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Abstract

The digitisation of historical texts has provided
new horizons for NLP research, but such data
also presents a set of challenges, including
scarcity and inconsistency. The lack of edi-
torial standard during digitisation exacerbates
these difficulties.

This study explores the potential for temporal
domain adaptation in Early Modern Irish and
pre-reform Modern Irish data. We describe
two experiments carried out on the book sub-
corpus of the Historical Irish Corpus, which
includes Early Modern Irish and pre-reform
Modern Irish texts from 1581 to 1926. We also
propose a simple orthographic normalisation
method for historical Irish that reduces the type-
token ratio by 21.43% on average in our data.

The results demonstrate that the use of out-
of-domain data significantly improves a lan-
guage model’s performance. Providing a model
with additional input from another historical
stage of the language improves its quality by
12.49% on average on non-normalised texts and
by 27.02% on average on normalised (demu-
tated) texts. Most notably, using only out-of-
domain data for both pre-training and training
stages allowed for up to 86.81% of the base-
line model quality on non-normalised texts and
up to 95.68% on normalised texts without any
target domain data.

Additionally, we investigate the effect of tem-
poral distance between the training and test
data. The hypothesis that there is a positive
correlation between performance and temporal
proximity of training and test data has been val-
idated, which manifests best in normalised data.
Expanding this approach even further back, to
Middle and Old Irish, and testing it on other
languages is a further research direction.

1 Introduction

With the increasing digitisation of historical texts,
more data becomes available for analysis along-
side contemporary documents. However, such data

poses a set of challenges for any NLP task as it
tends to be both scarce and inconsistent. Apart
from natural artefacts of language evolution, such
as spelling variation and grammatical changes,
working with historical languages is complicated
by the lack of a linguistic / editorial standard when
this data is being digitised (Piotrowski, 2012; Jenset
and McGillivray, 2017; Bollmann, 2019). It is es-
pecially true for Early Irish, as Doyle et al. (2018,
2019) and Dereza et al. (2023) have pointed out.

In this work, we explore the possibility of tem-
poral domain adaptation1 on Early Modern Irish
and pre-reform Modern Irish data. Although these
are not the oldest stages of the Irish language, they
are less resourced and more versatile than Mod-
ern Irish, which is itself a minority language. We
conduct a set of experiments on the use of out-of-
domain data, both later and earlier than the target
time period, for pre-training embedding models to
improve the quality of a language model at the said
period. We also investigate the effect that tempo-
ral distance between embedding training data and
test data has in such a setting. Finally, we propose
a simple and efficient normalisation method for
historical Irish.

2 Related Work

The surge of interest in distributional semantics
has lately reached historical linguistics. A recently
emerged concept of diachronic, or dynamic (Bam-
ler and Mandt, 2017; Rudolph and Blei, 2018; Yao
et al., 2018; Hofmann et al., 2020), embeddings
transforms the task of language modelling into the
task of modelling language change, which most
papers in this field focus on (Kulkarni et al., 2015;
Frermann and Lapata, 2016; Hamilton et al., 2016;

1We use the term ‘temporal domain adaptation’ to describe
transfer learning between two different stages of the same
language. We believe that this is an instance of domain adap-
tation, where the main difference between source and target
domains is associated with the time when the texts were pro-
duced, hence ‘temporal’.
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Dubossarsky et al., 2017; Rosenfeld and Erk, 2018;
Tahmasebi, 2018; Boukhaled et al., 2019; Rod-
ina et al., 2019; Brandl and Lassner, 2019; Hu
et al., 2022). In 2018, three comprehensive sur-
veys of detecting and measuring semantic shifts
with word embeddings came out (Kutuzov et al.,
2018; Tahmasebi et al., 2018; Tang, 2018). In 2020,
one of the SemEval shared tasks was dedicated
to unsupervised lexical semantic change detection
(Schlechtweg et al., 2020). At least two PhD theses
on the topic, “Distributional word embeddings in
modelling diachronic semantic change” (Kutuzov,
2020) and “Models of diachronic semantic change
using word embeddings” (Montariol, 2021), have
been defended in the last few years.

Less attention has been paid to addressing the
challenges historical languages pose for training
a robust embedding model, such as high spelling
variation or substantial grammatical change over
time. A good example of such a work is a paper
by Montariol and Allauzen (2019), who discuss
the effectiveness of different algorithms for em-
bedding training in diachronic low-resource sce-
narios and propose improvements to initialisation
schemes and loss regularisation to deal with data
scarcity. Di Carlo et al. (2019) are suggesting to
use atemporal compass vectors as heuristics while
training diachronic word embeddings on scarce
data.

On the other hand, the use of closely related
languages or language varieties to improve word
embeddings and language models in a low-resource
setting has been a subject of active discussion. For
example, Currey et al. (2016) model a low-resource
scenario on Spanish data, using Italian and Por-
tuguese as donor languages for training a statis-
tical machine translation model. Abulimiti and
Schultz (2020) work in real low-resource condi-
tions, successfully using Turkish data to improve
a language model for Uyghur. Kuriyozov et al.
(2020) make another successful attempt at leverag-
ing better-resource Turkic languages to improve the
quality of the embeddings for related low-resource
languages. Ma et al. (2020) achieve a better per-
formance on the low-resource Tibetan language
by training cross-lingual Chinese-Tibetan embed-
dings. Generally, transfer learning is a popular
approach in neural machine translation when it
comes to the lack of data, as described in Zoph
et al. (2016); Nguyen and Chiang (2017); Kocmi
and Bojar (2018); Maimaiti et al. (2019); Chen and

Abdul-Mageed (2022). However, the cross-lingual
transfer aimed at overcoming data scarcity is not
limited to related languages (Adams et al., 2017;
Agić et al., 2016). The problem of low-resource
scenarios is also discussed in an extensive survey of
the cross-lingual embedding models (Ruder et al.,
2018).

A few works consider the transfer between differ-
ent historical stages of the same language as a case
of domain adaptation (Yang and Eisenstein, 2015;
Huang and Paul, 2019; Manjavacas and Fonteyn,
2022), and we adopt this terminology. Manjava-
cas and Fonteyn (2022) compare adapting and
pre-training large language models for historical
English, concluding that pre-training on domain-
specific (i.e. historical) data is preferable despite
being costly and dependent on the amount of train-
ing data.

However, the effect on a language model’s per-
formance produced by initialising it with temporar-
ily distant pre-trained embeddings and by using the
out-of-domain temporal data at the training stage
has not been evaluated yet, to the best of our knowl-
edge. Moreover, the Irish data has never been used
in the research on diachronic word embeddings and
temporal domain adaptation before.

3 Data

The data for the experiment is a collection of Early
Modern Irish and Modern Irish texts spanning over
350 years, from the late 16th to early 20th century.

Irish belongs to the Celtic branch of the Indo-
European language family. Like other Celtic lan-
guages, it is notable for initial mutations: sound
changes at the beginning of a word happening in
certain grammatical environments, which are re-
flected in spelling. These are combined with a rich
nominal and verbal inflection at the end of a word.
The four types of initial mutations in modern Irish
and their effect on spelling is shown in Table 1.

Before becoming a grammatical feature of the
language, mutations happened as historical pho-
netic processes.2 For instance, a mutation called
lenition in the intervocalic position turned Old Irish
cride ["kjrjiðje] ‘heart’ into Middle Irish croid(h)e /
cridhe / craid(h)e ["k(j)r(j)iGj@] / ["k(j)r(j)ij@], which
later became Modern Irish croí [kRGi:].3

2We apologise for this necessary simplification of histori-
cal Irish phonology to our Celticist readers.

3Our IPA transcriptions of Middle Irish forms are purely
hypothetical. Not enough is known about spoken Middle Irish
to say with any authority how things were pronounced, as
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Letter Lenition Eclipsis t-prothesis h-prothesis

b bh mb - -
c ch gc - -
d dh nd - -
f fh bhf - -
g gh ng - -
p ph bp - -
t th dt - -
m mh - - -
s sh - ts -

vowels - n-V t-V hV

Table 1: Initial mutations in modern Irish.

3.1 Early and Pre-Reform Modern Irish
Early Modern Irish is a term used to describe a vast
period in the history of the Irish language between
Middle and pre-reform Modern Irish. It spans from
the 13th to the 18th century (McManus, 1994) and
is marked by multiple religious works (both orig-
inal and translated), epic tales (both native and
adapted from continental material), bardic poetry
and historical writing, such as genealogical tracts.

Modern declension and conjugation systems
were formed during this period, which makes Early
Modern Irish relatively close to what Irish is today,
and even closer to what it was before the spelling
reform in 1947 and the introduction of the official
standard, An Caighdeán Oifigiúil, in 1958 (Rannóg
an Aistriúcháin, 1958), which is being regularly
revised and updated (Tithe an Oireachtais, 2017).

However, both Early Modern Irish and pre-
reform Modern Irish texts show considerable
spelling variation and unstable grammatical
changes, which makes them challenging for NLP
tasks (Scannell, 2022).

3.2 Historical Irish Corpus
The data used in the experiments originates in a
book subcorpus of the Historical Irish Corpus, or
Corpas Stairiúil na Gaeilge (hereafter CSnaG), cre-
ated by the Royal Irish Academy (Acadamh Ríoga
na hÉireann; Uí Dhonnchadha et al., 2014). It in-
cludes texts from 1581 to 1926 and amounts to
13, 599, 882 tokens. It covers a wide variety of
genres, such as bardic poetry, native Irish stories,
translations and adaptations of continental epic and
romance, annals, genealogies, grammatical and

the writing standard of the period was very archaic. Scribes
were following the rules of Old Irish, leaving us with only
occasional errors and innovations to conjecture the language
they were speaking.

medical tracts, diaries, and religious writing. Each
text is dated (both creation and publication dates
are provided), and the majority of the texts are
author-attributed. The data is available in differ-
ent formats (plain text, TEI, ePub) along with the
metadata on the CSnaG website.4

For our purposes, the data was continuously split
into 10 parts, 99 texts each, except for the last
one, which only includes 97 texts. The motivation
for splitting the corpus by the number of texts as
opposed to the number of tokens comes from the
necessity to keep whole texts within a particular
corpus subset to avoid the time, author, and genre
interference. Cutting a text into several chunks
would have created an overlap between the corpus
parts and affected the results of the experiments.
Table 2 shows the time frame of each corpus subset
along with its size.

3.3 Preprocessing

The texts were split into sentences by the end-of-
sentence punctuation marks; then, all sentence-
level punctuation was removed and the texts were
lowercased. No stemming, lemmatisation or part-
of-speech tagging was applied.

In addition to that, a normalised (hereafter ‘de-
mutated’) dataset was created where mutations
were removed regardless of their type and posi-
tion in the word. As a result of such normalisation,
ngrádhmhar became grádmar, t-ollmhughadh be-
came ollmugad, and so on. Mutations are one of
the main sources of spelling variation, especially in
the diachronic setting. Although we do lose some
grammatical information and sometimes create lex-
ical ambiguities by removing them at the begin-
ning of a word, this change is not critically damag-
ing and is comparable to lemmatisation. Scannell
(2020) discusses demutation in modern Irish and
the types of errors it can lead to in great detail.

Removing historical mutations that occur in the
middle and at the end of a word may, in turn, lead
to the conflation of dialectal and standard spellings
(standard d(h)éanfadh vs. dialectal d(h)éanfad), as
well as of unrelated words (óige ‘youth’ and óighe,
‘Gen. sg. Virgin [Mary]’). However, homonymy ex-
ists in non-normalised Irish texts too: for instance,
óige not only means ‘youth’, but can also be a part
of the analytical comparative and superlative forms
of óg ‘young’. A slight increase in homonymy

4http://corpas.ria.ie/index.php?fsg_
function=1
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Part Years Tokens
Mutated Demutated

Improvement, %
Types TTR Types TTR

0 1581− 1640 1 669 581 54 748 32.79 42 411 25.40 22.53
1 1640− 1690 1 524 344 49 658 32.58 39 434 25.87 20.59
2 1691− 1728 775 412 28 967 37.36 23 425 30.21 19.13
3 1729− 1771 875 635 33 038 37.73 26 367 30.11 20.19
4 1771− 1817 688 900 28 708 41.67 22 995 33.38 19.90
5 1817− 1836 1 094 053 36 048 32.95 28 361 25.92 21.32
6 1836− 1875 634 692 21 981 34.63 17 468 27.52 20.53
7 1876− 1908 1 562 576 33 833 21.65 26 185 16.76 22.61
8 1908− 1919 2 294 943 38 548 16.80 29 132 12.69 24.43
9 1919− 1926 2 479 746 46 117 18.60 35 501 14.32 23.02

Table 2: Reducing vocabulary size by removing mutations. TTR scores are calculated as TTR = types
tokens × 1000

according to Schlechtweg et al. (2020).

Language Period TTR

English 1880− 1860 13.38
German 1800− 1899 14.25
Swedish 1790− 1830 47.88
Latin −200− 0 38.24
CSnaG (original) 1581− 1926 45.50
CSnaG (demutated) 1581− 1926 33.15

Table 3: TTR scores of Early Modern Irish and pre-
reform Modern Irish compared to other historical lan-
guages.

seems to be a justified tradeoff for a significant re-
duction of vocabulary size unless one is specifically
interested in dialectal variation, pronunciation and
spelling change, or rhyme patterns in bardic poetry.

Removing mutations from data reduces vocabu-
lary size and type-token ratio (TTR) by 21.43% on
average (see Table 2). Moreover, it helps to bridge
the gap between Old Irish, where mutations were
not marked in writing, and more modern stages of
the language. To put these results into context, let
us compare TTR scores calculated on the whole
CSnaG, containing Early Modern Irish and pre-
reform Modern Irish texts, with similar results for
historical English, German, Swedish, and Latin
provided by Schlechtweg et al. (2020), in Table 3.

Lower TTR has a positive effect on NLP models’
performance: in our case, it leads to a notable drop
in the perplexity of a language model. Table 4
shows the percent of improvement on demutated
texts in comparison to the original ones in each
of the experiments, described in more detail in
Section 5.1.

Part Baseline EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 11.25 10.35 14.39 16.62 13.32 19.17
1 8.88 7.97 10.98 13.62 11.20 10.09
2 4.77 3.85 8.30 13.25 8.36 11.96
3 8.27 6.19 10.72 16.95 11.01 12.44
4 8.64 6.77 13.00 19.33 13.55 17.11
5 9.46 9.91 12.70 11.51 11.56 16.37
6 3.85 5.36 10.30 33.02 7.43 20.08
7 9.39 9.60 11.33 16.25 10.38 8.78
8 8.88 9.52 10.68 32.57 10.25 9.97
9 9.52 10.24 11.87 13.88 10.49 26.01

AVG 8.29 7.98 11.43 18.70 10.76 15.20

Table 4: The % of a language model’s quality improve-
ment (the decrease in perplexity) achieved by simple
orthographic normalisation consisting in the removal of
synchronic and historical mutations.

4 Methodology

4.1 Embedding Model

We use a FastText (Bojanowski et al., 2017) em-
bedding model that takes subword information into
account, which is preferable due to the nature of his-
torical language data. Due to a high degree of vari-
ation, which is explained both by the morphologi-
cal complexity of historical languages and by the
lack of standardisation, going down to the subword
level is crucial for reducing the vocabulary and
effectively dealing with out-of-vocabulary words
at the same time. A similar approach is adopted
in other works on low-resource data (Kuriyozov
et al., 2020; Ma et al., 2020). During our initial
set of experiments on non-normalised diachronic
Early Irish data, embedding models learned mostly
paradigmatic and derivational morphological rela-
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tions, as well as spelling variation. Some semantic
relations were also captured but to a lesser extent
(Dereza et al., 2023).

For both experiments described in this paper, all
embedding models were trained with the following
parameters: embedding size = 100, context win-
dow = 10, and minimal count = 2 regardless of
vocabulary size. The embedding size is motivated
by the experimental results demonstrating that a
smaller embedding dimension reduces the model’s
sensitivity to noise when the data is scarce (Stewart
et al., 2017). The low minimal word count is aimed
at preserving as much information at each time step
as possible.

4.2 Evaluation Scenario
Extrinsic evaluation of embeddings (Schnabel et al.,
2015; Bakarov, 2018; Torregrossa et al., 2021)
through language modelling seems preferable since
it is language-independent and scalable. In addi-
tion to that, it does not require manual preparatory
work such as dataset creation, unlike other popu-
lar downstream tasks, such as bilingual dictionary
induction, part-of-speech tagging, or any kind of
classification. Hypothetically, using pre-trained
embeddings must lower the perplexity score of a
language model, even if these were trained on a
different period of the language in question.

Perplexity is a standard metric to evaluate lan-
guage models, which can be defined as the inverse
probability of the test set normalised by the number
of words. The lower it is, the better.

PPL(X) = exp

{
−1

t

t∑

i

log pθ (xi | x<i)

}

4.3 Language Model
The configuration of our language model is delib-
erately simple so that it would allow seeing the
contribution that the pre-trained embeddings make
to its performance more clearly. It is an LSTM
(Hochreiter and Schmidhuber, 1997) with one hid-
den layer trained until convergence with the Adam
optimiser using the early stopping technique, start-
ing with the learning rate = 0.001. The minimum
word count was set to 2 to match the pre-trained
embedding models. The number of neurons on the
hidden layer was calculated depending on corpus
vocabulary size as nhidden = V × 0.01 regardless
of whether pre-trained embedding models were
used or not, and of their vocabulary size. The coef-
ficient was devised empirically based on available

computational resources. The pre-trained embed-
dings were not fixed during the language model
training to allow for domain adaptation. More in-
formation on vocabulary sizes for each experiment
can be found in Tables 9 and 8 in Appendix A.

5 Experimental Results

Figure 1: Experiment I: the % of a language model’s
quality improvement / deterioration in comparison to the
baseline, original texts without orthographic normalisa-
tion.

Figure 2: Experiment I: the % of a language model’s
quality improvement / deterioration in comparison to
the baseline, orthographically normalised (demutated)
texts.

5.1 Experiment I

Experiment I consisted of 5 tasks summarised in
Table 5. Each of these tasks was aimed at answer-
ing a particular question about pre-training, such as

“Does the use of an embedding model pre-trained
on related data without the target [temporal] do-
main help to lower the perplexity of a language
model at timestamp ti?”. The perplexity of a lan-
guage model trained on a target temporal domain
data ti (i.e. one of the corpus parts № 0-9) without
pre-training was taken as a baseline.
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№ LM train data LM test /
valid data Pre-training Research Question

1.0 ti ti — Baseline

1.1 ti ti ti

Does pre-training on the target temporal domain ti
help to lower the perplexity of a language model for
the timestamp ti?

1.2 ti ti T
Does using a bigger pre-trained embedding model,
containing more than the target domain, help to
lower the perplexity of an LM for the timestamp ti?

1.3 T ti T

Does the use of out-of-domain data along with
in-domain data at both the pre-training and the
LM training stages help to lower the perplexity
of an LM for the timestamp ti?

1.4 ti ti T−i

Does the use of an embedding model pre-trained on
related data without the target domain ti help to
lower the perplexity of an LM for the timestamp ti?

1.5 T−i ti T−i

If we do not have any in-domain data for training,
does the use of related data at both the pre-training
and the LM training stages help to lower the perplexity
of an LM for the timestamp ti?

Table 5: A overview of Experiment I: ti refers to a single corpus part from 0 to 9, T stands for the whole corpus,
and T−i is the whole corpus excluding a single corpus part from 0 to 9.

Part EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 +9.35 +6.98 +4.43 +1.34 –68.82
1 +11.45 +10.70 +16.49 +3.50 –51.84
2 +8.77 +5.44 +10.40 +2.82 –24.85
3 +14.13 +11.82 +20.67 +7.15 –14.43
4 +15.14 +10.23 +16.49 +6.08 –13.19
5 +9.37 +7.20 +23.27 +5.32 –42.44
6 +7.57 +3.84 –7.69 +4.18 –54.89
7 +9.44 +7.35 +23.03 +5.40 –23.81
8 +7.39 +6.66 –2.80 +5.28 –17.82
9 +8.18 +7.51 +20.64 +4.51 –38.96

AVG +10.08 +7.77 +12.49 +4.56 –35.10

Table 6: Experiment I: the % of a language model’s
quality improvement / deterioration in comparison to
the baseline; original texts without orthographic normal-
isation.

Every corpus part covering a particular period
in the history of the Irish language, as shown in
Table 2, was split into training (80%), validation
(10%), and test (10%) subsets. Validation and test
subsets have not been seen by the language model
at any stage, including pretraining (i.e. word em-
beddings were trained only on the training subset
of each corpus part).

Part EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 +8.25 +10.90 +11.16 +3.76 –65.76
1 +10.36 +13.32 +22.90 +6.21 –51.19
2 +7.72 +9.49 +21.19 +6.85 –18.72
3 +1.60 +14.89 +33.27 +10.46 –10.35
4 +12.83 +15.75 +31.92 +12.10 –4.32
5 +9.92 +11.19 +26.13 +7.82 –37.68
6 +9.29 +11.30 +32.50 +8.19 –45.73
7 +9.69 +9.69 +33.10 +6.57 –24.32
8 +8.15 +8.81 +31.34 +6.89 –16.83
9 +9.04 +10.38 +26.74 +5.64 –25.35

AVG +9.68 +11.57 +27.02 +7.45 –30.02

Table 7: Experiment I: the % of a language model’s
quality improvement / deterioration in comparison to
the baseline; orthographically normalised (demutated)
texts.

The results of this experiment are reported in
Tables 6 and 7, where each number shows an im-
provement (marked with a +) or a drop (marked
with a −) in the performance of a language model
compared to the baseline. For example, in Experi-
ment 1.3, the use of additional out-of-domain data
both at the pre-training and training stages results in
a 11.16% improvement (i.e. the language model’s
perplexity drops by 11.16%) in comparison to the
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baseline on the corpus part № 0 with orthographic
normalisation. In other words, adding the texts
from 1640 − 1926 to those from 1581 − 1640 at
both the pre-training and training stages improves
the results of the model on the 1581 − 1640 test
data by 11.16%. Generally, Experiment 1.3 demon-
strates that providing a model with additional input
improves its quality by 12.49% on average on non-
normalised texts and by 27.02% on average on
normalised texts.

Similarly, in Experiment 1.5, pre-training and
training a language model on the whole normalised
corpus excluding part № 0 and testing its per-
formance on part № 0 makes the resulting score
65.76% worse (i.e. the language model’s perplex-
ity rises by 65.76%). Still, it is not as discouraging
as it may seem: it means that we are still able to
obtain 34.24% of the baseline model quality even
if we do not have the target data from 1581− 1640
in our training corpus at all. This number is even
higher for later stages of the language, where us-
ing related data for training allows to achieve up
to 86.81% of the baseline model quality on non-
normalised texts and up to 95.68% on normalised
texts.

As expected, both pre-training on the same data
and using additional out-of-domain data only at the
pre-training stage leads to the improvement of a
language model’s performance despite the shallow
architecture of a language model. Naturally, lan-
guage models trained on earlier texts or on texts
with genre-specific language are more sensitive
to the absence of in-domain data. For example,
parts 5 and 6 include a substantial amount of po-
etry, which often exhibits a richer, more archaic
vocabulary compared to prose.

Figures 1 and 2 provide a graphical overview of
the effect that the pre-training data makes on the
performance of a language model in comparison to
the baseline. Raw sentencewise perplexity scores
for the experiment are given in Tables 10 and 11 in
Appendix B.

5.2 Experiment II

The second experiment was aimed at observing
the effect of the temporal distance between the
pre-training and the training/test data. It consisted
in the training of language models on each of the
10 corpus subsets initializing them with embed-
dings pre-trained on each of these corpus parts in
all possible combinations. We hypothesised that

smaller temporal distances would result in better
performance than bigger ones. Our hypothesis
has proven correct, as shown in Figures 3 and 4.
This correlation is most pronounced when evaluat-
ing orthographically normalised (demutated) texts.
Naturally, language models fed with embeddings
pre-trained on the same data yield the best results.
Table 12 in the Appendix C provides the results of
this experiment run on non-normalised texts, where
all mutations are preserved, and Table 13 presents
similar results for demutated texts. Columns cor-
respond to embedding models, and rows are cor-
pus parts they were tested on. For the reader’s
convenience, we cite normalised inverse perplex-
ity instead of the original sentence-wise perplexity
scores. It shows how well a model performed in
comparison to the best result, where 100% is the
best result.

NIP =
best_score

score
× 100

Figure 3: The effect of temporal distance between
the pre-training (embedding) data and the language
model training and test data; original texts without or-
thographic normalisation.

Figure 4: The effect of temporal distance between the
pre-training (embedding) data and the language model
training and test data; orthographically normalised (de-
mutated) texts.
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6 Conclusion

The results cited above testify that using out-of-
domain temporal data in the pre-training and train-
ing of a language model for a historical language
can significantly improve its performance. This
is extremely valuable in low-resource scenarios,
where we may only have a few texts dating back to
a particular period, which would not be enough
to train a robust language model. Providing a
model with additional input improves its quality
by 12.49% on average on non-normalised texts and
by 27.02% on average on normalised texts even if
this information is retrieved from data covering a
different — no matter later or earlier — period in
the history of a language. Most importantly, using
only out-of-domain data at both pre-training and
training stages allows for achieving up to 86.81%
of the baseline model quality on non-normalised
texts and up to 95.68% on normalised texts without
any target domain data.

Our hypothesis that there is a positive correlation
between the performance of language models and
the temporal proximity of training and test data
has been validated. This effect manifests best in
orthographically normalised texts. Expanding this
approach even further back, to Middle and Old
Irish, and testing it on other languages is a further
research direction.

Finally, we proposed a simple yet very effective
orthographic normalisation method for historical
Irish that reduced the type-token ratio by 21.43%
on average in our data and allowed for up to 33.02%
drop in a language model’s perplexity.
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A Vocabulary Sizes

Part
EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

Original Normalised Original Normalised Original Normalised Original Normalised Original Normalised

0 60,042 47,688 60,042 47,688 210,537 161,958 60,042 47,688 183,439 141,804
1 53,202 43,103 53,202 43,103 209,507 161,323 53,202 43,103 187,557 144,540
2 30,847 25,358 30,847 25,358 206,508 159,109 30,847 25,358 197,197 151,883
3 36,141 29,205 36,141 29,205 207,025 159,467 36,141 29,205 195,729 150,838
4 31,829 25,796 31,829 25,796 206,679 159,233 31,829 25,796 196,818 151,708
5 39,330 31,268 39,330 31,268 207,517 159,726 39,330 31,268 194,385 150,004
6 24,738 19,962 24,738 19,962 205,936 158,630 24,738 19,962 198,647 153,164
7 39,286 30,811 39,286 30,811 207,110 159,570 39,286 30,811 194,832 150,355
8 44,870 34,039 44,870 34,039 207,301 159,558 44,870 34,039 190,256 150,169
9 53,400 41,417 53,400 41,417 208,567 160,595 53,400 41,417 189,740 146,577

Table 8: Corpus vocabulary sizes. The data used in the Experiment II is the same as in the Experiment 1.1

Part
EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

Original Normalised Original Normalised Original Normalised Original Normalised Original Normalised

0 51,302 41,268

204,290 157,402 204,290 157,402

175,325 135,366 175,325 135,366
1 45,554 37,176 181,140 139,403 181,140 139,403
2 26,497 21,909 194,791 150,019 194,791 150,019
3 30,872 25,175 192,775 148,533 192,775 148,533
4 27,073 22,064 194,493 149,911 194,493 149,911
5 33,609 26,931 190,620 147,236 190,620 147,236
6 21,274 17,298 196,621 151,648 196,621 151,648
7 34,108 26,901 191,514 147,827 191,514 147,827
8 39,220 30,063 190,256 147,416 147,416 147,416
9 46,447 36,260 183,939 142,114 142,114 142,114

Table 9: Vocabulary sizes of the pre-trained embedding models. The models used in the Experiment II are the same
as in the Experiment 1.1

B Experiment I

Part Baseline EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 336.35 307.58 314.40 322.07 331.90 1078.61
1 337.98 303.26 305.32 290.13 326.54 701.80
2 361.98 332.79 343.32 327.89 352.05 481.70
3 412.06 361.04 368.50 341.49 384.55 481.53
4 542.83 471.44 492.45 465.98 511.74 625.31
5 351.83 321.69 328.19 285.42 334.07 611.22
6 266.43 247.67 256.58 288.62 255.75 590.64
7 230.54 210.66 214.76 187.38 218.73 302.57
8 180.49 168.07 169.22 185.69 171.44 219.63
9 222.64 205.81 207.08 184.55 213.03 364.72

AVG 324.31 293.00 299.98 287.92 309.98 545.77

Table 10: Experiment I: sentencewise perplexity scores;
original texts without orthographic normalisation.

Part Baseline EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 298.50 275.75 269.15 268.53 287.69 871.87
1 307.98 279.08 271.79 250.60 289.96 630.99
2 344.70 319.99 314.81 284.44 322.61 424.11
3 377.99 338.7 329.01 283.62 342.20 421.61
4 495.91 439.51 428.44 375.91 442.40 518.32
5 318.56 289.82 286.51 252.56 295.45 511.15
6 256.16 234.39 230.16 193.33 236.76 472.01
7 208.89 190.44 190.43 156.94 196.02 276.00
8 164.46 152.07 151.14 125.22 153.86 197.73
9 201.44 184.74 182.50 158.94 190.68 269.85

AVG 297.46 270.45 265.39 235.01 275.76 459.36

Table 11: Experiment I: sentencewise perplexity scores;
orthographically normalised (demutated) texts.
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C Experiment II

Part 0 1 2 3 4 5 6 7 8 9

0 100.00 90.65 87.59 87.59 87.02 88.18 86.70 87.19 85.53 87.39
1 91.44 100.00 89.05 89.67 87.48 88.62 87.68 87.94 88.11 88.66
2 93.94 95.00 100.00 93.48 92.71 93.23 90.60 91.41 92.19 91.64
3 88.87 90.26 91.12 100.00 89.81 90.83 88.74 89.54 90.35 91.88
4 90.23 88.13 90.59 89.67 100.00 90.81 90.58 89.01 90.79 91.83
5 90.03 89.45 90.87 92.39 90.18 100.00 90.20 89.57 90.86 90.90
6 92.20 90.30 92.49 94.43 92.24 94.43 100.00 91.15 92.18 92.51
7 89.91 89.19 89.96 91.53 90.83 92.08 89.16 100.00 94.55 93.94
8 91.71 91.43 91.30 92.47 92.15 92.86 92.18 95.40 100.00 96.34
9 89.65 89.43 89.67 90.61 89.63 91.00 89.87 93.62 94.80 100.00

Table 12: Experiment II. Original texts, normalised inverse perplexity scores in %, where 100% is the best score.
Columns correspond to embedding models, and rows are corpus parts they were tested on.

Part 0 1 2 3 4 5 6 7 8 9

0 100.00 91.30 89.21 89.24 89.07 89.96 88.44 88.43 89.01 89.55
1 92.42 100.00 91.17 90.88 89.64 90.26 89.01 89.47 89.95 90.20
2 96.14 95.76 100.00 94.55 93.82 95.09 92.22 93.55 95.18 94.68
3 91.19 91.77 92.01 100.00 91.43 92.72 91.44 90.99 92.59 93.42
4 91.69 92.22 91.83 94.29 100.00 92.73 89.88 94.46 92.27 94.28
5 90.94 91.51 90.67 92.79 90.34 100.00 90.62 91.71 92.78 92.22
6 94.25 93.02 95.48 97.06 94.70 96.25 100.00 95.13 95.96 95.90
7 91.64 91.52 91.17 92.25 92.36 92.27 91.10 100.00 96.48 95.82
8 91.31 91.25 91.16 92.46 91.31 92.38 90.49 95.25 100.00 96.38
9 89.68 89.56 89.67 90.67 90.13 90.67 89.91 92.69 94.83 100.00

Table 13: Experiment II. Demutated texts, normalised inverse perplexity scores in %, where 100% is the best score.
Columns correspond to embedding models, and rows are corpus parts they were tested on.
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