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Abstract
Retrieval-Augmented Language Modeling
(RALM) methods, which condition a language
model (LM) on relevant documents from a
grounding corpus during generation, were
shown to significantly improve language
modeling performance. In addition, they
can mitigate the problem of factually inac-
curate text generation and provide natural
source attribution mechanism. Existing
RALM approaches focus on modifying
the LM architecture in order to facilitate
the incorporation of external information,
significantly complicating deployment. This
paper considers a simple alternative, which
we dub In-Context RALM: leaving the LM
architecture unchanged and prepending
grounding documents to the input, without
any further training of the LM. We show that
In-Context RALM that builds on off-the-shelf
general purpose retrievers provides surpris-
ingly large LM gains across model sizes and
diverse corpora. We also demonstrate that the
document retrieval and ranking mechanism
can be specialized to the RALM setting to
further boost performance. We conclude that
In-Context RALM has considerable potential
to increase the prevalence of LM grounding,
particularly in settings where a pretrained LM
must be used without modification or even
via API access.1

1 Introduction

Recent advances in language models (LMs)
have dramatically increased the usefulness of
machine-generated text across a wide range of
use-cases and domains (Brown et al., 2020). How-
ever, the mainstream paradigm of generating text
with LMs bears inherent limitations in access
to external knowledge. First, LMs are not cou-
pled with any source attribution, and must be

∗Equal contribution.
1Our code is available at https://github.com

/AI21Labs/in-context-ralm.

trained in order to incorporate up-to-date infor-
mation that was not seen during training. More
importantly, they tend to produce factual inac-
curacies and errors (Lin et al., 2022; Maynez
et al., 2020; Huang et al., 2020). This problem is
present in any LM generation scenario, and is ex-
acerbated when generation is made in uncommon
domains or private data. A promising approach
for addressing the above is Retrieval-Augmented
Language Modeling (RALM), grounding the LM
during generation by conditioning on relevant
documents retrieved from an external knowledge
source. RALM systems include two high level
components: (i) document selection, selecting the
set of documents upon which to condition; and
(ii) document reading, determining how to in-
corporate the selected documents into the LM
generation process.

Leading RALM systems introduced recently
tend to be focused on altering the language model
architecture (Khandelwal et al., 2020; Borgeaud
et al., 2022; Zhong et al., 2022; Levine et al.,
2022c; Li et al., 2022). Notably, Borgeaud et al.
(2022) introduced RETRO, featuring document
reading via nontrivial modifications that require
further training to the LM architecture, while us-
ing an off-the-shelf frozen BERT retriever for
document selection. Although the paper’s exper-
imental findings showed impressive performance
gains, the need for changes in architecture and ded-
icated retraining has hindered the wide adoption
of such models.

In this paper, we show that a very simple docu-
ment reading mechanism can have a large impact,
and that substantial gains can also be made by
adapting the document selection mechanism to the
task of language modeling. Thus, we show that
many of the benefits of RALM can be achieved
while working with off-the-shelf LMs, even via
API access. Specifically, we consider a simple but
powerful RALM framework, dubbed In-Context

1316

Transactions of the Association for Computational Linguistics, vol. 11, pp. 1316–1331, 2023. https://doi.org/10.1162/tacl a 00605
Action Editor: Hinrich Schütze. Submission batch: 3/2023; Revision batch: 5/2023; Published 11/2023.

c© 2023 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:orir@ai21.com
mailto:yoavl@ai21.com
mailto:itayd@ai21.com
mailto:dorm@ai21.com
mailto:amnons@ai21.com
mailto:kevinlb@ai21.com
mailto:yoavs@ai21.com
https://github.com/AI21Labs/in-context-ralm
https://github.com/AI21Labs/in-context-ralm
https://doi.org/10.1162/tacl_a_00605


Figure 1: An example of In-Context RALM: We simply prepend the retrieved document before the input prefix.

RALM (presented in Section 3), which employs
a zero-effort document reading mechanism: We
simply prepend the selected documents to the
LM’s input text (Figure 1).

Section 4 describes our experimental setup.
To show the wide applicability of our frame-
work, we performed LM experiments on a suite
of five diverse corpora: WikiText-103 (Merity
et al., 2016), RealNews (Zellers et al., 2019), and
three datasets from The Pile (Gao et al., 2021):
ArXiv, Stack Exchange, and FreeLaw. We use
open-source LMs ranging from 110M to 66B pa-
rameters (from the GPT-2, GPT-Neo, OPT, and
LLaMA model families).

In Section 5 we evaluate the application of
off-the-shelf retrievers to our framework. In this
minimal-effort setting, we found that In-Context
RALM led to LM performance gains equivalent
to increasing the LM’s number of parameters by
2–3× across all of the text corpora we exam-
ined. In Section 6 we investigate methods for
adapting document ranking to the LM task, a rela-
tively under-explored RALM degree of freedom.
Our adaptation methods range from using a small
LM to perform zero-shot ranking of the retrieved
documents, up to training a dedicated bidirec-
tional reranker by employing self-supervision
from the LM signal. These methods lead to fur-
ther gains in the LM task corresponding to an
additional size increase of 2× in the LM archi-
tecture. As a concrete example of the gains, a
345M parameter GPT-2 enhanced by In-Context
RALM outperforms a 762M parameter GPT-2
when employing an off-the-shelf BM25 retriever
(Robertson and Zaragoza, 2009), and outperforms
a 1.5B parameter GPT-2 when employing our
trained LM-oriented reranker (see Figure 2). For
large model sizes, our method is even more ef-
fective: In-Context RALM with an off-the-shelf
retriever improved the performance of a 6.7B
parameter OPT model to match that of a 66B
parameter parameter OPT model (see Figure 4).

Figure 2: Our framework, dubbed In-Context RALM,
provides large language modeling gains on the test set
of WikiText-103, without modifying the LM. Adapting
the use of a BM25 retriever (Robertson and Zaragoza,
2009) to the LM task (§5) yields significant gains, and
choosing the grounding documents via our new class
of Predictive Rerankers (§6) provides a further boost.
See Table 1 for the full results on five diverse corpora.

In Section 7 we demonstrate the applicability of
In-Context RALM to downstream open-domain
questions answering (ODQA) tasks.

In a concurrent work, Shi et al. (2023) also sug-
gest to augment off-the-shelf LMs with retrieved
texts by prepending them to the input. Their re-
sults are based on training a dedicated retriever for
language modeling. In contrast, we focus on the
gains achievable in using off-the-shelf retrievers
for this task. We show strong gains of this simpler
setting by investigating: (1) which off-the-shelf
retriever is best suited for language modeling, (2)
the frequency of retrieval operations, and (3) the
optimal query length. In addition, we boost the
off-the-shelf retrieval performance by introducing
two reranking methods that demonstrate further
gains in perplexity.

We believe that In-Context RALM can play
two important roles in making RALM systems
more powerful and more prevalent. First, given
its simple reading mechanism, In-Context RALM
can serve as a clean probe for developing docu-
ment retrieval methods that are specialized for the
LM task. These in turn can be used to improve
both In-Context RALM and other more elaborate
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RALM methods that currently leverage general
purpose retrievers. Second, due to its compatibil-
ity with off-the-shelf LMs, In-Context RALM can
help drive wider deployment of RALM systems.

2 Related Work

RALM approaches can be roughly divided into
two families of models: (i) nearest-neighbor lan-
guage models (also called kNN-LM), and (ii)
retrieve and read models. Our work belongs to
the second family, but is distinct in that it involves
no further training of the LM.

Nearest Neighbor Language Models The
kNN-LM approach was first introduced in
Khandelwal et al. (2020). The authors suggest a
simple inference-time model that interpolates be-
tween two next-token distributions: one induced
by the LM itself, and one induced by the k neigh-
bors from the retrieval corpus that are closest to the
query token in the LM embedding space. Zhong
et al. (2022) suggest a framework for training
these models. While they showed significant gains
from kNN-LM, the approach requires storing the
representations for each token in the corpus, an
expensive requirement even for a small corpus
like Wikipedia. Although numerous approaches
have been suggested for alleviating this issue (He
et al., 2021; Alon et al., 2022), scaling any of them
to large corpora remains an open challenge.

Retrieve and Read Models This family of
RALMs creates a clear division between docu-
ment selection and document reading components.
All prior work involves training the LM. We
begin by describing works that use this ap-
proach for tackling downstream tasks, and then
mention works oriented towards RALM. Lewis
et al. (2020) and Izacard and Grave (2021) fine
tuned encoder–decoder architectures for down-
stream knowledge-intensive tasks. Izacard et al.
(2022b) explored different ways of pretrain-
ing such models, while Levine et al. (2022c)
pretrained an autoregressive LM on clusters
of nearest neighbors in sentence embedding
space. Levine et al. (2022a) showed competitive
open domain question-answering performance by
prompt-tuning a frozen LM as a reader. Guu
et al. (2020) pretrained REALM, a retrieval aug-
mented bidirectional, masked LM, later fine-tuned
for open-domain question answering. The work
closest to this paper—with a focus on the

language modeling task—is RETRO (Borgeaud
et al., 2022), which modifies an autoregressive
LM to attend to relevant documents via chunked
cross-attention, thus introducing new parameters
to the model. Our In-Context RALM differs from
prior work in this family of models in two key
aspects:

• We use off-the-shelf LMs for document
reading without any further training of the
LM.

• We focus on how to choose documents for
improved LM performance.

3 Our Framework

3.1 In-Context RALM

Language models define probability distributions
over sequences of tokens. Given such a sequence
x1, . . . , xn, the standard way to model its probabil-
ity is via next-token prediction: p(x1, . . . , xn) =∏n

i=1 p(xi|x<i), where x<i := x1, . . . , xi−1 is the
sequence of tokens preceding xi, also referred to
as its prefix. This autoregressive model is usually
implemented via a learned transformer network
(Vaswani et al., 2017) parameterized by the set of
parameters θ:

p(x1, . . . , xn) =
n∏
i=1

pθ(xi|x<i), (1)

where the conditional probabilities are modeled by
employing a causal self-attention mask (Radford
et al., 2018). Notably, leading LMs such as GPT-2
(Radford et al., 2019), GPT-3 (Brown et al., 2020),
OPT (Zhang et al., 2022), or Jurassic-1 (Lieber
et al., 2021) follow this simple parameterization.

Retrieval augmented language models
(RALMs) add an operation that retrieves one or
more documents from an external corpus C, and
condition the above LM predictions on these docu-
ments. Specifically, for predicting xi, the retrieval
operation from C depends on its prefix: RC(x<i),
so the most general RALM decomposition is:
p(x1, . . . , xn) =

∏n
i=1 p(xi|x<i,RC(x<i)). In

order to condition the LM generation on the
retrieved document, previous RALM approaches
used specialized architectures or algorithms
(see §2). Inspired by the success of In-Context
Learning (Brown et al., 2020; Dong et al., 2023),
In-Context RALM refers to the following specific,
simple method of concatenating the retrieved
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documents2 within the Transformer’s input prior
to the prefix (see Figure 1), which does not
involve altering the LM weights θ:

p(x1, . . . , xn) =
n∏
i=1

pθ (xi| [RC(x<i);x<i]) ,
(2)

where [a; b] denotes the concatenation of strings a
and b.

Since common Transformer-based LM imple-
mentations support limited length input sequences,
when the concatenation of the document and the
input sequence exceed this limit we remove to-
kens from the beginning of x until the overall input
length equals that allowed by the model. Because
our retrieved documents are passages of limited
length, we always have enough context left from
x (see §4.3).

3.2 RALM Design Choices
We detail below two practical design choices often
made in RALM systems. In §5, we investigate the
effect of these in the setting of In-Context RALM.

Retrieval Stride While in the above formu-
lation a retrieval operation can occur at each
generation step, we might want to perform re-
trieval only once every s > 1 tokens due to the
cost of calling the retriever, and the need to replace
the documents in the LM prefix during generation.
We refer to s as the retrieval stride. This gives rise
to the following In-Context RALM formulation
(which reduces back to Eq. (2) for s = 1):

p(x1, . . . , xn) =

ns−1∏
j=0

s∏
i=1

pθ
(
xs·j+i|

[
RC(x≤s·j);x<(s·j+i)

])
,

(3)
where ns = n/s is the number of retrieval strides.

Notably, in this framework the runtime costs
of each retrieval operation is composed of (a)
applying the retriever itself, and (b) recomputing
the embeddings of the prefix. In §5.2 we show
that using smaller retrieval strides, i.e., retrieving
as often as possible, is superior to using larger
ones (though In-Context RALM with larger strides
already provides large gains over vanilla LM).
Thus, choosing the retrieval stride is ultimately a
tradeoff between runtime and performance.

2We always use a single document, but it is conceptually
simple to support multiple documents as well.

Retrieval Query Length While the retrieval
query above in principle depends on all prefix
tokens x≤s·j , the information at the very end
of the prefix is typically the most relevant to
the generated tokens. If the retrieval query is
too long then this information can be diluted.
To avoid this, we restrict the retrieval query at
stride j to the last � tokens of the prefix, i.e.,
we use qs,�j := xs·j−�+1, . . . , xs·j . We refer to
� as the retrieval query length. Note that prior
RALM work couples the retrieval stride s and the
retrieval query length � (Borgeaud et al., 2022).
In §5, we show that enforcing s = � degrades LM
performance. Integrating these hyper-parameters
into the In-Context RALM formulation gives

p(x1, . . . , xn) =

ns−1∏
j=0

s∏
i=1

pθ

(
xs·j+i|

[
RC(q

s,�
j );x<(s·j+i)

])
.

(4)

4 Experimental Details

We now describe our experimental setup, includ-
ing all models we use and their implementation
details.

4.1 Datasets

We evaluated the effectiveness of In-Context
RALM across five diverse language modeling
datasets and two common open-domain question
answering datasets.

Language Modeling The first LM dataset is
WikiText-103 (Merity et al., 2016), which has been
extensively used to evaluate RALMs (Khandelwal
et al., 2020; He et al., 2021; Borgeaud et al., 2022;
Alon et al., 2022; Zhong et al., 2022). Second,
we chose three datasets spanning diverse subjects
from The Pile (Gao et al., 2021): ArXiv, Stack
Exchange, and FreeLaw. Finally, we also investi-
gated RealNews (Zellers et al., 2019), since The
Pile lacks a corpus focused only on news (which
is by nature a knowledge-intensive domain).

Open-Domain Question Answering In order
to evaluate In-Context RALM on downstream
tasks as well, we use the Natural Questions (NQ;
Kwiatkowski et al. 2019) and TriviaQA (Joshi
et al., 2017) open-domain question answering
datasets.
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4.2 Models

Language Models We performed our ex-
periments using the four models of GPT-2
(110M–1.5B; Radford et al., 2019), three models
of GPT-Neo and GPT-J (1.3B–6B; Black et al.,
2021; Wang and Komatsuzaki, 2021), eight mod-
els of OPT (125M–66B; Zhang et al. 2022), and
three models of LLaMA (7B–33B; Touvron et al.,
2023). All models are open source and publicly
available.3

We elected to study these particular models
for the following reasons. The first four (GPT-2)
models were trained on WebText (Radford et al.,
2019), with Wikipedia documents excluded from
their training datasets. We were thus able to evalu-
ate our method’s ‘‘zero-shot’’ performance when
retrieving from a novel corpus (for WikiText-103).
The rest of the models brought two further ben-
efits. First, they allowed us to investigate how
our methods scale to models larger than GPT-2.
Second, the fact that Wikipedia was part of their
training data allowed us to investigate the use-
fulness of In-Context RALM for corpora seen
during training. The helpfulness of such retrieval
has been demonstrated for previous RALM meth-
ods (Khandelwal et al., 2020) and has also been
justified theoretically by Levine et al. (2022c).

We ran all models with a maximum sequence
length of 1,024, even though GPT-Neo, OPT,
and LLaMA models support a sequence length of
2,048.4

Retrievers We experimented with both sparse
(word-based) and dense (neural) retrievers. We
used BM25 (Robertson and Zaragoza, 2009) as our
sparse model. For dense models, we experimented
with (i) a frozen BERT-base (Devlin et al., 2019)
followed by mean pooling, similar to Borgeaud
et al. (2022); and (ii) the Contriever (Izacard
et al., 2022a) and Spider (Ram et al., 2022) models,
which are dense retrievers that were trained in
unsupervised manners.

Reranking When training rerankers (Sec-
tion 6.2), we initialized from RoBERTa-base (Liu
et al., 2019).

3All models are available for use use via https://
huggingface.co/.

4In preliminary experiments, we observed similar im-
provements from In-Context RALM when using a sequence
length of 2,048. We used a sequence length of 1,024 in order
to facilitate a direct comparison between all models.

4.3 Implementation Details

We implemented our code base using the Trans-
formers library (Wolf et al., 2020). We based
our dense retrieval code on the DPR repository
(Karpukhin et al., 2020).

Retrieval Corpora For WikiText-103 and
ODQA datasets, we used the Wikipedia corpus
from Dec. 20, 2018, standardized by Karpukhin
et al. (2020) using the preprocessing from Chen
et al. (2017). To avoid contamination, we found
and removed all 120 articles of the development
and test set of WikiText-103 from the corpus.
For the remaining datasets, we used their training
data as the retrieval corpus. Similar to Karpukhin
et al. (2020), our retrieval corpora consist of
non-overlapping passages of 100 words (which
translate to less than 150 tokens for the vast
majority of passages). Thus, we truncate our
retrieved passages at 256 tokens when input to
the models, but they are usually much smaller.

Retrieval For sparse retrieval, we used the
Pyserini library (Lin et al., 2021). For dense
retrieval, we applied exact search using FAISS
(Johnson et al., 2021).

5 The Effectiveness of In-Context RALM
with Off-the-Shelf Retrievers

We now empirically show that despite its simple
document reading mechanism, In-Context RALM
leads to substantial LM gains across our diverse
evaluation suite. We begin in this section by
investigating the effectiveness of off-the-shelf re-
trievers for In-Context RALM; we go on in §6
to show that further LM gains can be made by
tailoring document ranking functions to the LM task.

The experiments in this section provided us
with a recommended configuration for applying
In-Context RALM: applying a sparse BM25 re-
triever that receives � = 32 query tokens and
is applied as frequently as possible. Practically,
we retrieve every s = 4 tokens (� and s are de-
fined in §3). Table 1 shows for the GPT-2 models
that across all the examined corpora, employing
In-Context RALM with an off-the-shelf retriever
improved LM perplexity to a sufficient extent that
it matched that of a 2–3× larger model. Figure 4
and Tables 2 and 5 show that this trend holds
across model sizes up to 66B parameters, for both
WikiText-103 and RealNews.
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Model Retrieval Reranking WikiText-103 RealNews ArXiv Stack Exch. FreeLaw

word ppl token ppl token ppl token ppl token ppl

GPT-2 S

– – 37.5 21.3 12.0 12.8 13.0
BM25 §5 – 29.6 16.1 10.9 11.3 9.6
BM25 Zero-shot §6.1 28.6 15.5 10.1 10.6 8.8
BM25 Predictive §6.2 26.8 – – – –

GPT-2 M

– – 26.3 15.7 9.3 8.8 9.6
BM25 §5 – 21.5 12.4 8.6 8.1 7.4
BM25 Zero-shot §6.1 20.8 12.0 8.0 7.7 6.9
BM25 Predictive §6.2 19.7 – – – –

GPT-2 L

– – 22.0 13.6 8.4 8.5 8.7
BM25 §5 – 18.1 10.9 7.8 7.8 6.8
BM25 Zero-shot §6.1 17.6 10.6 7.3 7.4 6.4
BM25 Predictive §6.2 16.6 – – – –

GPT-2 XL

– – 20.0 12.4 7.8 8.0 8.0
BM25 §5 – 16.6 10.1 7.2 7.4 6.4
BM25 Zero-shot §6.1 16.1 9.8 6.8 7.1 6.0
BM25 Predictive §6.2 15.4 – – – –

Table 1: Perplexity on the test set of WikiText-103, RealNews and three datasets from the Pile. For
each LM, we report: (a) its performance without retrieval, (b) its performance when fed the top-scored
passage by BM25 (§5), and (c) its performance when applied on the top-scored passage of each of our
two suggested rerankers (§6). All models share the same vocabulary, thus token-level perplexity (token
ppl) numbers are comparable. For WikiText we follow prior work and report word-level perplexity
(word ppl).

Model Retrieval WikiText-103

word ppl

LLaMA-7B – 9.9
BM25, §5 8.8

LLaMA-13B – 8.5
BM25, §5 7.6

LLaMA-33B – 6.3
BM25, §5 6.1

Table 2: The performance of models from the
LLaMA family, measured by word-level per-
plexity on the test set of WikiText-103.

5.1 BM25 Outperforms Off-the-Shelf Neural
Retrievers in Language Modeling

We experimented with different off-the-shelf
general purpose retrievers, and found that the
sparse (lexical) BM25 retriever (Robertson and
Zaragoza, 2009) outperformed three popular dense
(neural) retrievers: the self-supervised retrievers
Contriever (Izacard et al., 2022a) and Spider (Ram
et al., 2022), as well as a retriever based on the av-
erage pooling of BERT embeddings that was used
in the RETRO system (Borgeaud et al., 2022).

Figure 3: The performance of four off-the-shelf retriev-
ers used for In-Context RALM on the development set
of WikiText-103. All RALMs are run with s = 4
(i.e., retrieval is applied every four tokens). For each
RALM, we report the result of the best query length �
(see Figures 6, 9, 10).

We conducted a minimal hyper-parameter search
on the query length � for each of the retrievers,
and found that � = 32 was optimal for BM25
(Figure 6), and � = 64 worked best for dense
retrievers (Figures 9, 10).

Figure 3 compares the performance gains of In-
Context RALM with these four general-purpose
retrievers. The BM25 retriever clearly outper-
formed all dense retrievers. This outcome is
consistent with prior work showing that BM25
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Figure 4: Results of OPT models (Zhang et al., 2022) on the test set of WikiText-103 (word-level perplexity) and
the development set of RealNews (token-level perplexity). In-Context RALM models use a BM25 retriever with
s = 4 (i.e., the retriever is called every four tokens) and � = 32 (i.e., the retriever query is comprised of the last
32 tokens of the prefix). In-Context RALM with an off-the-shelf retriever improved the performance of a 6.7B
parameter OPT model to match that of a 66B parameter OPT model.

Figure 5: An analysis of perplexity as a function of s,
the retrieval stride, i.e., the number of tokens between
consecutive retrieval operations, on the development
set of WikiText-103. Throughout the paper, we use
s = 4 to balance perplexity and runtime.

outperforms neural retrievers across a wide
array of tasks, when applied in zero-shot set-
tings (Thakur et al., 2021). This result renders
In-Context RALM even more appealing since ap-
plying a BM25 retriever is significantly cheaper
than the neural alternatives.

5.2 Frequent Retrieval Improves
Language Modeling

We investigated the effect of varying the retrieval
stride s (i.e., the number of tokens between con-
secutive retrieval operations). Figure 5 shows that

LM performance improved as the retrieval op-
eration became more frequent. This supports the
intuition that retrieved documents become more
relevant the closer the retrieval query becomes
to the generated tokens. Of course, each retrieval
operation imposes a runtime cost. To balance
performance and runtime, we used s = 4 in
our experiments. For comparison, RETRO em-
ployed a retrieval frequency of s = 64 (Borgeaud
et al., 2022), which leads to large degradation in
perplexity. Intuitively, retrieving with high fre-
quency (low retrieval stride) allows to ground the
LM in higher resolution.

5.3 A Contextualization vs. Recency
Tradeoff in Query Length

We also investigated the effect of varying �, the
length of the retrieval query for BM25. Figure 6
reveals an interesting tradeoff and a sweet spot
around a query length of 32 tokens. Similar exper-
iments for dense retrievers are given in Appendix A.
We conjecture that when the retriever query is
too short, it does not include enough of the in-
put context, decreasing the retrieved document’s
relevance. Conversely, excessively growing the
retriever query deemphasizes the tokens at the very
end of the prefix, diluting the query’s relevance to
the LM task.
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Figure 6: An analysis of perplexity as a function of
the number of tokens in the query � for BM25 on the
development set of WikiText-103. In the appendix,
we show similar trade-offs for dense retrievers within
WikiText-103. Throughout the paper, we use a query
length of � = 32 tokens.

6 Improving In-Context RALM with
LM-Oriented Reranking

Since In-Context RALM uses a fixed document
reading component by definition, it is natural to
ask whether performance can be improved by
specializing its document retrieval mechanism to
the LM task. Indeed, there is considerable scope
for improvement: the previous section considered
conditioning the model only on the first document
retrieved by the BM25 retriever. This permits very
limited semantic understanding of the query, since
BM25 is based only on the bag of words signal.
Moreover, it offers no way to accord different
degrees of importance to different retrieval query
tokens, such as recognizing that later query tokens
are more relevant to the generated text.

In this section, we focus on choosing which
document to present to the model, by reranking the
top-k documents returned by the BM25 retriever.5

We use Figure 7 as motivation: It shows the
large potential for improvement among the top-16
documents returned by the BM25 retriever. We
act upon this motivation by using two rerankers.
Specifically, in §6.1 we show performance gains
across our evaluation suite obtained by using an
LM to perform zero-shot reranking of the top-k
BM25 retrieved documents (results in third row
for each of the models in Table 1). Then, in §6.2
we show that training a specialized bidirectional
reranker of the top-k BM25 retrieved documents
in a self-supervised manner via the LM signal can

5In both §6.1 and §6.2 we use k = 16.

Figure 7: Potential for gains from reranking. Per-
plexity improvement (on the development set of
WikiText-103) from an oracle that takes the best of
the top-16 documents retrieved by BM25 rather than
the first.

provide further LM gains (results in forth row for
each of the models in Table 1).

6.1 LMs as Zero-Shot Rerankers
First, we used off-the-shelf language models as
document rerankers for the In-Context RALM
setting. Formally, for a query q consisting of the
last � tokens in the prefix of the LM input x, let
{d1, . . . , dk} be the top-k documents returned by
BM25. For retrieval iteration j, let the text for
generation be y := xs·j+1, . . . , xs·j+s. Ideally, we
would like to find the document di∗ that maximizes
the probability of the text for generation, i.e.,

i∗ = argmax
i∈[k]

pθ(y| [di;x≤s·j ]). (5)

However, at test time we do not have access
to the tokens of y. Instead, we used the last
prefix tokens (which are available at test time),
denoted by y′, for reranking. Formally, let s′ be
a hyper-parameter that determines the number of
the prefix tokens by which to rerank. We define
y′ := xs·j−s′+1, . . . , xs·j (i.e., the stride of length
s′ that precedes y) and choose the document dî
such that

î = argmax
i∈[k]

pφ(y
′|
[
di;x≤(s·j−s′)

]
). (6)

The main motivation is that since BM25 is a lex-
ical retriever, we want to incorporate a semantic
signal induced by the LM. Also, this reranking
shares conceptual similarities with the reranking
framework of Sachan et al. (2022) for open-
domain question answering, where y′ (i.e., the
last prefix tokens) can be thought of as their
‘‘question’’.
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Model Reranking Model WikiText-103 RealNews
word ppl token ppl

GPT-2 345M (M) GPT-2 110M (S) 20.8 12.1
GPT-2 345M (M) 20.8 12.0

GPT-2 762M (L) GPT-2 110M (S) 17.7 10.7
GPT-2 762M (L) 17.6 10.6

GPT-2 1.5B (XL) GPT-2 110M (S) 16.2 9.9
GPT-2 1.5B (XL) 16.1 9.8

Table 3: Perplexity for zero-shot reranking (§6.1) where the reranking models is smaller than the LM,
or the LM itself. Reranking is performed on the top 16 documents retrieved by BM25. Using a GPT-2
110M (S) instead of a larger language model as a reranker leads to only a minor degradation.

Note that our zero-shot reranking does not re-
quire that the LM used for reranking is the same
model as the LM used for generation (i.e., the LM
in Eq. (6), parameterized by φ, does not need to
be the LM in Eq. (2), parameterized by θ). This
observation unlocks the possibility of reranking
with smaller (and thus faster) models, which is
important for two main reasons: (i) Reranking k
documents requires k forward passes; and (ii) it
allows our methods to be used in cases where
the actual LM’s log probabilities are not available
(for example, when the LM is accessed through
an API).6

Results A minimal hyper-parameter search on
the development set of WikiText-103 revealed that
the optimal query length is s′ = 16,7 so we proceed
with this value going forward. Table 1 shows
the results of letting the LM perform zero-shot
reranking on the top-16 documents retrieved by
BM25 (third row for each of the models). It is
evident that reranking yielded consistently better
results than simply taking the first result returned
by the retriever.

Table 3 shows that a small LM (GPT-2 117M)
can be used to rerank the documents for all larger
GPT-2 models, with roughly the same perfor-
mance as having each LM perform reranking for
itself, supporting the applicability of this method
for LMs that are only accessible via an API.

6.2 Training LM-dedicated Rerankers

Next, we trained a reranker to choose one of the
top-k documents retrieved by BM25. We refer
to this approach as Predictive Reranking, since

6Note we do not require that the two models share the
same vocabulary.

7We experimented with s′ ∈ {4, 8, 16, 32}.

the reranker learns to choose which document
will help in ‘‘predicting’’ the upcoming text. For
this process, we assume availability of training
data from the target corpus. Our reranker is a
classifier that gets a prefix x≤s·j and a document
di (for i ∈ [k]), and produces a scalar f(x≤s·j , di)
that should resemble the relevance of di for the
continuation of x≤s·j .

We then normalize these relevance scores:

prank(di|x≤s·j) =
exp(f(x≤s·j , di))∑k
i′=1 exp(f(x≤s·j , di′))

, (7)

and choose the document dî such that

î = argmax
i∈[k]

prank(di|x≤s·j). (8)

Collecting Training Examples To train our
predictive reranker, we collected training exam-
ples as follows. Let x≤s·j be a prefix we sample
from the training data, and y := xs·j+1, . . . , xs·j+s

be the text for generation upcoming in its next
stride. We run BM25 on the query qs,�j de-
rived from x≤s·j (see §3.2) and get k documents
{d1, . . . , dk}. For each document di, we then run
the LM to compute pθ(y| [di;x≤s·j ]) similar to
Eq. (4).

Training Our reranker was a fine-tuned
RoBERTa-base (Liu et al., 2019) that trained for
10,000 steps with a peak learning rate of 10−5 and
a batch size of 32. Overall, we created 300,000
examples from the training set of WikiText-103
as explained above. The loss function we use to
train the reranker follows previous work (Guu
et al., 2020; Lewis et al., 2020):

− log

k∑
i=1

prank(di|x≤s·j) · pθ(y| [di;x≤s·j ]). (9)
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Figure 8: Zero-shot performance of In-Context RALM
on the development set of Natural Questions and
TriviaQA, when varying the number of documents
(retrieved by DPR) shown in-context.

Note that unlike those works, we train only the
reranker (prank), keeping the LM weights θ frozen.

Results Table 1 shows the result of our
predictive reranker, trained on WikiText-103.
Specifically, we trained it with data produced
by GPT-2 110M (S), and tested its effectiveness
for all GPT-2 models. We observed significant
gains obtained from Predictive Reranking. For
example, the perplexity of GPT-2 110M (S) im-
proved from 29.6 to 26.8, and that of GPT-2
1.5B (XL) improved from 16.6 to 15.4. This trend
held for the other two models as well. Overall,
these results demonstrate that training a reranker
with domain-specific data was more effective than
zero-shot reranking (Section 6.1). Note that these
results—while impressive—still leave room for
further improvements, compared to the top-16
BM25 oracle results (see Figure 7). Moreover, the
oracle results themselves can be improved by re-
trieving k > 16 documents via a BM25 retriever,
or by training stronger retrievers dedicated to the
RALM task. We leave this direction for future
work.

7 In-Context RALM for Open-Domain
Question Answering

So far, we evaluated our framework on language
modeling benchmarks. To test its efficacy in ad-
ditional scenarios, and specifically downstream
tasks, we now turn to evaluate In-Context RALM
on open-domain question answering (ODQA;
Chen et al., 2017). This experiment is intended
to verify, in a controlled environment, that LMs
can leverage retrieved documents without fur-

Model Retrieval NQ TriviaQA

LLaMA-7B – 10.3 47.5
DPR 28.0 56.0

LLaMA-13B – 12.0 54.8
DPR 31.0 60.1

LLaMA-33B – 13.7 58.3
DPR 32.3 62.7

Table 4: Zero-shot results of In-Context RALM
on the test set of Natural Questions and TriviaQA
measured by exact match. In the open-book set-
ting, we include the top two documents returned
by DPR.

ther training and without any training examples.
Specifically, we use the LLaMA family (Touvron
et al., 2023) with and without In-Context RALM
(often referred to in ODQA literature as open-book
and closed-book settings, respectively). In con-
trast to most prior work on ODQA (e.g., Izacard
and Grave, 2021; Fajcik et al., 2021; Izacard
et al., 2022b; Levine et al., 2022b), our ‘‘reader’’
(i.e., the model that gets the question along with
its corresponding retrieved documents, and re-
turns the answer) is simply a frozen large LM:
not pretrained, fine-tuned, or prompted to be
retrieval-augmented. For the closed-book setting,
we utilize the prompt of Touvron et al. (2023). For
the open-book setting, we extend this prompt to in-
clude retrieved documents (see Appendix C). We
use DPR (Karpukhin et al., 2020) as our retriever.

Varying the Number of Documents To inves-
tigate the the effect of the number of documents
shown to the model, we performed a minimal anal-
ysis on the development set of NQ and TriviaQA.
Figure 8 demonstrates that showing documents
in-context significantly improves the model’s per-
formance. In addition, most of the gain can be
obtained by using only two documents (or even a
single one in some cases).

Results Table 4 gives the results of In-Context
RALM on the test set of Natural Questions
and TriviaQA. Motivated by our previous find-
ings, we used two retrieved documents. It is
evident that showing the model relevant docu-
ments significantly boosted its performance. For
example, adding retrieved documents improved
LLaMA-13B in the zero-shot setting by more than
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18 points on NQ (from 12.0% to 31.0%) and more
than 5 points on TriviaQA (from 54.8% to 60.1%).

8 Discussion

Retrieval from external sources has become a com-
mon practice in knowledge-intensive tasks (such
as factual question answering, fact checking, and
more; Petroni et al. 2021). In parallel, recent break-
throughs in LM generation capabilities has led to
LMs that can generate useful long texts. How-
ever, factual inaccuracies remain a common way
in which machine-generated text can fall short,
and lack of direct provenance makes it hard to
trust machine generated text. This makes language
modeling both a promising and an urgent new
application area for knowledge grounding, and
motivates promoting RALM approaches. Prior re-
search has already investigated RALM, of course,
but it is not yet widely deployed. One likely reason
is that existing approaches rely upon fine-tuning
the LM, which is typically difficult and costly,
and is even impossible for LMs accessible only
via an API.

This paper presented the framework of
In-Context RALM, enabling frozen, off-the-shelf
LMs to benefit from retrieval. We demonstrated
that substantial performance gains can be
achieved by using general purpose retrievers, and
showed that additional gains can be achieved
by tailoring the document selection to the LM
setting. A recent work by Muhlgay et al. (2023)
demonstrates that In-Context RALM is indeed
able to improve the factuality of large LMs.

Several directions for further improvement re-
main for future work. First, this paper considers
only the case of prepending a single external doc-
ument to the context; adding more documents
could drive further gains (for example, using the
framework of Ratner et al., 2022). Second, we re-
trieved documents every fixed interval of s tokens,
but see potential for large latency and cost gains
by retrieving more sparsely, such as only when a
specialized model predicts that retrieval is needed.

We release the code used in this work, for the
community to use and improve over. We hope it
will drive further research of RALM, which will
enable its wider adoption.
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A Query Length Ablations

Figure 9 and Figure 10 show ablations on the
optimal query length � for off-the-shelf dense re-
trievers (BERT and Contriever, respectively). We
omit the results of Spider as they are almost iden-
tical to those of Contriever. Consistently, using
� = 64 (tokens) is optimal. This is in contrast to
similar experiments we conducted for BM25 (cf.
Figure 6), where � = 32 is optimal.

Figure 9: An analysis of perplexity as a function of the
number of tokens in the query for an off-the-shelf BERT
retriever on the development set of WikiText-103.

Figure 10: An analysis of perplexity as a function of
the number of tokens in the query for Contriever on the
development set of WikiText-103.

Model Retrieval Wiki-103 RealNews
word ppl token ppl

GPT-Neo 1.3B – 17.5 12.3
BM25, §5 14.6 9.9

GPT-Neo 2.7B – 15.1 11.0
BM25, §5 12.8 9.0

GPT-J 6B – 11.6 9.2
BM25, §5 10.0 7.7

Table 5: The performance of models from the
GPT-Neo family, measured by word-level per-
plexity on the test set of WikiText-103 and
token-level perplexity on the development set
of RealNews.

B GPT-Neo Results

Table 5 gives the results of applying In-Context
RALM to the models from the GPT-Neo model
family on WikiText-103 and RealNews.

C Open-Domain Question Answering
Experiments: Further Details

Closed-Book Setting For the closed-book set-
ting, we adopt the prompt of Touvron et al.
(2023):

Answer these questions:
Q: Who got the first nobel
prize in physics?
A:

Open-Book Setting For the open-book setting,
we extend the above prompt as follows:

Nobel Prize

A group including 42
Swedish writers, artists,
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and literary critics
protested against this
decision, having expected
Leo Tolstoy to be awarded.
Some, including Burton
Feldman, have criticised
this prize because they...

Nobel Prize in Physiology
or Medicine
In the last half century
there has been an
increasing tendency

for scientists to work
as teams, resulting in
controversial exclusions.
Alfred Nobel was born
on 21 October 1833 in
Stockholm, Sweden, into
a family of engineers...

Based on these texts,
answer these questions:
Q: Who got the first nobel
prize in physics?
A:
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