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Abstract

This paper describes the development process
of NMT systems that were submitted to the
WMT 2023 General Translation task by the
team of AIST AIRC. We trained constrained
track models for translation between English,
German, and Japanese. Before training the final
models, we first filtered the parallel and mono-
lingual data, then performed iterative back-
translation as well as parallel data distillation
to be used for non-autoregressive model train-
ing. We experimented with training Trans-
former models, Mega models, and custom non-
autoregressive sequence-to-sequence models
with encoder and decoder weights initialised
by a multilingual BERT base. Our primary
submissions contain translations from ensem-
bles of two Mega model checkpoints and our
contrastive submissions are generated by our
non-autoregressive models.

1 Introduction

We describe the machine translation (MT) systems
submitted to the WMT 2023 General Translation
task developed by the team of AIST AIRC. We
experimented with data quality control by care-
fully filtering out noisy examples from parallel and
monolingual data sets before training, and corpora
selection by holding out specific web-crawled data.
We also compared several modelling approaches by
contrasting the well-known Transformer architec-
ture (Vaswani et al., 2017) to several more recent
ones, such as the Mega model (Ma et al., 2023),
as well as our own custom implementation of a
non-autoregressive model with the encoder and de-
coder initialised by BERT checkpoints. During the
shared task submission week another new efficient
architecture was published — the Retentive Network
(RetNet; Sun et al., 2023), which we include in the
paper as an ablation study.

Our main findings are: 1) non-autoregressive
models can reach comparable output quality to the
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best autoregressive models while improving infer-
ence latency up to 9x; 2) modern efficient autore-
gressive models like RetNet and Mega not only
slightly outperform the Transformer in latency, but
also in output quality; and 3) models trained on
sentence-level data struggle to translate whole para-
graphs — splitting them into sentences helps a lot,
especially for the non-autoregressive model.

2 Data

We only participated in the constrained track of
the shared task; therefore, we limited our data set
use to only the corpora provided by the shared task
organisers. In specific experimentation configura-
tions, we chose to leave out web-crawled data such
as Paracrawl and WikiMatrix, but eventually kept
them in our final submissions.

All parallel training data and monolingual data
for back-translation were filtered before starting
any training, which has been proven very effective
in previous WMT shared tasks (Pinnis et al., 2017,
2018) and detailed by Rikters (2018). Parallel data
distillation was performed only for training the non-
autoregressive models, while for all autoregressive
models, we used only pure clean parallel data.

For the system development process, we selected
News Test sets from previous older WMT shared
tasks as development data and the most recent ones
as evaluation data. Full statistics of the data we
used are shown in Table 1.

2.1 Data Selection

We initially experimented with excluding the web-
crawled parallel corpora and training models using
only data from other sources, since web-crawled
data are generally considered to be of a lower-
quality tier. The Paracrawl corpora are also several
times the size of all other data combined, and took
longer to finish the filtering process. In addition, to
not overwhelm the full combined training data set
with lower-quality data, we 1) limited the English-
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Corpus / Filtering DE-EN JA-EN
All oth Before | 16,752,302 8,076,155
O After | 13,737,028 7,076,869
Paracrawl Before | 50,000,000 21,891,738
After | 44,533,635 21,088,689
Combined | 72,007,691 42,319,296
Devel 19,006 2,998
Eval 3,039 3,037

Monolingual
Corpus / Filtering Before After

DE | 43,613,631 37,110,981

JA | 22,193,545 21,558,123
EN | 47,333,840 36,756,542

Table 1: Training data statistics for all other parallel
data without Paracrawl, a subset of Paracrawl, combined
development and evaluation data from the past WMT
shared tasks, and monolingual data. Sentence counts
are listed before and after filtering.

German Paracrawl to 50 million parallel sentences;
and 2) up-scaled all data from other sources to
match the amount of the Paracrawl data after filter-
ing by doubling for English-German and tripling
for English-Japanese.

2.2 Filtering

Even though all training data need not always be
perfect and methods like back-translation and data
distillation intentionally generate somewhat noisy
additional training data, some types of noise are
more harmful than others. Since most training cor-
pora are produced partially or fully automatically,
errors such as misalignments between source and
target sentences or direct copies of source to tar-
get can occur, as well as some amounts of third
language data in seemingly bilingual data sets.

To avoid such problems, we used data cleaning
and pre-processing methods described by Rikters
(2018). The filtering part includes the following
filters: 1) unique parallel sentence filter; 2) equal
source-target filter; 3) multiple sources - one tar-
get and multiple targets - one source filters; 4)
non-alphabetical filters; 5) repeating token filter;
and 6) correct language filter. We also perform
pre-processing consisting of the standard Moses
(Koehn et al., 2007) scripts for punctuation nor-
malisation, cleaning, and Sentencepiece (Kudo and
Richardson, 2018) for splitting into subword units.

The filters were applied to the given parallel sen-
tences, monolingual news sentences before per-
forming back-translation, and both sets of synthetic
parallel sentences resulted from back-translating
the monolingual news.

2.3 Distillation

Since previous research has proven that knowledge
distillation (Hinton et al., 2014) is highly beneficial
for non-autoregressive machine (NAR) translation
models (Kim and Rush, 2016), we chose to skip
training our NAR models during the baseline train-
ing phase. When the baselines were trained, eval-
uated and compared, we used the highest-scoring
baseline models for sentence-level knowledge dis-
tillation of the clean parallel training data.

2.4 Back-translation

Increasing the amount of in-domain training data
with synthetic back-translated corpora (Sennrich
et al., 2016) has become a common practice in
cases with considerable amounts of in-domain
monolingual data. However, since the shared task
recently shifted from ‘news’ to ‘general’ text trans-
lation, the definition of what would be considered
in-domain data became less clear. Furthermore,
for the constrained track the selection of provided
monolingual data from the organisers was limited
to news and web-crawled data while noting that
the ‘general’ test sets may include user generated
(social network), conversational, and e-commerce
data as well. For our experiments we continued
to assume that a significant portion of the test data
would still be from the news domain. Therefore, we
chose to only use the provided monolingual News
crawl, News discussions, and News Commentary
corpora for back-translation.

2.5 Post-processing

In post-processing of the model output we aimed
to mitigate some of the most commonly notica-
ble mistakes that the models were generating. We
mainly noticed two often occurring problems in
output from all models: 1) difficulties in translat-
ing emoji symbols; and 2) occasional repetitions of
words or phrases.

While all English and German alphabet letters
and even Japanese characters are covered in the
large training data corpora, the unicode emoji were
mostly formed and clearly defined only in the
past decade, and new emoji are still added every
year or two with the next release planned for late
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2024!. Emoji are also not often present in MT
training data, therefore full emoji coverage is ab-
sent from model vocabularies, which leads to occa-
sional <unk> tokens being generated as output if
emoji were present in the input. In order to keep
using the models without re-training, we replaced
any <unk> tokens in the output using a dictionary
of any emojis appearing in the input.

Furthermore, the occasional hickuping or hallu-
cinating of models on less common input sequences
seems ever present, sometimes generating repeti-
tions of tokens or phrases. We replaced any consec-
utive repeating n-grams with a single n-gram. The
same was applied to repeating n-grams that have
a preposition between them, i.e., the victim of the
victim.

Both post-processing approaches gave BLEU
score improvements of around 0.1 - 0.2.

3 Model Configurations

While it is often possible to train ever larger models
on more data requiring infinitely growing amounts
of compute power which later become costly to
deploy, we decided to approach our selection from
the perspective of limiting environmental impact.
In our pursuit of the final submission, we aimed
to explore several modelling approaches with effi-
cient decoding while still striving to maintain or im-
prove output quality. For this we chose the baseline
Transformer model as our baseline, the recently
introduced Mega model (Ma et al., 2023), a cus-
tom implementation of a non-autoregressive model
with BERT-initialised encoder and decoder, and as
an ablation study trained after the shared task sub-
mission deadline — RetNet (Sun et al., 2023). Each
model was trained on a single machine with four
Nvidia V100 (16GB) GPUs until convergence on
development data (no improvement on validation
loss for 7 checkpoints).

The total trainable parameter counts for the four
models are as follows: Transformer - 73,886,208;
RetNet - 77,930,496; Mega - 63,367,854; BnB -
384,214,027.

3.1 Transformer

We used Marian (Junczys-Dowmunt et al., 2018) to
train transformer architecture (Vaswani et al., 2017)
models with the default transformer-base parameter
configuration of 6 layers, 8 attention heads, model
dimension of 512, feed-forward dimension of 2048,

1https://emojipedia.org/unicode—16.0

and dropout of 0.1. We also used an optimiser delay
of 8 to simulate larger batches, which is is known
to improve final output quality (Bogoychev et al.,
2018).

3.2 Mega

Ma et al. (2023) propose a moving average
equipped gated attention mechanism (MEGA) - a
single-head gated attention mechanism equipped
with exponential moving average to incorporate
inductive bias of position-aware local dependen-
cies into the position-agnostic attention mechanism.
Compared to the Transformer model, MEGA has a
single-head gated attention mechanism instead of
multi-head attention, which enables gains in effi-
ciency while not sacrificing on performance.

For training our Mega models we used the im-
plementation” provided by the authors, which is
based on FairSeq (Ott et al., 2019).

3.3 BERT-nar-BERT

The BERT-nar-BERT (BnB) model architecture is
similar to BIoONART (Asada and Miwa, 2023), com-
posed of a multi-layer Transformer-based encoder
and decoder, in which the embedding layer and
the stack of transformer layers are initialised with
BERT (Devlin et al., 2019). To leverage the expres-
siveness power of existing pre-trained BERT mod-
els, we initialise our encoder and decoder parts with
the pre-trained BERT parameters. An overview of
BnB architecture is shown in Figure 1.

The encoder part of BnB is the same architecture
as the BERT model. We construct latent representa-
tions based on token-level representations from the
encoder hidden state, and modify the decoder part
by leveraging the latent representations and length
classification for non-autoregressive generation.

The decoder part is also based on the BERT
architecture, and we can directly initialise the de-
coder with the pre-trained BERT model. Following
the BERT2BERT model, the cross-attention mech-
anism is adopted, and the encoder hidden represen-
tation of the final layer is used for cross-attention.
Our model differs from the BERT2BERT model in
attention masks to enable NAR decoding. In the
AR decoding, all target tokens are fed into the de-
coder with customised attention masks that prevent
the decoder from seeing the future tokens during
training. Then, in inference, the predicted token is
fed to the decoder autoregressively. In our BnB de-

2https://github.com/facebookresearch/mega
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Figure 1: The S2S BERT-nar-BERT (BnB) architecture.

coder, input representation is constructed without
providing any target tokens. The input representa-
tion is constructed by summing the corresponding
position and type embeddings and the latent em-
bedding from the encoder. The attention masks
are the normal masks that give access to all future
tokens. The resulting decoder output representa-
tions of the final layer are fed to the subsequent
generation layer.

3.4 Ablation Study — Retentive Networks

During the submission week of the WMT general
machine translation task Sun et al. (2023) proposed
a Retentive network (RetNet), with stacked identi-
cal blocks, following a similar layout to the Trans-
former, where each block contains a multi-scale
retention module, and a feed-forward network mod-
ule. Compared to Transformer attention, the reten-
tion part removes softmax and enables recurrent
formulation, which significantly benefits inference.
The authors report significant gains in inference
efficiency while maintaining competitive in output
quality to the Transformer.

For training our RetNet models we used the im-
plementation® provided by the authors, which is
based on FairSeq (Ott et al., 2019).

4 Results

Tables 3 and 4 list the progression of our different
modelling methods and data selection approaches.
We first started with training the Transformer mod-
els as our baselines using only non-web-crawled
parallel training data and compared it to MEGA
models trained on the same data, while the larger
Paracrawl corpora were still filtering. Initial re-
sults suggested that the Transformer model opti-
mises towards the development data slightly too
much while ending up strongly outperformed by

3h'ctps ://github.com/microsoft/torchscale

Model GPU CPU  Speedup
Transformer 30.08 4.71 1.00x
MEGA 43.67 6.81 1.45x
RetNet 4342  6.99 1.46x
BnB 278.83 13.23 6.04x

Table 2: Average speedup and inference speed in lines
per second on CPU and GPU on average for the four
WMT 2023 test sets we participated in.

the MEGA model on evaluation data. From there
on, we opted for using MEGA as our main model,
and experimented with adding filtered Paracrawl
data to the training mix, which improved transla-
tion quality for all directions. We then used these
four models (With Paracrawl column in Table 3)
to generate back-translated data and distilled par-
allel training data for BnB. In the final step before
submission, we trained MEGA and BnB models
on clean parallel + back-translated and distilled +
back-translated data respectively. We used ensem-
bles of best and last MEGA model checkpoints to
generate our shared task submissions.

As an ablation study of adding another efficient
model baseline, after the submission week had
ended we trained RetNet models, which were pub-
lished on arXiv along with code on GitHub during
the submission week.

4.1 Automatic Evaluation

According to the unofficial automatic evaluation
results (Kocmi et al., 2023) summarised in Table 6,
our submitted models are on the lower end, outper-
forming only two to three out of the 5-10 partici-
pants and 7 online systems in the respective trans-
lation directions. We manually regenerated the
automatic evaluation scores for translations from
all of our final models, based on the references
released by the organisers.

4.2 Inference Speed

Table 2 compares the inference speed and latency
of our chosen models. While loading the mod-
els into the memory and model-specific data pre-
processing or post-processing steps also take con-
siderable amounts of time, for this comparison we
only started measuring the time after the model had
been loaded and all data processing — completed.
Our BnB model was by far the fastest, outperform-
ing MEGA and Retnet by about 6.4x on the GPU
and the Transformer by about 9.3x. On the CPU
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Without Paracrawl With Paracrawl Back-translated
Direction | Transformer MEGA
Devel Eval | Devel Eval Devel Eval Devel Eval
EN—DE | 32.74 1946 | 2896 25.15 3142 28.04 31.58 2691
DE—EN | 34.57 22.13 | 30.55 2622 3467 2921 36.62 27.85
EN—JA | 2001 7.13 | 1652 16.07 19.29 21.00 20.89  20.90
JA—EN | 1542 598 | 13.39 1227 16.82 16.15 17.43 16.12

Table 3: Initial baseline Transformer and Mega model development results using filtered parallel data excluding

Paracrawl, all filtered parallel data, and all filtered parallel data + back-translated data.

MEGA Ensembles RetNet BnB
Direction | Back-translated  All Filtered Ensemble BT Back-translated | Distilled + BT
Devel Eval Devel Eval | Devel Eval Devel Eval | Devel Eval
EN—DE | 32.33 27.52 32,51 28.76 | 31.92 27.10 31.99 2725 | 25.34 22.40
DE—EN | 3756 28.50 3535 29.62 | 37.44 2849 37.17 28.14 | 28.04 24.23
EN—JA | 21.31 21.13 18.98 21.23 | 21.67 21.87 21.64 21.64 | 1145 13.38
JA—EN | 18.08 16.81 17.19 16.23 | 18.10 17.10 1836 17.26 | 7.93 8.03

Table 4: MEGA, our BnB model, and RetNet model development results using all filtered data, back-translated
data, and ensembles of trained model checkpoints. A combination of back-translated monolingual data and distilled
parallel data was used to train our BnB model. Highest scores reached before the shared task submission deadline

are marked in bold and after the deadline — underlined.

Direction [ MEGA BnB RetNet Transformer
EN—DE 26.48 5.58 29.31 26.11

Split 3430 29.93 34.89 35.57
DE—EN 3235  15.98 34.04 32.02

Split 37.14  30.10 37.57 39.52
EN—JA 17.28 15.25 17.44 14.76
JA—EN 18.53 6.96 15.34 17.64

Table 5: Final results on GeneralTest2023 after the
shared task submission deadline.

its advantage dropped to about 1.9x and 2.8x re-
spectively. Inference speed differences between
MEGA and RetNet were minimal, while both still
noticabely outperformed the baseline Transformer.

4.3 Post Submission Updates

After the release of the unofficial system rankings
and test set references, we manually re-scored all
of our models trained on the final back-translated
data and noticed that the Transformer and BnB
were generating particularly shorter outputs for the
document-level EN<DE test sets than expected.
After splitting* the English and German source files
into sentences, translating them, and combining
back into paragraphs for evaluation, the scores im-
proved by several BLEU points (see Table 5). The

*Text to Sentence Splitter — https://github.com/
mediacloud/sentence-splitter

EN<«JA part did not require any further splitting,
as it was already provided at sentence-level.

5 Conclusion

In this paper we described the development pro-
cess of the AIST AIRC’s NMT systems that were
submitted for the WMT 2023 shared task on gen-
eral domain text translation. We compared Trans-
former models to MEGA, RetNet and BERT-nar-
BERT model architectures in search of efficient
decoding approaches while still improving upon
output quality. We showed that the Transformer
models can be outperformed by MEGA and Ret-
Net in both translation quality, as well as infer-
ence speed, while BnB remained fastest in infer-
ence, but still lowest in quality. We also found that
even though modern models should be able to han-
dle long sequences, splitting the English<»German
document-level data into separate sentences, trans-
lating and recombining them yielded better results.
This should, however, be mitigable by training
dedicated document-level models with appropri-
ate training data.

In total, output from four systems was sub-
mitted to the shared taks by AIRC for the
English<+German and English<+Japanese lan-
guage pairs in both translation directions.
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System  BLEU System  BLEU

ONLINE-W 51.8
GPT4-5shot 479
ONLINE-A 47.9

ONLINE-W 47.8
ONLINE-A 43.7
GPT4-5shot 43.6

ONLINE-B 46.3 ONLINE-Y 43.6
ONLINE-G 46.0 ONLINE-G 432
ONLINE-Y 43.9 ONLINE-B 42.7
GTCOM_Peter 422 ONLINE-M 40.5
Lan-BridgeMT 42.1 ZengHuiMT 40.5
ONLINE-M 41.3 Lan-BridgeMT 39.4
ZengHuiMT 40.8 NLLB_Greedy 31.1
NLLB_Greedy 33.1 NLLB_MBR_BLEU 29.6
AIRC 32.4 AIRC 26.5
NLLB_MBR_BLEU 324
System  Chr F System  Chr F

ONLINE-W 72.1
ONLINE-A 70.0

ONLINE-W 71.8
ONLINE-A 69.7

GPT4-5shot 69.8 ZengHuiMT 69.4
ONLINE-B 69.1 GPT4-5shot 69.1
ONLINE-G 69.1 ONLINE-B 69.1
ONLINE-Y 68.4 ONLINE-Y 69.1
ZengHuiMT 67.6 ONLINE-G 69.0
Lan-BridgeMT 66.7 ONLINE-M 66.9
GTCOM_Peter 66.6 Lan-BridgeMT 66.1
ONLINE-M 66.5 NLLB_Greedy 56.2
NLLB_MBR_BLEU 57.6 NLLB_MBR_BLEU 55.4
NLLB_Greedy 573 AIRC 522
AIRC 57.2
System  COMET System  COMET
GPT4-5shot 86.3 ONLINE-W 85.5
ONLINE-W 86.0 GPT4-5shot 85.0
ONLINE-B 85.6 ONLINE-B 84.8
ONLINE-A 85.5 ONLINE-Y 84.1
ONLINE-Y 84.9 ONLINE-A 83.7
ONLINE-M 84.8 ONLINE-G 82.5
ONLINE-G 84.6 ONLINE-M 81.7
GTCOM_Peter 82.7 Lan-BridgeMT 80.4
NLLB_MBR_BLEU 81.4 ZengHuiMT 79.4
ZengHuiMT 81.1 NLLB_MBR_BLEU 78.0
Lan-BridgeMT 80.9 NLLB_Greedy 719
NLLB_Greedy 79.9 AIRC 72.9
AIRC 78.7

Table 6: Automatic evaluation rankings according to BLEU (nrefs: 1lcase:mixedleff:noltok: 13alsmooth:explversion:2.2.1),

System  BLEU System  BLEU
ONLINE-W 25.9 ONLINE-B 25.3
SKIM 24.8 ONLINE-W 24.5
GPT4-5shot 24.1 ONLINE-Y 24.5
ONLINE-B 239 SKIM 243
NAIST-NICT 23.0 NAIST-NICT 22.6
ONLINE-A 23.0 ZengHuiMT 22.6
ZengHuiMT 22.6 ONLINE-A 214
GTCOM_Peter 22.3 GPT4-5shot 21.3
ONLINE-Y 223 Lan-BridgeMT 20.5
ANVITA 20.9 ONLINE-M 19.8
Lan-BridgeMT 20.2 ANVITA 19.4
ONLINE-G 18.3 KYB 17.8
KYB 17.6 AIRC 17.6
ONLINE-M 17.2 ONLINE-G 172
AIRC 14.9 NLLB_Greedy 11.3
NLLB_MBR_BLEU 14.7 NLLB_MBR_BLEU 9.0
NLLB_Greedy 14.2
System  Chr F System  Chr F
ONLINE-W 51.4 ONLINE-B 35.2
GPT4-5shot 512 ONLINE-Y 34.1
SKIM 51.1 ONLINE-W 335
ONLINE-A 49.6 SKIM 335
NAIST-NICT 49.5 ZengHuiMT 32.9
ONLINE-Y 49.5 NAIST-NICT 32.0
ZengHuiMT 49.5 ONLINE-A 314
ONLINE-B 493 GPT4-5shot 31.0
GTCOM_Peter 48.7 Lan-BridgeMT 30.4
Lan-BridgeMT 473 ONLINE-M 29.6
ANVITA 46.7 ANVITA 29.3
ONLINE-G 455 KYB 27.7
KYB 439 AIRC 27.6
ONLINE-M 439 ONLINE-G 27.3
AIRC 40.5 NLLB_Greedy 20.9
NLLB_MBR_BLEU 39.2 NLLB_MBR_BLEU 18.7
NLLB_Greedy 39.0
System  COMET System  COMET
SKIM 84.0 ONLINE-B 88.2
GPT4-5shot 83.4 ONLINE-W 87.5
ONLINE-W 82.3 ONLINE-Y 87.3
NAIST-NICT 81.9 GPT4-5shot 87.0
ONLINE-Y 81.6 SKIM 86.6
ONLINE-B 81.5 NAIST-NICT 86.2
ONLINE-A 81.0 ZengHuiMT 85.3
GTCOM_Peter 80.2 ONLINE-A 85.2
ANVITA 79.5 Lan-BridgeMT 84.5
Lan-BridgeMT 793 ONLINE-M 133
ZengHuiMT 79.2 ANVITA 82.7
ONLINE-G 77.8 KYB 80.8
ONLINE-M 71.5 AIRC 80.7
KYB 76.6 ONLINE-G 80.4
NLLB_MBR_BLEU 752 NLLB_Greedy 79.3
AIRC 74.5 NLLB_MBR_BLEU 7.7
NLLB_Greedy 74.3

chrF (nrefs: 1lcase:mixedleff:yesinc:6lnw:Olspace:nolversion:2.2.1), and COMET (Unbabel/wmt22-comet-da). The
order of the tables from left to right is DE—EN, EN—DE, JA—EN, EN—JA.

In future work, we plan to experiment with re-
placing the BERT models in BnB with other more
efficient pre-trained language models which can be
used as encoders/decoders, as well as incorporating
document-level training data and modelling longer
sequences with available data. In terms of data, we
intend to increase vocabulary coverage by adding
all known unicode emoji symbols to the vocabulary
even if they are not present in the training data, as
well as additionally sample paracrawl data where
emoji are present.

Acknowledgements

This paper is based on results obtained from a
project JPNP20006, commissioned by the New
Energy and Industrial Technology Development

Organization (NEDO).

Ethics Statement

Our work fully complies with the ACL Code of
Ethics’. We use only publicly available datasets
and relatively low compute amounts while conduct-
ing our experiments to enable reproducibility. We
do not perform any studies on other humans or
animals in this research.

References

Masaki Asada and Makoto Miwa. 2023. BioNART:
A biomedical non-AutoRegressive transformer for

5https://www.aclweb.org/portal/content/

acl-code-ethics

160


https://doi.org/10.18653/v1/2023.bionlp-1.34
https://doi.org/10.18653/v1/2023.bionlp-1.34
https://doi.org/10.18653/v1/2023.bionlp-1.34
https://www.aclweb.org/portal/content/acl-code-ethics
https://doi.org/10.18653/v1/2023.bionlp-1.34
https://www.aclweb.org/portal/content/acl-code-ethics

natural language generation. In The 22nd Work-
shop on Biomedical Natural Language Processing
and BioNLP Shared Tasks, pages 369-376, Toronto,
Canada. Association for Computational Linguistics.

Nikolay Bogoychev, Kenneth Heafield, Alham Fikri
Aji, and Marcin Junczys-Dowmunt. 2018. Acceler-
ating asynchronous stochastic gradient descent for
neural machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2991-2996, Brussels,
Belgium. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume I (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014.
Distilling the knowledge in a neural network. NIPS
2014 Deep Learning Workshop.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116—121,
Melbourne, Australia. Association for Computational
Linguistics.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317—1327, Austin,
Texas. Association for Computational Linguistics.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondrej Bojar, Anton Dvorkovich, Christian Fed-
ermann, Mark Fishel, Markus Freitag, Thamme
Gowda, Roman Grundkiewicz, Barry Haddow,
Philipp Koehn, Benjamin Marie, Christof Monz,
Makoto Morishita, Kenton Murray, Masaaki Nagata,
Toshiaki Nakazawa, Martin Popel, Maja Popovic,
and Mariya Shmatova. 2023. Findings of the 2023
conference on machine translation (WMT23). In
Proceedings of the Seventh Conference on Machine
Translation (WMT), Singapore, Singapore (Hybrid).
Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondfej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,

161

pages 177-180, Prague, Czech Republic. Association
for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He,
Liangke Gui, Graham Neubig, Jonathan May, and
Luke Zettlemoyer. 2023. Mega: Moving average
equipped gated attention. In The Eleventh Interna-
tional Conference on Learning Representations.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48—53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Marcis Pinnis, Rihards KriSlauks, Toms Miks, Daiga
Deksne, and Valters Sics. 2017. Tilde’s machine
translation systems for WMT 2017. In Proceedings
of the Second Conference on Machine Translation,
pages 374-381, Copenhagen, Denmark. Association
for Computational Linguistics.

Marcis Pinnis, Matiss Rikters, and Rihards KriSlauks.
2018. Tilde’s machine translation systems for WMT
2018. In Proceedings of the Third Conference on
Machine Translation: Shared Task Papers, pages
473-481, Belgium, Brussels. Association for Com-
putational Linguistics.

Matiss Rikters. 2018. Impact of Corpora Quality on
Neural Machine Translation. In In Proceedings of
the 8th Conference Human Language Technologies
- The Baltic Perspective (Baltic HLT 2018), Tartu,
Estonia.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86-96,
Berlin, Germany. Association for Computational Lin-
guistics.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma,
Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. 2023. Retentive network: A successor to trans-
former for large language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998-6008. Curran Asso-
ciates, Inc.


https://doi.org/10.18653/v1/2023.bionlp-1.34
https://doi.org/10.18653/v1/D18-1332
https://doi.org/10.18653/v1/D18-1332
https://doi.org/10.18653/v1/D18-1332
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://openreview.net/forum?id=qNLe3iq2El
https://openreview.net/forum?id=qNLe3iq2El
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W17-4737
https://doi.org/10.18653/v1/W17-4737
https://doi.org/10.18653/v1/W18-6423
https://doi.org/10.18653/v1/W18-6423
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
http://arxiv.org/abs/2307.08621
http://arxiv.org/abs/2307.08621
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

