTSC_EE_Metric – – 19 0.816 – – – –
instructscore – – 38 0.652 32 0.227 42 0.342
slide* – – 12 0.863 – – – –
Calibri-COMET22 – – 27 0.759 20 0.313 13 0.529
Calibri-COMET22-QE* – – 13 0.854 12 0.375 11 0.530
MEE4 – – 40 0.632 36 0.168 33 0.498
MaTESe – – 29 0.739 34 0.201 43 0.319
docWMT22CometDA – – 15 0.836 15 0.345 12 0.530
docWMT22CometKiwiDA* – – 2 0.938 9 0.403 2 0.542
mbr-metricx-qe* – – 16 0.827 4 0.435 14 0.526
sescoreX – – 36 0.695 29 0.238 29 0.509

Table 27: Correlations with WMT DA-SQM scores for all metrics on zh→en data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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D Additional figures

Figures 9-14 show the (log) p-value of one-sided paired t-test on the MQM scores against the score
difference of each metric for each system pair in each translation direction. Figures 15-20 show the (log)
p-value of significance test with bootstrap resampling on the metric scores against the score difference of
that metric for each system pair in each translation direction.

en→de he→en zh→en

Figure 9: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each
metric (top to bottom: BERTScore, BLEU, BLEURT-20, CALIBRI-COMET22, CALIBRI-COMET22-QE) for
each system pair in each translation direction (left to right: en→de, he→en, zh→en). The red line is the isotonic
regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are
rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 10: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of
each metric (top to bottom: CHRF, COMET, COMETKIWI, COMETOID22-WMT22, DOCWMT22COMETDA,
DOCWMT22COMETKIWIDA) for each system pair in each translation direction (left to right: en→de, he→en,
zh→en). The red line is the isotonic regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note:
for readability, values of pmqm are rounded up to 0.0001 when they are less than 0.0001.



619

en→de he→en zh→en

Figure 11: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: EBLEU, EMBED_LLAMA, F200SPBLEU, GEMBA-MQM, KG-BERTSCORE, MATESE) for
each system pair in each translation direction (left to right: en→de, he→en, zh→en). The red line is the isotonic
regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are
rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 12: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: MBR-METRICX-QE, MEE4, METRICX-23, METRICX-23-QE, MRE-SCORE-LABSE-REGULAR,
MS-COMET-QE-22) for each system pair in each translation direction (left to right: en→de, he→en, zh→en). The
red line is the isotonic regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for readability,
values of pmqm are rounded up to 0.0001 when they are less than 0.0001.



621

en→de he→en zh→en

Figure 13: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each
metric (top to bottom: PRISMREF, PRISMSRC, RANDOM-SYSNAME, SESCOREX, SLIDE, TOKENGRAM_F) for
each system pair in each translation direction (left to right: en→de, he→en, zh→en). The red line is the isotonic
regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are
rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 14: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: XCOMET-ENSEMBLE, XCOMET-QE-ENSEMBLE, XLSIM, YISI-1) for each system pair in each
translation direction (left to right: en→de, he→en, zh→en). The red line is the isotonic regression fit to all data
points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when
they are less than 0.0001.
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en→de he→en zh→en

Figure 15: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: BERTSCORE, BLEU, BLEURT-20, CALIBRI-COMET22, CALIBRI-COMET22-QE,
CHRF) score difference for each system pair in each translation direction (left to right: en→de, he→en, zh→en).
The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability,
values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 16: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores
against each metric (top to bottom: COMET, COMETKIWI, COMETOID22-WMT22, DOCWMT22COMETDA,
DOCWMT22COMETKIWIDA, EBLEU) score difference for each system pair in each translation direction (left
to right: en→de, he→en, zh→en). The red line is the isotonic regression fit to all data points, representing
Pr(pM < 0.05|∆M). Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 17: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: EMBED_LLAMA, F200SPBLEU, GEMBA-MQM, KG-BERTSCORE, MATESE,
MBR-METRICX-QE) score difference for each system pair in each translation direction (left to right: en→de, he→en,
zh→en). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for
readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 18: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against each
metric (top to bottom: MEE4, METRICX-23, METRICX-23-QE, MRE-SCORE-LABSE-REGULAR, MS-COMET-
QE-22, PRISMREF) score difference for each system pair in each translation direction (left to right: en→de, he→en,
zh→en). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for
readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 19: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against each
metric (top to bottom: PRISMSRC, RANDOM-SYSNAME, SESCOREX, TOKENGRAM_F, XCOMET-ENSEMBLE,
XCOMET-QE-ENSEMBLE) score difference for each system pair in each translation direction (left to right: en→de,
he→en, zh→en). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M).
Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 20: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: XLSIM, YISI-1) score difference for each system pair in each translation direction
(left to right: en→de, he→en, zh→en). The red line is the isotonic regression fit to all data points, representing
Pr(pM < 0.05|∆M). Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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