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Abstract
Large language models often excel in many
human-language tasks but tend to falter in
highly specialized domains like scholarly as-
tronomy. To bridge this gap, we introduce As-
troLLaMA, a 7-billion-parameter model fine-
tuned from LLaMA-2 using over 300,000 as-
tronomy abstracts from arXiv. Optimized for
traditional causal language modeling, AstroL-
LaMA shows marked domain adaptation by
achieving a 30% lower perplexity than LLaMA-
2. Compared to state-of-the-art foundation
models, AstroLLaMA generates more insight-
ful and scientifically relevant text completions
and embedding extraction despite having signif-
icantly fewer parameters. AstroLLaMA serves
as a highly domain-specific model with broad
fine-tuning potential: Its public release aims
to spur astronomy-focused research, including
automatic paper summarization, conversational
agent development and hypothesis generation.

1 Introduction

The advent of Large Language Models (LLMs) has
sparked interdisciplinary interest thanks to a conflu-
ence of factors: accumulation of massive datasets,
leaps in computational power, and breakthroughs
in neural architectures. Flagship models like GPT-
4 (OpenAI, 2023), PaLM (Chowdhery et al., 2022;
Goo) and LLaMA (Touvron et al., 2023; Meta,
2023) have exhibited exceptional versatility in a
variety of tasks from logical reasoning and compre-
hension to creative writing, often accomplished via
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methods like prompting, fine-tuning, and human-
in-the-loop reinforcement learning.

The astronomy discipline presents both a unique
challenge and a fertile ground for the application
of LLMs. The corpus of scholarly texts in astron-
omy likely constitutes but a minuscule portion of
the data on which generic LLMs are trained, re-
sulting in limitations like hallucinations in favor
of more “generic” responses. Only about 2.5%
of LLaMA-2’s training set, for example, likely
comes from arXiv, of which less than 5% belongs
to the astronomy literature. The nature of astro-
nomical research, on the other hand, often involves
cross-disciplinary insights due to universally ap-
plicable physical processes. When well-curated,
LLMs could meaningfully assist with this effort,
such as through hypothesis generation.

Existing scales based on in-context prompting
and instruction learning, primarily involving GPT-
4, have already demonstrated significant potential
for generating substantive hypotheses (Ciucă and
Ting, 2023; Ciucă et al., 2023). Further, the as-
tronomy community’s “open sky” policy, which
grants public access to the majority of its datasets
either immediately or after a brief proprietary pe-
riod (Almeida et al., 2023; Fabricius et al., 2021),
pairs well with the wealth of resources available
in archives like NASA’s Astrophysics Data System
(Accomazzi et al., 2015; Borgman and Wofford,
2021). Such an open-access policy can facilitate
deep engagement with the astronomical literature.

Despite their general capabilities, LLMs fre-
quently lag behind specialized, smaller models in
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domain-specific applications. This disparity stems
from two primary factors: (i) the eclectic nature of
the pre-training datasets, which dilutes the focus on
specialized subjects in favor of general predictive
performance, and (ii) the design ethos of LLMs
as “foundation models” aimed at subsequent fine-
tuning tailored to specific tasks. The existing land-
scape for LLMs in astronomy remains limited, how-
ever. To our knowledge, the only specialized model
is astroBERT (Grezes et al., 2021), which has 110
million parameters, fine-tuned on nearly 400,000
ADS papers. As an non-generative model, how-
ever, astroBERT’s utility remains primarily limited
to discriminative tasks.

Motivated by these gaps, we present AstroL-
LaMA, a state-of-the-art generative language
model fine-tuned from LLaMA-2. Our model lever-
ages a corpus of 300,000 astronomy abstracts from
arXiv and boasts an architecture approximately 67
times larger than that of astroBERT. AstroLLaMA
aspires to build upon astroBERT’s foundation by
offering more improved performance in generating
specialized information and broader fine-tuning op-
portunities for astronomical research. We describe
our methodology in Sec. 2, provide some evalua-
tion results in Sec. 3, and finally concluding with
some remarks in Sec. 4.

2 AstroLLaMA

In this section, we discuss AstroLLaMA’s imple-
mentation, focusing on the curation of its dataset,
base model architecture, and fine-tuning settings.

2.1 Dataset
We derive our dataset from the arXiv repository,
available on Kaggle.a Our curated subset focuses
on papers classified under the astrophysics category
(astro-ph), resulting in a collection of 326,238
articles spanning from April 1992 to July 2023.
We extract these papers’ abstracts to form a corpus
consisting of approximately 95 million tokens. The
median length of these abstracts is 291 tokens. To
enable effective model evaluation, we randomly
designate 20% of this curated dataset for testing.

2.2 Base model
Our base model is LLaMA-2, a 6.7 billion-
parameter model developed by Meta (Meta, 2023).
Originally pre-trained on a corpus containing 2 tril-
lion tokens, LLaMA-2 features a context window

ahttps://www.kaggle.com/Cornell-University/
arxiv
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Figure 1: Learning curve of AstroLLaMA during its
fine-tuning on the arXiv astrophysics dataset. The fig-
ure tracks the evolution of perplexity, a measure of the
model’s next-token prediction performance. The light
blue curve shows the training perplexity after each pa-
rameter update step, while the dark black curve provides
a smoothed average of the same metric taken over every
10-step interval.

of 4,096 tokens. For tokenization, the model em-
ploys a bytepair encoding strategy (Sennrich et al.,
2016; Kudo and Richardson, 2018), with a vocabu-
lary of 32,000 unique tokens.

2.3 Fine-tuning settings

We rely on our curated training set, which includes
77 million tokens. The setting of the fine-tuning
phase largely follows from Meta (2023). First, spe-
cial [BOS] (Beginning Of Sequence) and [EOS]
(End Of Sequence) tokens are prepended and ap-
pended to each training sequence. These sequences
are then concatenated and divided into fixed-length
chunks, each comprising 512 tokens.

We follow the causal language modeling ob-
jective employed during the model’s pre-training
phase, where the the next token is to be predicted
using its preceding context. We use the AdamW
optimizer (Loshchilov and Hutter, 2018) with hy-
perparameters β1 = 0.9, β2 = 0.95, ϵ = 10−5 and
a batch size of 32. The learning rate follows a co-
sine schedule with a linear warmup to a peak value
of 3 × 10−4 in the first 10% of the optimization
steps and a final learning rate of 10% of its peak.
Additional settings include weight decay and gra-
dient clipping values of 0.1 and 1.0, respectively.
Note that these hyperparameters are set according
to LLaMA-2’s pre-training phase.

We fine-tune LLaMA over nearly three epochs,
corresponding to about 230 million processed
tokens, using four NVIDIA A100 GPUs each
equipped with 40GB of VRAM. To achieve re-
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The Magellanic Stream (MS) - an enormous ribbon of gas spanning 140∘ of the southern sky 
trailing the Magellanic Clouds - has been exquisitely mapped in the five decades since its 
discovery. However, despite concerted efforts, no stellar counterpart to the MS has been 
conclusively identified. This stellar stream would reveal the distance and 6D kinematics of the MS, 
constraining its formation and the past orbital history of the Clouds. We have been conducting a 
spectroscopic survey of the most distant and luminous red giant stars in the Galactic outskirts. From 
this dataset, we have discovered a prominent population of 13 stars matching the extreme angular 
momentum of the Clouds, spanning up to 100∘ along the MS at distances of 60−120 kpc. 
Furthermore, these kinemetically-selected stars lie along a [α/Fe]-deficient track in chemical space 
from −2.5<[Fe/H]<−0.5, consistent with their formation in the Clouds themselves. We identify 
these stars as high-confidence members of the Magellanic Stellar Stream. Half of these stars are 
metal-rich and closely follow the gaseous MS, whereas the other half are more scattered and metal-
poor. We argue that the metal-rich stream is the recently-formed tidal counterpart to the MS, and 
speculate that the metal-poor population was thrown out of the SMC outskirts during an earlier 
interaction between the Clouds. The Magellanic Stellar Stream provides a strong set of constraints - 
distances, 6D kinematics, and birth locations - that will guide future simulations towards unveiling 
the detailed history of the Clouds. 

The Magellanic Stream (MS) - an enormous ribbon of gas spanning 140∘ of the southern
sky trailing the Magellanic Clouds - has been exquisitely mapped in the five decades since
its discovery. However, despite concerted efforts, no stellar counterpart to the MS has been
conclusively identified. This stellar stream would reveal the distance and 6D kinematics of
the MS, constraining its formation and the past orbital history of the Clouds. We propose a 
novel approach to search for the elusive stellar counterpart of the Magellanic Stream. By 
employing advanced photometric and spectroscopic techniques, combined with state-of-
the-art data mining and machine learning algorithms, we aim to systematically analyze and 
cross-reference multi-wavelength survey data to identify potential candidate stars 
belonging to the hypothesized stellar stream. Our methodology involves leveraging the 
distinctive chemical signatures and proper motions associated with stars originating from 
the Magellanic Clouds, allowing us to differentiate them from the foreground and 
background contaminants. If successful, this discovery would not only provide essential 
insights into the origin and evolution of the Magellanic Stream, but also enhance our 
understanding of the interaction between the Magellanic Clouds and the Milky Way. 
Furthermore, the proposed approach establishes a powerful framework for investigating 
other unresolved galactic structures and tracing their underlying dynamical histories.

The Magellanic Stream (MS) - an enormous ribbon of gas spanning 140∘ of the southern sky trailing the Magellanic Clouds - has
been exquisitely mapped in the five decades since its discovery. However, despite concerted efforts, no stellar counterpart to the MS
has been conclusively identified. This stellar stream would reveal the distance and 6D kinematics of the MS, constraining its
formation and the past orbital history of the Clouds. We 1) present a new method to select MS candidate stars from wide field 
optical imaging, 2) apply this method to the MS, 3) compare the results to existing catalogs, and 4) identify the most promising MS 
candidate stars. We apply our method to 2547 stars in the Gaia EDR3 catalog that have Gaia proper motions consistent with the MS 
and use these as a pilot sample to optimize our method. We then apply our method to the entire Gaia EDR3 catalog to identify 
46,000 stars that are candidates for the MS, and we use the Gaia-ESO Survey to identify 13,000 of these stars that are likely to be 
MS candidates. We identify 266 stars with (G-K) colours and [Fe/H] that are consistent with previous estimates of the MS. These 
stars have proper motions and radial velocities that are consistent with the MS, and we place them on a 3D map of the MS. We find 
a previously unknown stellar stream, which we call the Southeastern Stream (SES), in the direction of the Clouds and MS. The SES 
has an M31 distance of 32.2+/-0.5 kpc and a 6D velocity of 136+/-10 km/s. The SES is about 20 times brighter in stars than the MS 
and about 40 times brighter in stars than the SMC. The SES is also 2.7 times more metal-rich than the MS, which suggests that it is 
a separate population. 

The Magellanic Stream (MS) - an enormous ribbon of gas 
spanning 140∘ of the southern sky trailing the Magellanic
Clouds - has been exquisitely mapped in the five decades 
since its discovery. However, despite concerted efforts, no 
stellar counterpart to the MS has been conclusively 
identified. This stellar stream would reveal the distance and 
6D kinematics of the MS, constraining its formation and 
the past orbital history of the Clouds. We find a stellar 
stream in the MS, with a 6D velocity of 100 km s−1, and a 
distance of 100 kpc. The stream is 100 pc wide and 1000 
pc long, and is consistent with the MS. The stream is 1000 
times more massive than the Magellanic Clouds, and is 
likely to be a tidal stream from the Large Magellanic 
Cloud.

Original abstract Completed by GPT-4

Completed by LLaMA-2 Completed by AstroLLaMA

Figure 2: Completion of an astronomy abstract from the arXiv database (ID: 2306.15719) using three different
models: GPT-4, LLaMA-2, and AstroLLaMA. Each model is prompted with the same short text snippet, highlighted
in their respective boxes, and then produces the rest of the abstract. Two authors of this paper subsequently judge
the quality of each completed abstract. GPT-4 tends to produce over-generic statements, while LLaMA-2 often
gives off-topic generations. AstroLLaMA demonstrates the most robust completion, offering more relevant concepts
and deeper insights specific to the field of astronomy, thus significantly outperforming LLaMA-2 and GPT-4.

source efficiency, we employ 4-bit quantization of
the model’s parameters and utilize LoRA, a fine-
tuning technique based on low-rank matrix decom-
position (Hu et al., 2021). Specifically, we set
LoRA’s hyperparameters α and dropout rate to 32
and 0.05, respectively. This process is implemented
using Hugging Face’s library in Python.

2.4 Fine-tuning evaluation

Fig. 1 depicts the performance of AstroLLaMA
during its fine-tuning phase. Here, we present per-
plexity, a commonly used metric for evaluating
causal language models. Perplexity is defined as
the exponentiation of the training loss, with lower
values indicating a better fit.

Our initial observations reveal that LLaMA-2
performs suboptimally on our dataset, with an av-
erage perplexity close to 10. By the conclusion of
three epochs, AstroLLaMA achieves an average
perplexity of 6.55. This represents a 32.5% reduc-
tion in perplexity compared to the base LLaMA-2
model, signifying a substantial improvement in the
model’s new-token prediction accuracy. Consider-
ing LLaMA-2 as a strong pre-trained baseline for
language modeling, we believe this performance
improvement is substantial in this application.

3 Results

As illustrated in the previous section, AstroLLaMA
outperforms its pre-trained counterpart, LLaMA-2,
in terms of context-awareness during token predic-
tion within astronomy abstracts. To delve deeper
into the advantages of fine-tuning, we assess As-
troLLaMA’s general abilities in two key aspects:
text generation and embedding space quality. We
compare its performance against multiple models,
including LLaMA-2, GPT-4 and GPT-3 (ada-002)
to provide a comprehensive evaluation.

3.1 Text generation

We task AstroLLaMA, LLaMA-2 and GPT-4 with
completing a number of astronomy abstracts, al-
lowing us to gauge their ability to comprehend the
context and generate a meaningful continuation.
Fig. 2 presents an example. In particular, we give
each model the first few sentences of an abstract as
a prompt and use that model to generate the rest of
the abstract. For GPT-4, we utilize ChatGPT and
instruct it to limit the completion to a single para-
graph. AstroLLaMA and LLaMA-2 are deployed
using standard sampling methods, with the temper-
ature set to 0.3 and a maximum new tokens limit of
1,024. We find that altering the temperature setting
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does not substantively improve LLaMA-2’s results.
Our observations on all generated abstracts

largely echo the patterns depicted in Fig. 2.
LLaMA-2 frequently deviates from the intended
context after generating only a short and often
off-topic continuation, resulting in inferior com-
pletions. While GPT-4 produces more coherent
text, its responses are too generic to capture the
nuanced understanding required in the astronomy
domain. Even when explicitly prompted to focus
on astronomy-related topics, GPT-4’s generated
text remains largely off-target or generically appli-
cable rather than domain-specific.

In stark contrast, AstroLLaMA exhibits remark-
able context-awareness in its completions by show-
ing a deep understanding of astronomical concepts.
In Fig. 2, for example, AstroLLaMA comprehends
that an effective search for stars in the Magellanic
Stream involves a three-step process: initial wide-
field imaging, followed by refinement using astro-
metric data from Gaia, and then further curation
with spectroscopic data. The model also under-
stands Gaia-ESO is surveying the southern sky
and hence can observe (part of) the Magellanic
Stream. It also demonstrates nuanced knowledge
of the Magellanic Stream, understanding the impor-
tance of bifurcation within the stream. As a result,
it appropriately completes the text by discussing
the southeast stream and exploring metallicity dif-
ferences to ascertain their origins.

3.2 Embedding space quality

We assess models’ ability to reflect semantic sim-
ilarities among astronomy texts. We randomly
choose 10,000 abstracts from our dataset and em-
bed them using AstroLLaMA and GPT-3. Specif-
ically, we use OpenAI’s API to invoke the text
embedding function for GPT-3 (ada-002). To get
text embeddings from AstroLLaMA, we pass an
input through the model and extract its final hidden
states, which contain embeddings for all tokens in
the input. Then, we omit the [BOS] token and take
the average of all other tokens’ embeddings to get
the final result. For each pair of abstracts we cal-
culate their cosine similarity (the normalized dot
product) between on their vector embeddings.

The top panel of Fig. 3 presents the distribution
of these pairwise similarities for the two embed-
ding methods. We find that the embeddings by
GPT-3 are overly generic with similarities cluster-
ing around relatively high values of 0.7–0.9, sug-
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Paper 1: Astrophysical gyrokinetics: kinetic and fluid turbulent cascades  
               in magnetized weakly collisional plasma 
Paper 2: Comment on modified Coulomb law in a strongly magnetised vaccum 
GPT-3 cosine similarity score: 78.5% 
AstroLLaMA cosine similarity score: 36.3% 
 
Paper 1: A Spitzer census of the IC 348 nebula 
Paper 2: Sequential and spontaneous star formation around the mid-infrared 
               halo HII region KR 14 
GPT-3 cosine similarity score: 82.4% 
AstroLLaMA cosine similarity score: 92.8%

Figure 3: Top: Distribution of pairwise cosine similari-
ties among 10,000 randomly selected abstracts from our
corpus, divided into 10 equal bins based on similarity
levels from GPT-3. Bottom: Two representative exam-
ples illustrating divergent cosine similarity values when
comparing AstroLLaMA and GPT-3 embeddings.

gesting a lack of discriminative power (most papers
are embedded very similarly). AstroLLaMA’s em-
beddings, on the other hand, exhibit much higher
variance within each bin. This suggests that our
fine-tuned model is more adept at representing the
specialized semantic variance inherent to the field
of astronomy, which may enable a more granu-
lar representation of astronomical content and can
facilitate higher-quality document retrieval and se-
mantic analysis.

The bottom panel of Fig. 3 provides two repre-
sentative examples where AstroLLaMA and GPT-3
classifications diverge. In the first example, GPT-3
fixates on the keyword “magnetized,” resulting in
an inflated similarity score despite the contents be-
ing markedly different. AstroLLaMA, on the other
hand, successfully distinguishes between these dis-
parate contexts. In the second example, AstroL-
LaMA accurately identifies that the study of Spitzer
is closely related to star formation. GPT-3, how-
ever, fails to make this connection due to the ab-
sence of matching keywords.

4 Conclusion

In this work, we introduce AstroLLaMA, a 7-
billion-parameter language model fine-tuned on a
dataset encompassing over 300,000 abstracts from
astronomical research papers. Compared to its
base model, LLaMA-2, and even GPT-4, a cur-
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rent state-of-the-art general LLM, AstroLLaMA
exhibits marked improvements in generating high-
quality abstracts and a competent grasp of relevant
information in this specialized literature.

The efficacy of AstroLLaMA demonstrated in
this paper suggests a multitude of avenues wor-
thy of exploration for subsequent work. With
well-curated instruction datasets, researchers can
fine-tune our model to perform tasks such as ques-
tion answering, scientific paper summarization and
academic writing assistance. Combining AstroL-
LaMA with other information retrieval models can
lead to promising systems for hypothesis genera-
tion. Finally, AstroLLaMA is a potential candidate
to be incorporated into specialized multi-modal
models (Liu et al., 2023), going beyond the limits
of text in astronomical research.

AstroLLaMA, nevertheless, is not without lim-
itations. During its evaluation, the most salient
drawback we find is the model’s knowledge gaps in
certain areas of astronomy. In Fig. 2, for example,
AstroLLaMA’s estimation of potential star candi-
dates from Gaia-ESO data is notably inaccurate.
Another concern lies in the model’s tendency to
generate hallucinated or fictitious numerical data,
an issue most likely attributed to our simple focus
on next-token prediction—a pure NLP objective—
rather than explicitly steering the model toward
factual accuracy. Achieving a desirable balance of
“faithfulness” (respecting scientific evidence and
accuracy) and “creativity” (being able to come up
with interesting hypotheses) remains an open chal-
lenge in research at the intersection of generative
models and other scientific disciplines.

There are a number of on-going efforts to ad-
dress the limitations of AstroLLaMA as well as
explore its broad capabilities in this sphere. We are
in the process of enriching AstroLLaMA’s train-
ing data by including each paper’s full LaTeX
sources, going beyond its abstracts and thereby
increasing the token count by approximately two
orders of magnitude. Although this requires a non-
trivial data quality control procedure, it will almost
certainly improve our model’s predictive perfor-
mance substantially, making it even more adapted
to this literature and less prone to hallucination.
A more systematic evaluation of AstroLLaMA—
including a larger set of candidate abstracts for
completion, a more well-defined evaluation scheme
and a larger, more diverse set of judging experts—
will lead to more grounded comparison with state-

of-the-art models. Finally, the potential of AstroL-
LaMA to generate high-quality and creative hy-
potheses through novel prompting and fine-tuning
techniques is being extensively studied.

AstroLLaMA stands as a compelling prototype
for specialized LLMs in astronomy, showing supe-
rior context-aware capabilities compared to GPT-
4 despite having much fewer parameters. Our
methodology is simple and general enough for re-
searcher to explore even more specific areas of
astrophysics or even to be adapted to other areas of
scientific research.

We have made AstroLLaMA’s weights, training
data and code for reproducibility publicly available
to researchers who are aiming to leverage LLMs
for astronomy-centric applications. Along with
this, we are establishing various “playgrounds” on
Hugging Face to invite interested readers to ex-
plore AstroLLaMA and further refine this robust
starting point for a variety of relevant downstream
applications.b
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