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Abstract
In multitask retrieval, a single retriever is
trained to retrieve relevant contexts for mul-
tiple tasks. Despite its practical appeal, naive
multitask retrieval lags behind task-specific re-
trieval, in which a separate retriever is trained
for each task. We show that it is possible
to train a multitask retriever that outperforms
task-specific retrievers by promoting task spe-
cialization. The main ingredients are: (1) a
better choice of pretrained model—one that is
explicitly optimized for multitasking—along
with compatible prompting, and (2) a novel
adaptive learning method that encourages each
parameter to specialize in a particular task. The
resulting multitask retriever is highly perfor-
mant on the KILT benchmark. Upon analysis,
we find that the model indeed learns param-
eters that are more task-specialized compared
to naive multitasking without prompting or
adaptive learning.1

1 Introduction

A standard approach to knowledge-intensive lan-
guage tasks such as question answering (QA),
entity disambigution, and fact verification is
retrieval-based. Given an query, a retriever is
used to efficiently search a large knowledge base
(KB) to retrieve relevant ‘‘contexts’’, typically in
the form of short paragraphs. How these contexts
are used is task-specific (e.g., entity disambigua-
tion takes the title of the article in which the top
retrieved context is found; QA predicts an answer
from the contexts through a reader model). In this
paper, we focus on the retrieval step.

In particular, we focus on multitask retrieval.
In this setting, there are K > 1 downstream tasks
that benefit from retrieval from a shared KB. A
single retriever is then tasked with performing
retrieval for K tasks. Multitask retrieval contrasts

∗Work done during an internship at Microsoft.
1Our code and model checkpoints are publicly available

at https://github.com/WenzhengZhang/TACO.

with task-specific retrieval, in which a separate
retriever is trained for each task, and has com-
pelling advantages such as model simplicity (i.e.,
we can use the same model for all tasks rather
than having to design potentially different models
for different tasks) and memory efficiency at test
time (K times smaller).

Despite the practical appeal, the performance
of multitask retrieval has been underwhelm-
ing, severely limiting its real-world applicability.
Specifically, previous work by Maillard et al.
(2021) trains DPR (Karpukhin et al., 2020) on
the union of all training datasets in the KILT
benchmark (Petroni et al., 2021), but the model
is outperformed by task-specific retrievers in 5
out of 8 tasks (page-level R-precision, validation
split). In our experiments, we find that it is in
fact outperformed in all tasks (often by substantial
margins) when a stronger task-specific baseline
is used. This result is surprising as well as dis-
appointing given the usual benefits of multitask
learning (e.g., data efficiency, reduced overfitting)
when properly done.

We debunk the previous negative result by
presenting a multitask retriever that outperforms
task-specific retrievers. The main theme of our
work is that it is beneficial to explicitly promote
task specialization. A first important source of im-
provement is a better choice of pretrained model,
one that is explicitly optimized for multitasking.
Specifically, instead of the standard retrieval en-
coder BERT (Devlin et al., 2019), we use T5
(Raffel et al., 2019), which includes multitask-
ing in its pretraining stage. Importantly, we use
the same prompting as in pretraining (i.e., task
indicator) to reduce the gap between pretraining
and finetuning for multitask retrieval. A second
source of improvement is a novel adaptive learn-
ing method in which we adatively upweight the
task gradients by the parameter’s sensitivity to
these tasks to encourage task specialization.
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The resulting multitask retriever is highly per-
formant on the KILT benchmark. We achieve
73.74% average page-level R-precision on KILT
validation data and 72.84% average page-level
R-precision on KILT test data. Upon analysis, we
find that the model indeed learns parameters that
are more task-specialized compared to naive mul-
titasking without prompting or adaptive learning.

2 Related Work

Maillard et al. (2021) propose multitask retrieval
largely as an extension of DPR. Their best model
is a BERT-based dual encoder trained on the union
of 8 retrieval tasks. While it performs comparably
with task-specific DPRs on some tasks, it gen-
erally lags behind. In this work, we use stronger
task-specific retrievers based on T5 and ANCE
(Xiong et al., 2021), all of which substantially out-
perform their multitask retriever. We argue that
this negative result undermines the case for multi-
task retrieval and that it is crucial to demonstrate
competitive performance. Our main contribution
is producing this demonstration.

We emphasize that achieving competitive mul-
titask retrieval in practice is a highly difficult
empirical problem. One might think that it is sim-
ply an application of multitask learning, which has
no shortage of sophisticated techniques. These
techniques typically modify the gradients during
training, such as gradient surgery (Yu et al., 2020),
gradient vaccine (Wang et al., 2020), common gra-
dient descent (Piratla et al., 2021), and GradNorm
(Chen et al., 2018). We experiment with these
techniques and find that they do not help, thus
motivating us to develop one that works.

Our technical contribution is a new method
for multitask learning based on the notion of
task sensitivity. Given a loss function J(θ), the
sensitivity of the i-th parameter to the loss at θ is
defined as the absolute change in the loss when
θi is set to zero, which can be approximated by
a first-order Taylor approximation as

|J(θ)− J(θ−i)| ≈
∣∣∣∣
∂J(θ)

∂θi
× θi

∣∣∣∣

where θ−i is equal to θ except that its i-th ele-
ment is zero. This quantity has been used in the
context of model pruning—as a way of identify-
ing weakly sensitive weights (Molchanov et al.,
2016, 2019; Michel et al., 2019; Liang et al., 2021)

and updating them more aggresively (Liang et al.,
2022). In contrast, we use the quantity to identify
weights that are strongly sensitive to a particular
task and increase their sensitivity even further,
intuitively to achieve per-parameter task special-
ization. To our knowledge, we are the first to use
parameter sensitivity for multitasking learning.

We briefly differentiate our work from other
recent work on multitask retrieval. Chen et al.
(2022) present CorpusBrain, an autoregressive
multitask retriever trained in largely the same style
as GENRE (De Cao et al., 2021) with excellent
performance. Autoregressive retrieval has differ-
ent pros and cons compared to dense retrieval
which is our setting; it can be more memory and
runtime efficient, but it does not ‘‘read’’ the de-
scription of the target and thus not suited for
retrieval tasks that require involved reasoning over
query-target pairs (e.g., zero-shot entity retrieval
[Logeswaran et al., 2019]). Thus we consider the
contribution of CorpusBrain to be at least partially
orthogonal to ours. Nevertheless, we show that
our model outperforms CorpusBrain in a similar
training setting in experiments. Asai et al. (2022)
propose instruction-based retrieval in which the
retriever is given an intent as well as a query
to find the intended target. While this is a form
of multitask retrieval, the problem formulation is
different and it is evaluated on its own dataset
benchmark.

3 Method

We build on the well-established framework of
dual encoder (Bromley et al., 1993; Huang et al.,
2013; Gillick et al., 2019; Karpukhin et al., 2020,
inter alia). Let X denote the set of all queries
and Y the set of all targets (i.e., KB). First, we
assume mappings textX : X → V+ and textY :
Y → V+ where V denotes the vocabulary to
‘‘verbalize’’ queries and targets. Second, we as-
sume encoders encθX , encθY : V+ → R

d with pa-
rameters θ defining the relevance score function
sθ(x, y) =

〈
encθX(textX(x)), encθY (textY (y))

〉
.

Third, assuming iid samples (x1, y1) . . . (xN , yN ) ∼
pop, we learn the parameters by noise contras-
tive estimation (NCE):

min
θ

− 1

N

N∑
i=1

log
exp(sθ(xi, yi))∑
y∈Yi

exp(sθ(xi, y))

where Yi ⊂ Y satisfying yi ∈ Yi is a set con-
taining the gold and negative targets for the i-th
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labeled example. We pre-encode every y ∈ Y
to vy = encθY (textY (y)) at test time and effi-
ciently compute the highest scoring target ŷ(x) =
argmaxy∈Y

〈
encθX(textX(x)), vy

〉
for anyx ∈ X

by maximum inner product search.
In multitask retrieval, there are K retrieval

tasks, each with Nk training examples (x(k)
1 , y

(k)
1 )

. . . (x
(k)
Nk

, y
(k)
Nk

) ∼ popk drawn iid from the k-th
population distribution popk. We use the KILT
benchmark, which includes K = 8 tasks address-
ing QA, entity linking, fact checking, slot filling,
and dialogue.2 The per-task loss is

Jk(θ) = − 1

Nk

Nk∑
i=1

log
exp(sθ(x

(k)
i , y

(k)
i ))∑

y∈Y(k)
i

exp(sθ(x
(k)
i , y))

defining the final loss

J(θ) =

K∑
k=1

Nk

N
× Jk(θ)

Previous work by Maillard et al. (2021) uses the
following setting. The KB Y consists of 100-
token disjoint Wikipedia passages. The text map-
pings textX , textY apply the BERT tokenizer to
unmodified queries and passages. The encoders
encθX , encθY are initialized with independent pre-
trained BERT-bases (uncased). The task-specific
training datasets are downsampled to be of simi-
lar sizes. As in DPR, they train the model using
hard negatives based on BM25, followed by one
round of hard negative mining from the model
(only on Natural Questions and TriviaQA in which
verifying if a candidate negative is indeed incor-
rect is expedient).

We now describe the main sources of improve-
ment that we achieve over the baseline multitask
retriever: a better choice of the base model with
appropriate prompting, and better optimization.

3.1 Base Model

We use a shared T5 to parameterize and initialize
the query and passage encoder encθ = encθX =
encθY . Specifically, we follow the ST5-EncDec

2We write ‘‘task’’ and ‘‘dataset’’ synonymously instead
of distinguishing datasets from task types as done in some
previous work. Thus KILT has 8 tasks and 5 task types.

architecture (Ni et al., 2021), which encodes any
z ∈ V+ as

encθ(z) = T5.generate(z, length = 1).state

(i.e., we run the T5-encoder on z, run the T5-
decoder for 1 step from the special start symbol,
and take the resulting hidden state prior to token
prediction). In addition, we define the text map-
ping for queries x ∈ X in task k as

textX(x) = T5Tokenizer(πk ⊕ [SEP] ⊕ x)

where ⊕ is string concatenation, [SEP] is the
special separation token, and πk is a text prefix
that indicates which task x is a query of. We use
dataset names as prefixes (e.g., π1 =‘‘NQ’’). The
text mapping for passages y ∈ Y does not use
prefixes, that is

textY (y) = T5Tokenizer(y)

This allows us to pre-encode passage embed-
dings at test time and retain the efficiency of the
single-task dual encoder framework.

While simple, this choice is the most crucial
component in our apporach to improving mul-
titask retrieval. We take a model pretrained for
multitasking and adopt the same prefix concatena-
tion scheme for task adaptation, treating multitask
retrieval as a continuation of the T5 training.

Interestingly, using task markers is reported to
be not helpful in Maillard et al. (2021). This is
likely because their base model, BERT, is not pre-
trained for multitasking. Another difference is that
they use task markers to indicate the 5 task types
(e.g., ‘‘QA’’), whereas we use fine-grained mark-
ers to indicate the 8 tasks (e.g., ‘‘NQ’’). While
there are previous works that use T5 for dense
retrieval (Ni et al., 2021), we are the first to ex-
ploit the multitasking component of T5 pretrain-
ing for multitask retrieval.

3.2 Adaptive Learning

For the k-th task, the linear approximation of
Jk(θ) around a ∈ R

d is

Jk(θ) ≈ Jk(a) + 〈∇Jk(a), θ − a〉

Let θ(t) denote the parameter value at the t-th
update in gradient-based training. For any i =

1 . . . d, we define θ
(t)
−i to be equal to θ(t) except
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that its i-th element is zero. The approximation
of Jk(θ) around a = θ

(t)
−i at θ = θ(t) is

Jk(θ
(t)) ≈ Jk(θ

(t)
−i) +

〈
∇Jk(θ

(t)
−i), θ

(t) − θ
(t)
−i

〉

= Jk(θ
(t)
−i) +

∂Jk(θ
(t))

∂θi
× θ

(t)
i

Rearranging and taking the absolute value, we
have

σ
(t)
i,k =

∣∣∣∣
∂Jk(θ

(t))

∂θi
× θ

(t)
i

∣∣∣∣ ≈
∣∣∣Jk(θ(t))− Jk(θ

(t)
−i)

∣∣∣
(1)

which is easily computable and can be viewed
as measuring how sensitive the i-th parameter is
with respect to the k-th task in the t-th itera-
tion of training. We propose to use this quantity,
previously used in the model pruning literature
(Molchanov et al., 2016), to encourage task spe-
cialization during training. We define a condi-
tional distribution over K tasks by

q(k|θ(t), t, i) =
exp(σ̄

(t)
i,k/τt)∑K

k=1 exp(σ̄
(t)
i,k/τt)

(2)

where τt > 0 is a temperature and σ̄
(t)
i,k is an ap-

propriately normalized and amortized estimation
of σ

(t)
i,k in Eq. (1) (see Section 3.2.1). Assuming

training examples are sampled to roughly balance
the size across tasks (i.e., Nk ≈ Nk′), we take
the following gradient step for the i-th parameter
in the t-th iteration:

θ
(t+1)
i = θ

(t)
i − η

K∑
k=1

q(k|θ(t), t, i)× ∂Jk(θ
(t))

∂θi

Note that this is a per-parameter adaptive learn-
ing. Each parameter θi ∈ R maintains a distribu-
tion over K tasks and is updated more aggresively
for tasks that θi is sensitive to.

3.2.1 Sensitivity Normalization
The d parameters θ(t) can be of very different
magnitudes. To reduce the parameter-wise vari-
ance in the sensitivity scores, for task k we divide
the scores by the median of across all parameters
with respect to task k:

σ̃
(t)
i,k =

σ
(t)
i,k

medianj=1...d(σ
(t)
j,k)

We use the median instead of the mean to ac-
count for the long tail distribution of task-specific
sensitivity scores. We also use momentum to
amortize the scores: assuming some β > 0

σ̄
(t)
i,k = (1− β)σ̄

(t−1)
i,k + βσ̃

(t)
i,k

where σ̄
(0)
i,k = 0. This is the final version of sen-

sitivity that we use in Eq. (2). The algorithm in
matrix form is given in Algorithm 1 (Appendix A).

4 Experiments

4.1 Setup

Datasets. We follow Maillard et al. (2021) and
use eight tasks from KILT (Petroni et al., 2021) for
training and evaluation. We randomly downsam-
ple the training data of the two largest datasets
(T-REx and zsRE) to the same order of magni-
tude as the rest. All the datasets share the same
knowledge base of 36 million disjoint 100-token
Wikipedia passages preprocessed by Maillard et al.
(2021). The data statistics and other data-related
details can be found in Appendix B.

Evaluation. We use the page-level R-precision
(the suggested main metric in KILT) to measure
the retrieval performance. Page-level R-precision
is the fraction of the R gold pages captured by
the retriever in the top-R candidates. We map
the retrieved passages to the their corresponding
pages and use official KILT evaluation scripts
to evaluate the page-level R-precision. We also
report passage-level R-precision proposed by
Maillard et al. (2021) on dev sets in Appendix E.
We use TREC Eval3 to evaluate the passage-level
R-precision.

Model Details. We initialize our dual encoder
with the official T5-base (Raffel et al., 2019)
checkpoint. The query encoder and passage en-
coder share weights. Following the ANCE (Xiong
et al., 2021) training paradigm, we first warmup
our model for 20 epochs with BM25 hard nega-
tives by naive multitask learning with task prefix.
Then we train the model for 8 ANCE episodes with
the model-mined hard negatives refreshed at the
begining of each ANCE episode. We adopt naive
multitask learning with task prefix for the first

3https://trec.nist.gov/trec_eval/.

1204

https://trec.nist.gov/trec_eval/


Fact Check. Ent. L. Slot Filling Open Domain QA Dial.

Model FEV AY2 T-REx zsRE NQ HoPo TQA WoW Avg
Baselines.

BM25∗ 50.13 3.47 58.60 66.43 25.83 43.95 29.44 27.50 38.17

BART†
mt 81.92 89.17 75.18 91.08 58.62 48.69 67.64 50.98 70.41

CorpusBrain†
mt 82.06 90.84 77.62 98.26 59.10 50.07 68.78 53.75 72.56

MT-DPR∗ 74.72 83.78 69.18 77.23 61.51 44.21 61.95 39.70 64.04

Task-specific DPR∗ 73.60 81.77 69.08 97.74 63.24 46.63 65.12 40.32 67.19

Task-specific BART† 80.03 87.98 74.46 93.91 50.96 39.21 66.13 50.75 67.93

Task-specific CorpusBrain† 81.77 90.36 76.90 98.49 57.67 50.62 69.25 53.60 72.33

Task-specific (ours) 74.28 85.28 77.18 99.38 65.39 46.79 69.08 53.63 71.38

Non-Comparable Models (For Reference).
CorpusBrain†

mt+BLINK 85.03 92.86 80.22 98.49 64.61 52.23 71.71 59.72 75.61

GENRE† 84.68 92.75 79.68 94.84 64.26 51.82 71.11 56.32 74.43

TABi (Leszczynski et al., 2022) 85.8 – 82.0 95.2 62.4 52.7 71.5 51.8 –

TACO 86.17 84.64 78.12 97.91 61.86 50.61 69.62 60.97 73.74

Table 1: Page-level R-precision on KILT validation data. Bold indicates the best model and underline
indicates the second. † and ∗ mark results from Chen et al. (2022) and Maillard et al. (2021), respectively.
The non-comparable models are trained on additional data or use extra information. We list them only
for reference, not for comparison. Task-specific models use a separate retriever for each task while all
the other models use a single retriever across all the tasks.

7 ANCE episodes and apply the adaptive learn-
ing introduced in Section 3.2 for the last ANCE
episode to improve the performance further. We
use Adam (Kingma and Ba, 2015) with a linear
learning rate decay schedule with warmup propor-
tion 0.1 over 3 epochs for each ANCE iteration.
We provide more details and hyperparameters in
Appendix C.

4.2 Main Results
We refer to our model as TACO, which stands for
TAsk speCialty Optimization. Table 1 and Table 2
show our main results on the KILT validation
data and test data respectively. Fewer compara-
ble baselines are available for KILT test data than
for KILT validation data.

Let avg val denote average validation page-level
R-Precision. TACO achieves the best performance
on 4 out of 8 tasks for both validation and test
data. The performance is either the second best or
close to the second best except AIDA, an entity
linking dataset favoring autoregressive retrieval
models over dense retrieval models (De Cao et al.,
2021). TACO outperforms the previous multitask
dense retrieval model MT-DPR (Maillard et al.,

2021) significantly (+7.34% avg val). TACO also
achieves better performance compared with cur-
rent top performing multitask autoregressive re-
trieval models in comparable setting (finetuned
purely on KILT). TACO outperforms BARTmt

(+3.33% avg val) with smaller model size (T5-
base vs Bart-large). Compared with BARTmt,
CorpusBrainmt employs additional pretraining and
yields significant improvement over BARTmt

(+2.15% avg val). TACO still outperforms Cor-
pusBrainmt (+1.18% avg val) with smaller model
size and no additional pretraining. We also list
various top performing multitask retrieval models
for reference but not for comparison because they
are not in comparable setting. Both GENRE and
CorpusBrainmt+BLINK are finetuned on a large
amount of additional training data besides KILT
training data. Specifically, they also use BLINK
training data (Wu et al., 2020) for finetuning,
which contains 8.9M annotated wikipedia sen-
tences. TABi (Leszczynski et al., 2022) uses extra
type labels information and leverages knowledge
graph that is very effective for retrieval. TACO
even rivals these non-comparable models on all
the tasks except AIDA.
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Fact Check. Ent. L. Slot Filling Open Domain QA Dial.

Model FEV AY2 T-REx zsRE NQ HoPo TQA WoW Avg
Baselines.

TF-IDF† 50.9 3.7 44.7 60.8 28.1 34.1 46.4 49.0 39.7

SEAL‡ 81.4 – 62.1 91.6 63.2 58.8 68.4 57.5 –

MT-DPR∗ 74.5 26.5 69.5 80.9 59.4 42.9 61.5 41.1 57.0

MT-DPR‡
WEB 74.8 – 75.6 89.7 59.8 45.4 58.9 41.5 –

Task-specific (ours) 73.22 79.52 77.00 99.15 60.87 46.50 69.12 55.03 70.05

Non-Comparable Models (For Reference).
CorpusBrain†

mt+BLINK 84.07 89.98 79.98 98.27 60.32 51.80 70.19 64.79 74.93

GENRE† 83.64 89.85 79.42 95.81 60.25 51.27 69.16 62.88 74.04

TABi (Leszczynski et al., 2022) 84.4 – 81.9 96.2 62.6 53.1 70.4 59.1 –

TACO 84.07 80.64 77.22 98.21 60.80 50.70 68.45 62.64 72.84

Table 2: Page-level R-precision on KILT test data. Bold indicates the best model and underline indicates
the second. †, ∗, and ‡ mark results from Chen et al. (2022), Maillard et al. (2021), and Bevilacqua et al.
(2022), respectively. The non-comparable models are trained on additional data or use extra information.
We list them only for reference not for comparison.

Fact Check. Ent. L. Slot Filling Open Domain QA Dial.

Variants FEV AY2 T-REx zsRE NQ HoPo TQA WoW Avg
TACO 86.17 84.64 78.12 97.91 61.86 50.61 69.62 60.97 73.74
w/o task prefix 85.71 84.68 74.82 94.68 61.05 49.38 67.79 58.81 72.12

w/o adaptive 84.81 85.49 75.00 92.24 62.81 51.47 68.95 60.54 72.66

w/o task prefix w/o adaptive 84.03 85.62 70.96 86.04 62.46 49.78 66.04 59.95 70.61

task query encoder 82.71 87.56 72.72 85.15 64.01 49.74 69.12 55.93 70.87

task type marker 84.49 85.51 73.88 89.37 62.85 50.97 67.70 60.02 71.85

PCG (Yu et al., 2020) 84.97 85.26 74.90 91.43 62.67 51.47 68.54 60.48 72.47

CGD (Piratla et al., 2021) 82.25 80.39 71.62 83.40 62.67 49.66 66.73 59.33 69.51

GradNorm (Chen et al., 2018) 84.70 85.28 75.32 91.73 63.80 51.97 69.30 60.31 72.80

Table 3: Ablation study results on KILT validation data. We report page-level R-precision. Bold
indicates the best variant. Each line makes a single or multiple changes from the TACO model. The
performance of the recent general multitask algorithms, PCG (Yu et al., 2020), CGD (Piratla et al.,
2021), and GradNorm (Chen et al., 2018), are obtained from our own implementation.

TACO is the only model that outperforms
strong task-specific models noticeably. Our task-
specific baseline is significantly stronger than the
task-specific DPR, likely due to better training
paradigm (ANCE) and better model (T5 vs BERT).
Task-specific CorpusBrain is even stronger, es-
pecially for FEVER and AIDA. Only TACO
and CorpusBrainmt outperform the strong task-
specific models. TACO achieves a 2.36% im-
provement over its task-specific counterpart and
a 1.41% improvement over the task-specific
CorpusBrain, but CorpusBrainmt is only slightly

better than its task-specific counterpart (+0.23%
avg val).

4.3 Analysis

4.3.1 Ablation Study

Table 3 shows the results of ablation studies on
KILT validation data.

Model Components. We first conduct exper-
iments to understand the impact of individual
components of our model. Removing task prefix
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results in 1.62% R-precision decrease and dis-
abling adaptive learning yields 1.08% R-precision
decrease. Removing both task prefix and adaptive
learning significantly degrades the performance
(−3.13%). This demonstrates that both task pre-
fix and adaptive learning contribute to the effec-
tiveness of TACO.

Query Variants. We conduct experiments to
investigate other query side variants besides task
prefix. These variants are not trained with adaptive
learning and only change the query input format
or model. Leveraging task-specific query encoder
yields slightly better performance (70.87% vs
70.61%), but is outperformed by task prefix signif-
icantly (70.87% vs 72.66%). The task type marker
introduced in Maillard et al. (2021) is not help-
ful for BERT-based MT-DPR, but we find them
effective for our T5-based model. This is likely
because T5 is pretrained for multitasking. We
conduct experiments to leverage their task type
markers for our model. Using task type markers
(i.e., 5 symbols indicating the 5 classes of task in
KILT) leads to 1.24% R-precision improvement
(71.85% vs 70.61%), but is less effective than our
fine-grained dataset-level task prefix (71.85% vs
72.66%).

Mutltitask Learning Variants. We compare
our adaptive learning method with recent general
multitask learning algorithms with our own im-
plementation. PCG (Yu et al., 2020) focuses on
mitigating the conflict of gradients from different
tasks. It performs on par with the ‘‘w/o adaptive’’
variant (72.47% vs 72.66%), but underperforms
TACO which leverages our adaptive learning
(72.47% vs 73.74%). This shows that the gradi-
ent conflict is not the main bottleneck in our mul-
titask retrieval setting. CGD (Piratla et al., 2021)
aims to improve multitask learning by encour-
aging update towards common directions of dif-
ferent tasks, which is opposite to our method that
encourages task specialties. It performs much
worse than TACO (69.51% vs 73.74% and lags
behind the ‘‘w/o adaptive’’ variant significantly
(69.51% vs 72.66%). This shows that we should
encourage task specialty rather than emphasizing
tasks shared part for multitask retrieval. Grad-
Norm (Chen et al., 2018) tries to weight different
tasks losses by using the average gradient norm.
It performs slightly better than the naive ‘‘w/o
adaptive’’ variant (72.47% vs 72.66%). Our adap-

tive learning method achieves descent improve-
ment over GradNorm (73.74% vs 72.80%). Note
that our adaptive update is more fine-grained and
critically different because we adjust learning rates
along both task dimension and parameter dimen-
sion compared with GradNorm that only do loss
re-weighting.

Adaptive Learning. We consider variations of
the main version of adaptive learning which is ap-
plied only in the last ANCE episode. Specifically,
we investigate the impact of applying adaptive
learning to the last four ANCE episodes using an
exponential softmax temperature decay scheduler.
This approach yields an average page-level R-
precision of 73.47%. In comparison, when adap-
tive learning is applied only to the last ANCE
episode, we achieve an average page-level R-
precision of 73.74%. These results suggest that
extending adaptive learning to more ANCE epi-
sodes does not yield improvement. Additionally,
we examine the effectiveness of encouraging task
specialization within adaptive learning. For this
purpose, we focus on the second ANCE episode
and experiment with positive softmax temperature
(encouraging task specialty) and negative softmax
temperature (discouraging task specialty). En-
couraging task specialization results in an average
page-level R-precision of 70.53%, while discour-
aging task specialization leads to an average page-
level R-precision of 68.39%. In comparison, the
performance of the standard multitask baseline at
the second ANCE episode is 69.28%. These re-
sults highlight the benefits of encouraging task
specialization and the detrimental effect of dis-
couraging task specialization within adaptive learn-
ing. Normalizing task sensitivity using the median
is preferred over using the mean or not apply-
ing any normalization, as different tasks exhibit
variations in magnitude while sharing similar dis-
tribution shapes (see Figure 2).

4.3.2 Task Specialization

Figure 1 plots the histograms of task entropy for
the learned parameters. The task entropy for each
parameter is calculated with the distribution de-
fined in Equation 2. We first group parameters
into two special bins. The first is a ‘‘Task Spe-
cific’’ bin that includes parameters whose entropy
is smaller than 0.3, which is the entropy of 95%
probability on one task and the 5% uniformly
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Figure 1: Task entropy histograms for model variants.

Figure 2: Task-specific sensitivity density distribution
on the training data of four KILT tasks. The final models
are used. The x-axis is sensitivity, and we drop outliers
that are far from the median to ease visualization.

on the rest seven. The ‘‘Not Activated’’ bin in-
cludes parameters whose sensitivity w.r.t. all tasks
is near zero (< 1e − 8). TACO significantly im-
proves the fraction of task specific parameters to
22%, in comparison with 19% in naive multitask
model (w/o prefix w/o adaptive). It also reduces
the fraction of not activated parameters, showing
optimizing task specialty also better utilizes the
model capacity.

Figure 2 plots the kernel density estimated dis-
tribution of task-specific sensitivity in TACO and
the standard multitask model for four KILT tasks.
We drop outliers that deviates significantly from
the median to ease visualization. Notably, TACO
exhibits a noticeable reduction in the peak on the
low sensitivity side for each task compared to the

MS ZES FEV NQ Avg
Task-specific 73.3 67.3 90.0 71.8 75.6

TACO 85.8 67.6 91.2 76.8 80.4

w/o adapt 85.9 67.5 91.3 76.6 80.3

w/o prefix, adapt 86.2 68.1 92.2 76.4 80.7

PCG 86.1 67.9 91.7 76.9 80.7

CGD 86.8 69.1 94.4 76.2 81.6

GradNorm 86.0 67.3 91.7 76.9 80.5

Table 4: Recall@100 on an additional benchmark
containing MS-MARCO (MS), ZESHEL (ZES),
FEVER (FEV), and Natural Questions (NQ).

standard multitasking model. This observation
suggests that TACO activates a larger number of
parameters and enhances their sensitivity towards
individual tasks.

4.3.3 Additional Benchmark
To test the performance of TACO in a differ-
ent setup other than KILT, we constructed an
additional benchmark containing MS-MARCO
(Nguyen et al., 2016), ZESHEL (Logeswaran et al.,
2019), a document-level version of FEVER from
BEIR (Thakur et al., 2021), and Natural Ques-
tions from KILT. We chose this combination for
a few reasons. First, we found that few public da-
tasets outside KILT provide sufficiently large and
high-quality training data other than MS-MARCO
and ZESHEL. Second, each task now has its own
KB to retrieve from, making this a rather dif-
ferent setup from KILT in which all tasks share
one KB. We compare task-specific retrievers and
multitask retrievers trained by TACO and other
methods. Table 4 shows their recall at 100 on
the validation split. We see that multitasking is
clearly beneficial for this benchmark. The best
performance is obtained by CGD and it is the only
multitask optimization method that yields notice-
able improvements over the standard multitask
model. Given that CGD aims to improve multi-
task learning by encouraging update towards com-
mon directions of different tasks, we hypothesize
that the need for task specialization is diminished
here because the tasks are more similar in diffi-
culty (e.g., in KILT, T-REx and zsRE are much
easier than HotpotQA). This experiment sheds
light on what multitask settings most benefit from
task specialization.
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5 Conclusions

Multitask retrieval has compelling practical ad-
vantages such as model simplicity and memory
efficiency, but it lags behind task-specific retrieval
in the existing literature. We have shown that it is
possible to significantly improve the performance
of multitask retrieval by promoting task spe-
cialization. The key steps are the use of a base
model optimized for multitasking with appropri-
ate prompting and a per-parameter adaptive learn-
ing technique that upweights the task gradients
by the parameters’ sensitivity to the task losses.
We have achieved strong results on the KILT re-
trieval benchmark.
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A Algorithm in Matrix Form

Algorithm 1 is the matrix form of our adaptive
learning algorithm.

B Data Details

See Table 5 for data statistics and some
data-related hyperparameters. We randomly
downsample T-REx and zsRE to bring them to the
same order of magnitude as the others. We follow
Raffel et al. (2019) and use temperature-scaled
mixing sampling strategy to compute batch size
for each task k: Bk ∝ (Nk/

∑K
k′=1 Nk′)1/c for

some temperature c (we set it to 4 in our ex-
periments). Here Nk is the dataset size of task k.
Note that we compute task loss of each task batch
independently instead of mixing all task batches
for every optimization step. Each dataset needs
to sample a different number of batches to cover
every training sample in that dataset once. We
set the maximum as the number of batches that
every dataset needs to sample. We shuffle and cy-
cle batch sampling iterators of datasets that finish
iterating early. Batch size of each dataset com-
puted by setting mixing temperature c = 4 and∑K

k′=1 Nk′ = 120 is in Table 5.

C Other Training Details

The data-related hyperparameters, such as maxi-
mum input query length and batch size, are listed
in Table 5. The training hyperparameters are
listed in Table 6. We use NCE loss with cross
device in-batch negative mixed with hard nega-
tives to compute each task loss. We sample two
hard negatives for each query. We use a ‘‘burn
in’’ period for the first 10% training steps with
uniform learning rates for parameters to declare

Dataset #Train B L

Natural Questions 76k 16 32

TriviaQA 53k 14 32

HotpotQA 69k 15 32

Wizard of Wikipedia 80k 16 256

T-REx 95k 16 32

FEVER 71k 15 64

Zero Shot RE 100k 17 32

AIDA-YAGO 2 18k 11 128

Table 5: Data statistics and some data-related
hyperparameters for our experiments. B denotes
batch size. L denotes query maximum input length
excluding the task prefix.

lr warmup #negs epochs τ β Btotal

5e-6 0.1 2 3 2 0.999 120

Table 6: Training hyperparameters for training
our TACO-DR model. We use Adam (Kingma
and Ba, 2015) with learning rate 5e − 6. We use
linear learning rate schedule with warmup ratio
0.1. Each query uses 2 hard negatives for training.
Each ANCE episode trains for 3 epochs. Total
batch size of all task batches is 120.

τ 0.1 1 2 5 10 100

Avg R-prec 72.45 73.23 73.74 73.72 73.48 72.85

Table 7: Average page-level R-precision w.r.t
softmax temperature for our adaptive learning.

β 0 0.6 0.7 0.8 0.9 0.999

Avg R-prec 72.91 72.98 73.02 73.16 73.61 73.74

Table 8: Average page-level R-precision w.r.t
momentum factor for our adaptive learning.

their tendency during adaptive learning. All of
our experiments are run on a machine with 8
A100-80GB GPUS. Our implementations are built
upon OpenMatch (Liu et al., 2021).

D Softmax Temperature and
Momentum Ratio

Table 7 shows the impact of softmax tempera-
ture on validation R-precision for our adaptive
learning. Table 8 shows the impact of momentum
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Algorithm 1 Task sensitivity-guided adaptive learning
Require: Model parameter θ ∈ R

d; minibatches B where each batch B ∈ B is further divided by tasks
B = {Bk}k=1...K ; moving average rate β ∈ [0, 1]; temperature τ > 0; learning rate η > 0

Ensure: median : Rd×K → R
K is the column-wise median; softmax : Rd×K → R

d×K is the row-wise
softmax; 1K is a vector of K ones; � is the Hadamard product.

1: Initialize I ← 0 ∈ R
d×K .

2: for each batch B = {Bk}k=1...K in B do
3: Compute the task-specific loss Jk(θ) on Bk for each k = 1 . . .K.
4: Compute the gradient matrix G ∈ R

d×K with each column Gk ← ∇Jk(θ).
5: Compute the sensitivity matrix I ′ ∈ R

d×K with each column I ′k ← Gk � θ.
6: Normalize the sensitivity scales across tasks I ′ ← I ′diag (median(I ′))−1.
7: Update the moving average I ← βI + (1− β)I ′.
8: Update the parameter θ ← θ − η(G� U)1K where U ← softmax(I/τ) ∈ R

d×K .
9: end for

factor on validation R-precision for our adap-
tive learning.

E Passage-level Performance

Table 9 shows the passage-level R-precision on
KILT validation data. We also list the passage-
level performance from Maillard et al. (2021) for
comparison.

Fact Check. Slot Filling Open Domain QA Dial.

Model FEV T-REx zsRE NQ HoPo TQA WoW Avg
MT-DPR∗ 46.96 53.54 41.70 28.80 38.42 24.56 24.07 36.86

Task-specific DPR∗ 43.92 58.54 78.81 28.13 43.47 23.79 20.73 42.48

Task-specific (ours) 44.89 72.09 84.47 33.14 43.40 29.57 27.64 47.89

TACO 60.76 72.57 82.80 31.16 46.72 28.32 33.24 50.80

Table 9: Passage-level R-precision on KILT val-
idation data. Bold indicates the best model and
underline indicates the second. ∗ marks results
from Maillard et al. (2021). Only page-level
R-precision is defined for AIDA.
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