
Proceedings of the Second Ukrainian Natural Language Processing Workshop (UNLP), pages 121–131
May 5, 2023 ©2023 Association for Computational Linguistics

RedPenNet for Grammatical Error Correction: Outputs to Tokens,
Attentions to Spans

Bohdan Didenko
WebSpellChecker LLC / Ukraine
bogdan@webspellchecker.net

Andrii Sameliuk
WebSpellChecker LLC / Ukraine

andrii.sameliuk@webspellchecker.net

Abstract
The text editing tasks, including sentence fu-
sion, sentence splitting and rephrasing, text sim-
plification, and Grammatical Error Correction
(GEC), share a common trait of dealing with
highly similar input and output sequences. This
area of research lies at the intersection of two
well-established fields: (i) fully autoregressive
sequence-to-sequence approaches commonly
used in tasks like Neural Machine Translation
(NMT) and (ii) sequence tagging techniques
commonly used to address tasks such as Part-
of-speech tagging, Named-entity recognition
(NER), and similar. In the pursuit of a bal-
anced architecture, researchers have come up
with numerous imaginative and unconventional
solutions, which we’re discussing in the Re-
lated Works 4 section. Our approach to ad-
dressing text editing tasks is called RedPen-
Net and is aimed at reducing architectural and
parametric redundancies presented in specific
Sequence-To-Edits models, preserving their
semi-autoregressive advantages. Our models
achieve F0.5 scores of 77.60 on the BEA-2019
(test), which can be considered as state-of-
the-art the only exception for system combi-
nation (Qorib et al., 2022) and 67.71 on the
UAGEC+Fluency (test) benchmarks.

This research is being conducted in the con-
text of the UNLP 2023 workshop, where it
will be presented as a paper for the Shared
Task in Grammatical Error Correction (GEC)
for Ukrainian. This study aims to apply the
RedPenNet approach to address the GEC prob-
lem in the Ukrainian language. Public data
related to this article may appear over time in
this GitHub repository 1.

1 Introduction

The GEC challenge has been tackled with various
techniques, including the traditional Autoregres-
sive (AR) Neural Machine Translation (NMT) us-
ing the transformer architecture (Vaswani et al.,

1https://github.com/WebSpellChecker/
unlp-2023-shared-task

2017), as well as additional methods that we refer
to collectively as Inference Optimized (IO). The
existing IO methods for GEC can be broadly cate-
gorized into two groups, as described further.

The first group is non-autoregressive Feed For-
ward (FF) approaches which involve a single for-
ward pass — through the model and provides token-
level edit operations, such as the approach pro-
posed in (Awasthi et al., 2019), (Omelianchuk et al.,
2020). The advantage of FF approaches is their fast
inference speed. However, their limitations lie in
how they maintain consistency between interrelated
edits, which leads to the need for iterative sentence
correction approaches. The iterative sentence cor-
rection process solves some issues with interrelated
corrections. However, it introduces new challenges.
The absence of information about the initial input
state could potentially lead to substantial modifica-
tions of the text meaning and structure, including
rewording, word rearrangement, and the addition
or removal of sentence components.

The second category consists of Inference Op-
timized Autoregressive (IOAR) models, which
can be further separated into two subcategories:
(i) sequence-to-edits (SeqToEdits). This cate-
gory encompasses works such as (Malmi et al.,
2019), (Chen et al., 2020), (Stahlberg and Kumar,
2020), and the RedPenNet model examined in this
paper; (ii) the recently proposed Input-guided Ag-
gressive Decoding (IGAD) approach (Ge et al.,
2022), which has been proven effective for GEC
tasks, as demonstrated in the study (Sun et al.,
2021). More information about these model cate-
gories can be found in the Related Work 4 section.

In our study, we propose RedPenNet, which is
an IOAR model of the SeqToEdits subtype. Red-
PenNet utilizes a single shallow decoder (Kasai
et al., 2020) for generating both replacement tokens
and spans. During the generation of edit tokens,
the encoder-decoder attention weights are used to
determine the edit spans. For these attentions, pre-

121

https://github.com/WebSpellChecker/unlp-2023-shared-task
https://github.com/WebSpellChecker/unlp-2023-shared-task

softmax logits are fed as inputs to a linear trans-
formation which predicts the position of the edit
in the source sentence. This approach is similar to
the method described in Pointer Networks (Vinyals
et al., 2015). Additionally, we train compact task-
specific decoder BPE vocabularies to reduce the
cost of the pre-softmax dot operation, making it
more efficient for predicting replacement tokens.
The RedPenNet model is also capable of tackling
the challenge of Multilingual GEC (Rothe et al.,
2021). To achieve this, specialized shallow de-
coders need to be trained for different languages.
This gives the ability to use a single model with
a multilingual pre-trained encoder and language-
specific decoders.

Our proposed solution has a design that enables
converting the input sequence into any output se-
quence, achieving competitive results in solving
the GEC task.

2 RedPenNet

2.1 General

Instead of predicting the target sequence directly,
the RedPenNet model generates a sequence of N
2-tuples (tn, sn) ∈ V × N0 where tn is a BPE
token obtained from the pre-computed decoder vo-
cabulary 3 and sn denotes the span positions. In
the RedPenNet approach, we define each of the
J edit operations e as a sequence of C 2-tuples
(tc, sc), where 2 ≤ C ≤ N . The first token for
each edit ej is represented as tc=0 = SEP. As pre-
viously mentioned, in our approach, a single edit
can consist of multiple tokens. However, to deter-
mine the span of a single edit, only two positions
are required: sstart and send. To accomplish this,
we impose the following constraints for each ej :
s start = sc0 and s end = sc1 . The remaining
sc values for c ∈ 2, ..., C are not considered. In
RedPenNet, if a correction requires inserting text at
a position n in the source sequence, it is expressed
as sstart = send. To handle the deletion operation,
a special token DEL ∈ V is used, which is equiva-
lent to replacing the span with an empty string. If
the input text is error-free, RedPenNet generates an
EOS token in the first AR step, thereby avoiding
unnecessary calculations.

The iterative process of applying edits to the
source sequence is illustrated in Algorithm 1. Also,
the process of generating GEC edits using the Red-
PenNet architecture can be visualized with the help
of the following illustration 1.

Algorithm 1 editsToCorrect()
1: s start← 0
2: s end← 0 { Initialize spans}
3: y← x {Initialize y as tokenized input}
4: z ← ϵ {Initialize z edit seq with the empty

string.}
5: for n← 1 to N do
6: if tn = EOS then
7: return y
8: else if tn = SEP then
9: ys end

s start ← z
10: z← ϵ
11: s start← sn
12: else
13: if tn ̸= DEL then
14: z← concat(z, tn)
15: end if
16: if tn−1 = SEP then
17: s end← sn
18: end if
19: end if
20: end for

In the case of RedPenNet, similar to the
Seq2Edits approach (Stahlberg and Kumar, 2020),
it is important to maintain a monotonic, left-to-right
order of spans and ensure that SEP tokens are never
adjacent to each other and the final edit token is
always EOS. None of our models generated invalid
sequences during inference without any constraints,
as it is also the case with Seq2Edits.

2.2 Encoder

The utilization of pre-trained language models has
been consistently shown to improve performance
on a range of NLP downstream tasks, including
GEC, as observed in numerous studies. To train
RedPenNet, we deployed pre-trained models from
the HuggingFace transformers library2. We have
observed that models trained on Masked Language
Modeling (MLM) tasks perform the best as en-
coders for the RedPenNet architecture. Therefore,
in this work, we focus solely on this family of mod-
els. The availability of a range of models within
the HuggingFace library offers the flexibility to
choose a pre-trained model based on the required
size, language, or a multilingual group. This opens
up the potential for RedPenNet to (i) create mul-
tilingual GEC solutions using language-specific

2https://huggingface.co/models

122

https://huggingface.co/models

Positions 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17
Input Sentence In a other hand ∅ many of stars sold their privacy to earn more and more money .

Table 1: Visual representation of the tokenized encoder input sequence that includes visual markings, intended to
improve the clarity of the editing process.

Autoregressive Steps 1 2 3 4 5 6 7 8
Input Tokens SOS SEP On the SEP , SEP DEL

Input Spans 0 1 3 ∅ 5 5 6 7
Output Tokens SEP On the SEP , SEP DEL EOS

Output Spans 1 3 ∅ 5 5 6 7 ∅

Table 2: This example depicts a step-by-step demonstration of a RedPenNet autoregressive inference that encom-
passes multi-token edits, insertions and deletions.

decoders with a single multilingual encoder, and
(ii) construct RedPenNet model ensembles based
on different pre-trained models with comparatively
less efforts.

2.3 Decoder
A transformer decoder stack was used as for the de-
coder in the RedPenNet model. During the training
phase, the model learned an autoregressive scor-
ing function P (t, s|x;Φ), which is implemented
as follows:

Φ∗ = arg max
Φ∗

logP (t, s|x;Φ)

=arg max
Φ∗

N∑

n=1

logP (tn, sn|tn−1
1 , sn−1

1 ,x;Φ)

where t = (t1, ..., tn) represents the sequence of
ground-truth edit tokens with SEP tokens that are
used to mark the start of each edit. Additionally,
s = (s1, ..., sn) indicates the sequence of ground-
truth span positions, which denote specific ranges
in the input sequence x.

In line with the standard Transformer architec-
ture, the previous time step predictions are fed back
into the Transformer decoder. At each step n, the
feedback loop consists of the BPE token embed-
ding of tn−1, which is combined with a decoder-
specific trainable positional encoding embedding
pn−1. The resulting sum is then concatenated with
the span embedding of sn−1.

The span embedding on step n can be defined
as:

s embn = s maskn · x embsn−1

s maskn =





0, if n = 0

1, if 0 < n ≤ 2

0|tidn−1−b|

+0|tidn−2−b|, otherwise

where tidn is an index of token tn in decoder vo-
cabulary V and is denoted as tid = index(t, V),
b is an index of SEP token in V and x embsn−1 is
a vector embedding corresponding to xsn−1 token.
In other words, there are two cases in how span em-
bedding takes values depending on the preceding
token sequence: (i) by using the embedding of the
token xsn−1 from the encoder input sequence when
tn−2 = SEP ∨ tn−1 = SEP or (ii) by using a
zero-filled embedding ϵ with the same dimensions
D as xn. During training, similar to the MLM task,
a binary spans target mask for spans sequences are
used to regulate the given logic.

As a result, the inputs of the decoder at step n−1
can be expressed as follows:

Concat(t embn−1 + pn−1, s embn−1)

=[t embn−1,1 + pn−1,1, ..., t embn−1,D + pn−1,D,

s embn−1,1, ..., s embn−1,D] ∈ R2D

The technique of utilizing the pre-softmax at-
tention weights from an encoder-decoder attention
layer to represent the probabilities of positions in
the input sequence was introduced in Pointer Net-
works (Vinyals et al., 2015) and later applied to the
GEC task in the Seq2Edits approach (Stahlberg and
Kumar, 2020). Additionally, to increase the num-
ber of trainable parameters at this stage, a dense
layer has been added to the bottom of the spans
output linear transform.

3 Training Decoder BPE Vocabularies

In the traditional implementation of the Trans-
former model, a shared source-target vocabulary is
utilized for both the decoder and the encoder, as
described in (Vaswani et al., 2017). It is evident
that the pre-softmax linear transformation required
to transform the decoder output into predicted next-
token probabilities is computationally expensive.

123

Its computational complexity can be expressed as
O(d · v), where d is the output dimension of the
model and v is the decoder vocabulary size.

If the GEC task is approached by generating cor-
rection strings for the edits and using autoregres-
sive decoding for this purpose, we tend to think
that the information entropy of the generated se-
quences will be significantly lower compared to
that of the input sequences. Our belief is based on
the following two assumptions:

1. People tend to make mistakes in similar
phrases and words.

2. Corrected versions of spelling words are statis-
tically more frequent and can be represented
by fewer BPE tokens.

Therefore, a smaller BPE vocabulary will be suf-
ficient to create efficient representations of se-
quences of corrections. In section 5.1.2, we test this
hypothesis on one of the languages, as the example
shows.

4 Related Work

In the context of the GEC task, the closest family
of approaches to RedPenNet is the Autoregressive
approaches, specifically the SeqToEdits subtype.
They include models such as Lasertagger, Erro-
neous Span Detection and Correction (ESD&ESC),
and Seq2Edits comparison with which is important
for understanding the impact of our work. These
models share the advantage that the number of au-
toregressive steps are based on the number of neces-
sary edits to the original text, rather than the length
of the input text. We will evaluate each of these
approaches to the GEC problem in this section. In
this section, we will also discuss the Aggressive
Decoding approach, which has evolved from the
traditional sequence-to-sequence approach.

The Seq2Edits (Stahlberg and Kumar, 2020) ap-
proach predicts a sequence of N edit operations
autoregressively from left to the right. Each edit
operation is represented as a 3-tuple (tag, span, to-
ken) that specifies the action of replacing. The
approach allows constructing an edit sequence for
any pair (x, y). Tag prediction also improves ex-
plainability in the GEC task. For 3-tuple genera-
tion, a divided transformer decoder is used, and
the tag and span predictions are located between
its parts. Seq2Edits approach is similar to RedPen-
Net in the following (i) generation of spans and

replacement tokens within the same autoregressive
step, (ii) using Pointer Networks to predict spans.
The difference between compared approaches is:
1. RedPenNet uses a single decoder stack to gener-
ate tokens and spans. 2. The Seq2Edits approach is
different in terms of generating multi-token edits.
According to (Bryant et al., 2017), an edit that has
at least two tokens (multi-token edit) represents
10% of all edits from the CoNLL-2014 test set. As
mentioned before, in the Seq2Edits approach, each
step of the autoregressive process predicts an edit
which consists of a 3-tuple (tag, end span, replace-
ment token), where the replacement token is a sub-
-word. According to the cited articles (Stahlberg
and Kumar, 2020), the Seq2Edits approach has the
capability of representing multi-token edits as a
list of single-token edits, where the tag and span
remain unchanged, with only the replacement to-
ken being changed. In terms of the RedPenNet
approach, a single edit can be represented by mul-
tiple autoregressive steps, allowing a more natural
generation of multi-token edits. 3. In the RedPen-
Net approach, decoder-specific positional encod-
ings are added to the decoder inputs at the bottom
of the decoder stack. This allows the model to ef-
fectively utilize the order of multi-token edits. The
approach presented in Seq2Edits does not clearly
state the location in the divided Transformer de-
coder, where positional encodings can be utilized.
The absence of such encodings can result in diffi-
culty for the model in comprehending the order of
the replacement tokens being inserted within the
same span positions. 4. RedPenNet uses a pre-cal-
culated, task-specific version of the BPE decoder
vocabulary to generate edit tokens, thus reducing
the cost of the pre-softmax linear transformation.

The Lasertagger (Malmi et al., 2019) approach
deploys an autoregressive Transformer decoder to
annotate the input sequence with tags from pre-
calculated output vocabulary. With the limited
size of the tags, vocabulary minimizes the cost
of the pre-softmax linear transformation, making
Lasertagger the fastest approach among the IOAR
SeqToEdits architectures. However, the RedPen-
Net model presents several key differences: (i) it
uses a BPE vocabulary instead of a tag vocabulary,
(ii) it generates edits rather than tagging the input
sequence, and (iii) it can produce a sequence of
tokens for each edit.

In the ESD&ESC (Chen et al., 2020) approach,
the task of solving the GEC editing problem is

124

divided into two subtasks: Erroneous Span Detec-
tion (ESD), where incorrect spans are identified
through binary sequence tagging, and Erroneous
Span Correction (ESC), where the correction of
these spans is performed using a classic autore-
gressive approach that implies generation of edits
for tokens surrounded by annotated span tokens.
RedPenNet shares some similarities with this archi-
tecture, as it also utilizes autoregressive generation
of a sequence of edit tokens, separated by control
tokens that are part of the decoder vocabulary. The
ESD&ESC approach differs from RedPenNet in
several key aspects. 1. Firstly, RedPenNet predicts
the span positions in a one-by-one manner at the
decoder level, while the ESD&ESC approach uses
a separate encoder to generate spans. However,
the ESD approach has the same limitations as the
FF family, since the ESD tags may not always be
consistent, leading to difficulties in maintaining
consistency between interrelated edits. The ESC
decoder during generation will not have the capa-
bility to fully rectify the situation, as it will be
confined to the range of the annotated span tokens.
2. RedPenNet approach is capable of decomposing
neighboring errors in the input text into multiple
edit operations, if necessary. Conversely, the ESD
approach merges nearby errors in a single span.

The Aggressive Decoding (Sun et al., 2021)
method accelerates the AR calculations for the task
by utilizing the input tokens as drafted decoded to-
kens and autoregressively predicting only those por-
tions that do not match. This leads to a significant
improvement in inference speed. The disadvantage
of the IGAD approach is that it requires the use
of a shared vocabulary with the encoder during de-
coding. Therefore, even when the input and output
sequences are the same, IGAD requires a signif-
icant number of floating point operations for the
pre-softmax linear transformation in the decoder
which is calculated using the formula: O(v · d · l),
where v is the vocabulary size, d is the model depth,
and l is the input length. This problem becomes
more obvious in the case of using pre-trained multi-
language models, which traditionally have larger
encoder vocabularies and corresponding matrix em-
beddings. The impact of decoder vocabulary is ana-
lyzed in section 3. Additionally, since the length of
the output sequence in IGAD is directly tied to the
length of the input sequence, the issue of quadratic
complexity in attention mechanisms remains in the
decoder. This can be a challenge when dealing with

long sequences and requires the use of specialized
transformer architectures in the decoder.

It is worth mentioning, that the Highlight
and Decode Technique described in our previous
study (Didenko and Shaptala, 2019). Similar to the
Erroneous Span Detection (ESD) component in the
ESD&ESC approach, a binary sequence tagging
model was used to identify incorrect spans. Sub-
sequently, a broadcast binary sequence mask was
element-wise multiplied to a special “highlight”
embedding. The result of this operation was added
to the encoder output at the bottom of the decoder
stack. This allowed the decoder to predict the re-
placement tokens only for the “highlighted” spans.
However, as outlined in the mentioned article, this
approach had a list of limitations.

5 Experiments

5.1 UNLP 2023 Shared Task

The UNLP-2023 conference hosted the first Shared
Task (Syvokon and Romanyshyn, 2023) in GEC
for Ukrainian. One of the primary difficulties in
addressing the GEC problem for the Ukrainian lan-
guage lies in the scarcity of high-quality annotated
training examples — a common issue for Non-
English GEC. The Ukrainian language also poses
an additional challenge due to its rich morpholog-
ical structure and fusional nature. (Syvokon and
Nahorna, 2021). The foundation of this Shared
Task was established by Grammarly’s efforts to
develop a corpus that has been professionally an-
notated for GEC and fluency edits in the Ukrainian
language, referred to as the UA-GEC corpus. The
Shared Task consists of two tracks: (i) GEC-only,
which focuses on automatically identifying and
correcting grammatical errors in written text, and
(ii) GEC+Fluency, which encompasses corrections
for grammar, spelling, punctuation, and fluency.
Given that the RedPenNet architecture is capable
of handling any type of editing, including rephras-
ing, reordering words, and sentence splitting, we
decided to participate in the GEC+Fluency track.

GEC+Fluency Baseline: Furthermore, the or-
ganizers offered a baseline model 3 based on
facebook/mbart-large-50. This model was trained
for a NMT task with the objective of autoregres-
sively generating correct text from erroneous input.
The score of baseline can be found in table 3.

3https://huggingface.co/osyvokon/
mbart50-large-ua-gec-baseline

125

https://huggingface.co/osyvokon/mbart50-large-ua-gec-baseline
https://huggingface.co/osyvokon/mbart50-large-ua-gec-baseline

5.1.1 Data
In the case of GEC tasks, data is typically stored
in the m2 format (Dahlmeier and Ng, 2012), where
each instance consists of a source text and a list of
edits required to transform it into the target text. To
adapt the m2 training examples for the RedPenNet
architecture, we (i) deployed the pre-trained en-
coder tokenizer to tokenize the erroneous input text,
(ii) used the decoder tokenizer 3 to tokenize the ed-
its correction strings, and (iii) converted the span
offsets from the word count separated by spaces to
the corresponding BPE tokens (sub-words) offsets.

UA-GEC: In the GEC+Fluency track of the
Shared Task, the participants were given access to
the gec-fluency public dataset 4. The training data
comprises 32,734 examples, where 15,161 contain
at least one annotated error edit, while 17,573 are
error-free. The evaluation dataset consists of 1,506
dev set and 1,350 test set instances. In this Shared
Task, two annotators annotated all examples from
the development set of the dataset and some ex-
amples from the training set. They also annotated
all examples from the evolution dev sets, as well
as some examples from the training data. For the
Shared Task, all the data was tokenized using the
stanza library 5. To categorize the dataset edits
by error types, we utilized a set of 20 tags. They
included 14 grammar types and 6 fluency types.

Synthetic Data: Much of the research on the
GEC problem shows that the use of pre-generated
synthetic data reduces model training time and
also improves overall quality. For the UNLP 2023
Shared Task, we generated over 160K Ukrainian
erroneous data sentences based on error-free texts
taken from data corpora presented on lang.org.ua 6

website. For our error generation approach, we
utilized mbart-large-50 as a pre-train model, which
we trained using the back translation method (Xie
et al., 2018) on the training data from the UA-GEC
dataset. Our task was to transduce the error-free
input text sequence into the erroneous one. The
synthetic data generation model was trained on a
Google Colab Premium GPU instance for 8 epochs
with a batch size of 4, a learning rate of 1e−5, and
a maximum input and output length of 128 tokens
each. The performance of the RedPenNet architec-
ture trained on this pre-training data is presented in
Table 4.

4https://github.com/asivokon/
unlp-2023-shared-task

5https://stanfordnlp.github.io/stanza/
6https://lang.org.ua/uk/corpora/

5.1.2 Decoder vocabulary for Ukrainian GEC
Multiple BPE decoder vocabularies were trained
with varying sizes and evaluated based on the re-
sulting output token count (refer to Figure 1). A
training text file was created specifically for this
purpose, consisting of correction strings extracted
from the m2 edits. The (gec-fluency/train.m2)
file from the UNLP-2023 Shared Task was used
as the source. Also, we added additional
50,000 of the most frequent words from the
Ukrainian Frequency dictionary of lexemes of artis-
tic prose.7 to the vocabularies training text file
extracted from (gec-fluency/train.m2). The
(gec-fluency/valid.m2) was utilized to evaluate
and compare the different sizes of the decoder vo-
cabularies.

The evaluation was performed by extracting and
concatenating the correction strings from all ed-
its for each annotated m2 sentence into a space-
separated sequence. This sequence was then tok-
enized using different decoder vocabularies. Exam-
ple: annotated m2 sentence:

S Нечiткi бенефiтс спiвпрацi ,
натомiсть вихначенi зобовязання
A 5 6|||Spelling|||визначенi|||...|||0
A 6 7|||Spelling|||зобов’язання|||...|||0
A 1 2|||Spelling|||бенефiцiари|||...|||1
A 5 6|||Spelling|||визначенi|||...|||1
A 6 7|||Spelling|||зобов’язання|||...|||1
A 7 7|||Punctuation|||.|||...|||1

concatenated edits corrections:

визначенi зобов’язання бенефiцiари
визначенi зобов’язання .

To compare the advantages of using a shorter
task-specific decoder vocabulary for the Ukrainian
GEC task, we will use the mbart-large-50 base-
line model 5.1 as a reference. For this model,
the number of operations required for the pre-
softmax linear transformation is (1024·250, 054) =
256,055,296 floating-point operations. In contrast,
our trained vocabulary with a size of 16,384 per-
forms the same task using only (1024 · 16, 384) =
16,777,216 operations while maintaining a smaller
encoding length than the baseline.

5.1.3 Model Configuration
Encoders: For the encoder part of RedPenNet,
we chose pre-trained models from those available

7http://ukrkniga.org.ua/ukr rate/hproz 92k lex
dict orig.csv

126

https://github.com/asivokon/unlp-2023-shared-task
https://github.com/asivokon/unlp-2023-shared-task
https://stanfordnlp.github.io/stanza/
https://lang.org.ua/uk/corpora/
http://ukrkniga.org.ua/ukr_rate/hproz_92k_lex_dict_orig.csv
http://ukrkniga.org.ua/ukr_rate/hproz_92k_lex_dict_orig.csv

0 5 10 15 20 25
0

50

100

number of tokens

se
qu

en
ce

s
co

un
t

vocab size - 4096, mean - 9.66, STD - 11.30

0 5 10 15 20 25
0

50

100

number of tokens

se
qu

en
ce

s
co

un
t

vocab size - 8192, mean - 9.03, std - 10.63

0 5 10 15 20 25
0

50

100

150

number of tokens

se
qu

en
ce

s
co

un
t

vocab size - 16384, mean - 8.46, std - 9.89

0 5 10 15 20 25
0

50

100

150

number of tokens
se

qu
en

ce
s

co
un

t

vocab size - 250054, mean - 8.53, std - 9.62

Figure 1: The x-axis depicts the number of tokens required to represent the concatenated correction of sequences
for each m2 instance. The y-axis represents the total count of the concatenated corrections extracted from the
(gec-fluency/valid.m2) that meet a specific number of tokens. The results show that as the vocabulary size
increases, the mean number of tokens needed to encode one concatenated correction decreases. However, when
the vocabulary reaches 16,384, a vocabulary trained on corrections and frequent words outperforms the native
vocabulary of mbart-large-50 in terms of the mean parameter.

on the Hugging Face Hub 8. Our main require-
ment during the selection process was that the mod-
els were trained on the Ukrainian language cor-
pora. We built and compared a few models based
on different encoders: RPN(RLARGE) – RoBERTa
Large 9 transferred to Ukrainian using the method
from the NAACL2022 paper (Minixhofer et al.,
2022), RPN(XLMBASE) – a smaller version of the
XLM-RoBERTa 10 model with only Ukrainian and
some English embeddings left. Comparative results
for these models can be seen in the table 3

Decoder: We utilized a shallow RedPenNet
Decoder stack 2.3 for the decoder part of our archi-
tecture. It consists of two layers, and we kept the
model depth and dropout parameters the same as
the encoders. We utilized a previously computed
decoder vocabulary (refer to Section 5.1.2) which
was set to a size of 16, 384.

Setup: Tensorflow 2 on a Google Colab TPU in-
stance was used for training and evaluation. In most
of the combinations, we conducted pre-training on
synthetic data for 20 epochs, followed by training

8https://huggingface.co/models
9https://huggingface.co/benjamin/

roberta-large-wechsel-ukrainian
10https://huggingface.co/ukr-models/

xlm-roberta-base-uk

on UA-GEC erroneous data for 30 epochs using
a batch size of 32 and a learning rate of 2e−5.
Afterward, we fine-tuned the model on UA-GEC
(erroneous + error-free) data for 5 epochs, with a
batch size of 16 and a learning rate of 5e−6. In the
Results section 5.1.5, we present the results of the
approaches that showed the best performance.

5.1.4 Evaluation
For the evaluation, the organizers of the Shared
Task provided the script based on Errant 11. Al-
though Errant isn’t able to handle specific error
types in Ukrainian, it is common practice to use
this library for other non-English languages, such
as Spanish (Davidson et al., 2020). We have also
evaluated scores on the free version of Language-
Tool and Hunspell for comparison 3.

In RedPenNet, we implemented a minimum edit
probability parameter to filter out low-probability
edits and to improve precision at the cost of recall.
To achieve this, we averaged the probabilities of all
predicted edit tokens, as well as the predicted start
span and end span for each edit. We assessed the
probability of all edits in the model output and dis-
carded those that have probabilities below the min-

11https://github.com/chrisjbryant/errant

127

https://huggingface.co/models
https://huggingface.co/benjamin/roberta-large-wechsel-ukrainian
https://huggingface.co/benjamin/roberta-large-wechsel-ukrainian
https://huggingface.co/ukr-models/xlm-roberta-base-uk
https://huggingface.co/ukr-models/xlm-roberta-base-uk
https://github.com/chrisjbryant/errant

Approach min edit dev test
prob P R F0.5 P R F0.5

Hunspell - 12.9 04.0 08.9 - - -
Langtool(free) - 21.8 05.9 14.2 - - -
Langtool(free)+Hunspell - 19.1 09.0 15.6 - - -
MBart-50LARGE 67.51 39.48 59.11 73.06 44.36 64.69
RPN(XLMBASE) 0.94 74.9 31.2 58.51 - - -
RPN(RLARGE) 0.95 75.31 35.11 61.28 76.54 41.93 65.69
1×RPN(XLMBASE)
+ 2×RPN(RLARGE)∗ 58.5/59 80.28 36.58 64.80 80.86 41.03 67.71

Table 3: displays the performance comparison between RedPenNet (RPN) and other existing public methods on the
UA-GEC+Fluency dataset. The min edit prob column shows the edit probability threshold required for accepting an
edit.

Approach UA-GEC+Fluency (dev)
P R F0.5

Synt. pre-train
& freeze encoder 08.0 08.9 08.2

Synt. pre-train 07.18 17,27 08.13

Table 4: Performance of RPN(RLARGE) after pre-training
on synthetic data.

imum edit probability. All edits with probabilities
surpassing the threshold were applied. A similar
prediction filtering method for GEC was proposed
in the GECToR paper and was called “Inference
tweaking”. And in both cases, the method proved
to be effective in improving precision. We also
experimented with an iterative correction process,
where the output of a previous correction round is
used as input for the next one.

Ensembles To create an ensemble of the Red-
PenNet models, we calculated the average edit
probabilities and applied an algorithm that follows
the subsequent scenario: 1. For matched edits, we
summed their probabilities. 2. For intersecting ed-
its, we choose the more probable one. 3. We kept
all remaining non-intersecting edits in the result.
Then we tuned the minimum edit probability pa-
rameter to maximize the F0.5 score on the UA-
GEC+Fluency dev set.

5.1.5 Results
We began by pre-training models solely on erro-
neous data, as proposed in the GECToR research.
During this stage, we froze encoders and used syn-
thetic data for pre-training. In the next stage, we
unfroze the encoders and trained the models on
UA-GEC erroneous data. Our experiments indicate
that a low learning rate of ±5e−6, a small batch
size, a few training steps (less than epoch), and an
increase in dropouts to ±0.2 are useful during the
initial stages of fine-tuning on a combination of (er-
roneous + error-free) data. This approach enables

us to capture a good checkpoint when the model
shifts from recall to precision.

To implement ensembles, we trained two
RPN(RLARGE) models and one RPN(XLMBASE)
model. The only difference between the two
RPN(RLARGE) models is that one of them was
trained on erroneous data before being trained on
(error-free + erroneous data). The model that was
trained only on (error-free + erroneous data) has
higher recall.

To enhance the quality of the results, we per-
formed two rounds of iterative correction and ap-
plied the ensemble technique to the output of each
round. During the first iteration, we set the mini-
mum edit probability to 0.585, and for the second
iteration, it was set to 0.59. During iterative cor-
rection, we selected the value of the minimum edit
probability parameter that maximizes the precision
score.

During the experiment, we demonstrated that
our custom architecture, RedPenNet can be applied
to the GEC task, with performance that competes
with large Seq2Seq models like mbart-large-50 and
significantly outperforms classical algorithmic ap-
proaches.

5.2 BEA 2019 Shared Task

To further demonstrate the capabilities of the Red-
PenNet architecture, we applied it to the BEA-2019
Shared Task on English GEC.

Data: The combination of erroneous data ob-
tained from several sources was used for pre-
training. We used 20 million samples from the
synthetic tagged corruption dataset (Stahlberg and
Kumar, 2021)12, approximately 500K English sam-
ples from the (Rahman, 2022) study, and around
500K English samples from the lang-8 dataset. The

12https://huggingface.co/datasets/liweili/
c4 200m

128

https://huggingface.co/datasets/liweili/c4_200m
https://huggingface.co/datasets/liweili/c4_200m

data was sampled in the following proportions:
50% of tagged corruption, 25% of lang-8, and 25%
of samples from the (Rahman, 2022) study. Only
data samples that had at least one error were se-
lected. After pre-training, we used the combination
of W&I+LOCNESS train set with 13,574 sentences
from CWEB(G+S) evaluation dataset (Flachs et al.,
2020) 13 that are used as training data for fine-
tuning.

Model Configuration: We trained several
different-sized RedPenNet models: two based
on XLNet 14 pre-trains - RPN(XLNBASE)
and RPN(XLNLARGE), and two models based
on Muppet Roberta 15: RPN(MPRBASE) and
RPN(MPRLARGE).

The decoder stack consists of two layers,
and we utilized a pre-computed decoder vocab-
ulary trained on text corrections extracted from
ABC.train.gold.bea19.m2. The chosen vocabu-
lary size is 8192.

For pre-training, we conducted 500K steps with
a batch size of 128 for BASE models and 64 for
LARGE, setting the learning rate to 3e−5. For fine-
tuning, we performed 4-6 epochs (depending on
the model) to obtain the maximum F0.5 score on
the W&I+LOCNESS dev set. During fine-tuning,
we used a batch size of 32 and a learning rate of
5e−6 for all models.

Table 5: BEA-2019 (Test)

Model P R F0.5

(Qorib et al., 2022)∗ 86.6 60.9 79.9
(Lichtarge et al., 2020) 75.4 64.7 73.0
(Omelianchuk et al., 2020) 79.4 57.2 73.7
(Stahlberg and Kumar, 2021) 77.7 65.4 74.9
(Rothe et al., 2021) - - 75.9

RPN(MPRBASE) 80,80 56,71 74,47
4×RPN ensemble 86.62 54.80 77.60

Table 6: A comparison of the performance of various
modern GEC approaches, including RedPenNet on the
BEA-2019 test set. (Qorib et al., 2022)∗ provides results
of combination several systems outputs.

Evaluation and Results: We evaluated
RedPenNet models on W&I+LOCNESS test
set. For our best result, we used an en-
semble of RPN(XLNBASE), RPN(XLNLARGE),
RPN(MPRBASE) and RPN(MPRLARGE) models.
We merged the output using the same scenario as

13https://github.com/SimonHFL/CWEB
14https://huggingface.co/xlnet-large-cased
15https://huggingface.co/facebook/

muppet-roberta-large

for the UNLP 2023 Shared Task 5.1.4 and deter-
mined the best minimum edit probability to be 0.68.
Interestingly, the second round of processing, in
which the outputs from the previous round served
as model inputs, did not lead to an improvement in
the F0.5 score. As it is shown in Table 6, our ap-
proach yields state-of-the-art results on BEA-2019
(Test) benchmark, surpassed only by the System
Combination result by (Qorib et al., 2022). Further-
more, it is worth mentioning that the RedPenNet
ensemble consisting of four BASE/LARGE models
outperforms the BEA-2019 (Test) F0.5 score of
the T5-XXL 11B model from (Rothe et al., 2021)
study.

6 Conclusion

While there has been a significant amount of re-
search in the field and many tailored architectures
have been proposed, a universally accepted neu-
ral architecture for text editing tasks that involves
highly similar input and output sequences has yet
to be established. This has prevented the creation
of an industry standard that can be included in de-
fault toolkits for popular machine learning libraries
and MLOps tools. Our proposed RedPenNet is
an attempt to create a universal neural architecture
that is not overloaded with design nuances and is
capable of implementing any source-to-target trans-
formation using a minimal number of autoregres-
sive steps. The RedPenNet architecture is a classic
transformer, and the only differences lie in how
we form decoder input embeddings and interpret
outputs and attention scores.

Limitations

While the RedPenNet approach has demonstrated
several strengths, such as superior inference capa-
bilities for seq2seq tasks with highly similar inputs
and outputs, and some advantages over other Se-
qToEdits approaches highlighted in the Related
Works 4 section, it is not without its limitations:

Due to the tailored architecture of RedPenNet,
there are no off-the-shelf solutions for data prepro-
cessing, training, and fine-tuning, as is the case of
tasks such as common classification or sequence-
to-sequence. Consequently, it is not possible to use
convenient tools like the HuggingFace Estimator
or cloud platforms for rapid model fine-tuning and
deployment.

Additionally, the implementation of a non-
greedy beam search approach is complicated by

129

https://github.com/SimonHFL/CWEB
https://huggingface.co/xlnet-large-cased
https://huggingface.co/facebook/muppet-roberta-large
https://huggingface.co/facebook/muppet-roberta-large

the presence of multiple sequence outputs.
One more fundamental limitation is that for each

edit, the model needs to generate at least two tokens
(SEP, token). This does not provide an advantage
in reducing the number of autoregressive steps, par-
ticularly for short and error-crowded sentences.

Additionally, while RedPenNet has the ability to
express any type of input sequence transformation
through a number of editing operations, it may not
be able to express a single “conceptual” edit, such
as transferring a word within a sentence, using
a single edit operation. In such cases, two edits
— deletion and insertion — may be required to
accomplish the desired transformation.

Ethics Statement

Our study focuses on the development of a neural
architecture for text editing tasks. The research
was conducted in accordance with ethical princi-
ples, and no sensitive or personal data was used or
collected during the study. The UA-GEC dataset
and corpora presented on lang.org.ua used in the
study have been obtained from public sources, and
their authors assure the privacy and confidentiality
of the original texts. The results of the study are
intended to improve the efficiency and accuracy of
text writing and may be useful for other NLP tasks.
We ensure that the study does not raise any ethical
concerns or has no negative impact on individuals
or groups.

Acknowledgments

We would like to acknowledge and give our thanks
to WebSpellChecker LLC for the support and re-
sources allocated to this project. We are also grate-
ful to the WebSpellChecker team, especially Ju-
lia Shaptala and Viktoriia Biliaieva, for their as-
sistance and advice during the competition. We
are expressing our gratitude to the Program Com-
mittee reviewers for organizing the first Shared
Task in Grammatical Error Correction (GEC) for
Ukrainian, their guidance and insightful recommen-
dations. Also, we would like to mention that the
competition took place and this paper was written
in Ukraine during wartime. We extend our sincere
thanks to all Ukrainian defenders and all support-
ers of our country and people during these tough
times. We also wish to acknowledge our friends
who are defending the country with arms — An-
drey Boychuk and Georgiy Bondarenko. We would
like to honor the memory of Andrey Avilov who

died during the liberation of Balakliya.

References
Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,

Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel
iterative edit models for local sequence transduction.
CoRR, abs/1910.02893.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793–805, Vancouver, Canada. Association for
Computational Linguistics.

Mengyun Chen, Tao Ge, Xingxing Zhang, Furu Wei,
and Ming Zhou. 2020. Improving the efficiency of
grammatical error correction with erroneous span de-
tection and correction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 7162–7169, On-
line. Association for Computational Linguistics.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Compu-
tational Linguistics.

Sam Davidson, Aaron Yamada, Paloma Fernandez Mira,
Agustina Carando, Claudia H. Sanchez Gutierrez,
and Kenji Sagae. 2020. Developing NLP tools with
a new corpus of learner Spanish. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 7238–7243, Marseille, France. European
Language Resources Association.

Bohdan Didenko and Julia Shaptala. 2019. Multi-
headed architecture based on BERT for grammatical
errors correction. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 246–251, Florence,
Italy. Association for Computational Linguistics.

Simon Flachs, Ophélie Lacroix, Helen Yannakoudakis,
Marek Rei, and Anders Søgaard. 2020. Grammatical
error correction in low error density domains: A new
benchmark and analyses.

Tao Ge, Heming Xia, Xin Sun, Si-Qing Chen, and Furu
Wei. 2022. Lossless acceleration for seq2seq genera-
tion with aggressive decoding.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A. Smith. 2020. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation.

Jared Lichtarge, Chris Alberti, and Shankar Kumar.
2020. Data weighted training strategies for grammat-
ical error correction. Transactions of the Association
for Computational Linguistics, 8:634–646.

130

http://arxiv.org/abs/1910.02893
http://arxiv.org/abs/1910.02893
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/2020.emnlp-main.581
https://doi.org/10.18653/v1/2020.emnlp-main.581
https://doi.org/10.18653/v1/2020.emnlp-main.581
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://aclanthology.org/2020.lrec-1.894
https://aclanthology.org/2020.lrec-1.894
https://doi.org/10.18653/v1/W19-4426
https://doi.org/10.18653/v1/W19-4426
https://doi.org/10.18653/v1/W19-4426
http://arxiv.org/abs/2010.07574
http://arxiv.org/abs/2010.07574
http://arxiv.org/abs/2010.07574
https://doi.org/10.48550/ARXIV.2205.10350
https://doi.org/10.48550/ARXIV.2205.10350
https://doi.org/10.48550/ARXIV.2006.10369
https://doi.org/10.48550/ARXIV.2006.10369
https://doi.org/10.48550/ARXIV.2006.10369
https://doi.org/10.1162/tacl_a_00336
https://doi.org/10.1162/tacl_a_00336

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode, tag,
realize: High-precision text editing.

Benjamin Minixhofer, Fabian Paischer, and Navid Rek-
absaz. 2022. WECHSEL: Effective initialization of
subword embeddings for cross-lingual transfer of
monolingual language models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3992–4006,
Seattle, United States. Association for Computational
Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020. Gec-
tor – grammatical error correction: Tag, not rewrite.

Muhammad Qorib, Seung-Hoon Na, and Hwee Tou
Ng. 2022. Frustratingly easy system combination
for grammatical error correction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1964–1974,
Seattle, United States. Association for Computational
Linguistics.

Chowdhury Rafeed Rahman. 2022. Judge a sentence by
its content to generate grammatical errors.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 702–707,
Online. Association for Computational Linguistics.

Felix Stahlberg and Shankar Kumar. 2020. Seq2Edits:
Sequence transduction using span-level edit opera-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5147–5159, Online. Association for
Computational Linguistics.

Felix Stahlberg and Shankar Kumar. 2021. Synthetic
data generation for grammatical error correction with
tagged corruption models. In Proceedings of the
16th Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 37–47, Online.
Association for Computational Linguistics.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. 2021.
Instantaneous grammatical error correction with shal-
low aggressive decoding.

Oleksiy Syvokon and Olena Nahorna. 2021. UA-GEC:
grammatical error correction and fluency corpus for
the ukrainian language. CoRR, abs/2103.16997.

Oleksiy Syvokon and Mariana Romanyshyn. 2023. The
UNLP 2023 shared task on grammatical error cor-
rection for Ukrainian. In Proceedings of the Second
Ukrainian Natural Language Processing Workshop,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew
Ng, and Dan Jurafsky. 2018. Noising and denois-
ing natural language: Diverse backtranslation for
grammar correction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 619–628, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

131

https://doi.org/10.48550/ARXIV.1909.01187
https://doi.org/10.48550/ARXIV.1909.01187
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.48550/ARXIV.2005.12592
https://doi.org/10.48550/ARXIV.2005.12592
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143
http://arxiv.org/abs/2208.09693
http://arxiv.org/abs/2208.09693
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://doi.org/10.48550/ARXIV.2106.04970
https://doi.org/10.48550/ARXIV.2106.04970
http://arxiv.org/abs/2103.16997
http://arxiv.org/abs/2103.16997
http://arxiv.org/abs/2103.16997
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1506.03134
https://doi.org/10.18653/v1/N18-1057
https://doi.org/10.18653/v1/N18-1057
https://doi.org/10.18653/v1/N18-1057

