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Abstract
This paper describes our participation in
the Third SIGMORPHON Shared Task
on Grapheme-to-Phoneme Conversion (Low-
Resource and Cross-Lingual) (McCarthy et al.,
2022). Our models rely on different sequence
labelling methods. The main model predicts
multiple phonemes from each grapheme and is
trained using CTC loss (Graves et al., 2006).
We find that sequence labelling methods yield
worse performance than the baseline when
enough data is available, but can still be used
when very little data is available. Furthermore,
we demonstrate that alignments learned by the
sequence labelling models can be easily in-
spected.

1 Introduction

This paper describes our participation in the Third
SIGMORPHON Shared Task on Grapheme-to-
Phoneme Conversion (Low-Resource and Cross-
Lingual) (McCarthy et al., 2022). We evalu-
ate 3 sequence labelling methods for grapheme-
to-phoneme conversion (henceforth: g2p). We
approach the challenge of different lengths of
grapheme and phoneme sequences by allowing to
predict multiple phonemes from each grapheme.

The shared task consists of 3 tracks and includes
10 languages. The 3 tracks are high resource, low
resource, and transfer. For the high resource track,
grapheme-phoneme pairs are given for 1000 words.
For the low resource track, grapheme-phoneme
pairs are given for 100 words. For the transfer track,
grapheme-phoneme pairs are given for 100 words
in the target language and additionally grapheme-
phoneme pairs are given for 1000 words in a trans-
fer language (that is related to the target language,
e.g. Dutch → German). The test set is the same for
each track and contains 100 words of the target lan-
guage. Additionally, a development set is provided
for each target language. The development set also
is the same for each track. All of our models are
applicable to all languages and tracks.

Sequence labelling approaches can claim sev-
eral advantages over the main alternative, namely
(neural) encoder-decoder approaches: Sequence
labelling does not require beam search for infer-
ence, may allow for smaller models, and defines a
direct alignment between the input and predictions.
The latter property may make models more inter-
pretable and help with error analysis. However,
sequence labelling is less flexible than encoder-
decoder approaches and requires special handling
of cases where the input and target sequences are
of different length.

2 Related Work

Common approaches to g2p are joint-ngram mod-
els (Galescu and Allen, 2001; Novak et al., 2016),
encoder-decoder models (Wu et al., 2021; Makarov
and Clematide, 2018a,b; Clematide and Makarov,
2021), and sequence labelling (Jiampojamarn et al.,
2007; Rosca and Breuel, 2016; Schnober et al.,
2016; Ribeiro et al., 2018). In previous iterations
of this shared task on g2p, encoder-decoder models
were dominant both in terms of performance and
in terms of number of submissions (Gorman et al.,
2020; Ashby et al., 2021).

While this shows that neural encoder-decoder
models yield superior performance compared to
joint-ngram models, little work has been done to
evaluate the performance of neural sequence la-
belling models. Therefore, two of our three pro-
posed methods (explained in Section 3) directly
use or build on existing approaches, namely work
by Jiampojamarn et al. (2007) and Liu et al. (2017).
Our third method has so far, to our knowledge, not
been proposed for string transduction. It is how-
ever close to the approaches by Rosca and Breuel
(2016) and Ribeiro et al. (2018): Both propose to
augment the grapheme sequence by extra symbols,
so that phoneme sequences that are longer than the
grapheme sequence can be predicted. We propose
to turn their approach upside-down and allow each
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grapheme to predict multiple phonemes, instead
of optionally deleting unnecessarily added input
symbols.

However, in our current implementation, we pre-
dict a constant number of phonemes (which in-
cludes blank symbols) from each grapheme which
is less flexible than the method proposed by Ribeiro
et al. (2018), but avoids error propagation due to
incorrectly predicted number of insertions. Gener-
ally, no pure sequence labelling method can achieve
the same flexibility as sequence-to-sequence mod-
els, but for some problems with strong local rela-
tionship between the input sequence and the target
sequence, like g2p, sequence labelling may be suf-
ficient.

3 Method

We propose and evaluate 3 different sequence la-
belling methods. To refer to the different methods,
we term them by their main inspiration: “Super-
vised” (cf. Jiampojamarn et al. (2007); Novak et al.
(2016)), “Gram-CTC” (cf. Liu et al. (2017)), and
“Inverse-Scatter-CTC” (cf. Ribeiro et al. (2018);
Rosca and Breuel (2016)). The main challenge
when applying sequence labelling methods to se-
quence transduction problems is finding a way to
handle different lengths of the grapheme sequence
and the phoneme sequence. The solution com-
mon to all our proposed methods is allowing to
predict phoneme ngrams from grapheme unigrams
and allowing to delete graphemes. Since in g2p
the length of phoneme sequences cannot differ ar-
bitrarily from the respective grapheme sequences,
predicting ngrams, which imposes a strict bound
on the length of the predicted phoneme sequence,
is still a realistic approach. In the following, we
describe each method in more detail.

3.1 Supervised Sequence Labelling

The supervised method is a pipeline consisting of
aligning grapheme ngrams to phoneme ngrams and
then training a sequence labelling model to predict
phoneme ngrams from a sequence of graphemes
(cf. Jiampojamarn et al. (2007)). We make the
following design choices:

Our aligner is a neuralisation of the EM many-
to-many aligner proposed by Jiampojamarn et al.
(2007). The aligner calculates grapheme (uni-
gram) and phoneme (unigram) embeddings from
1d convolutions applied to the grapheme sequence
and phoneme sequence. Alignment scores of

grapheme unigrams and phoneme unigrams are the
dot-product between their embeddings. The aligner
is trained by normalising the resulting alignment
score matrix and maximising the alignment prob-
ability of the grapheme sequence and phoneme
sequence, which can be efficiently calculated by
dynamic programming. Alignments are obtained
by calculating the Viterbi path through the align-
ment matrix. Note that this approach generalises
unigram alignment scores to ngram alignments and
therefore does not support deletion of graphemes,
insertion of phonemes, or alignments of types other
than 1-to-many and many-to-1 (which includes 1-
to-1). Furthermore, the length of aligned ngrams is
learned automatically and does not have to be set
as hyperparameter.

Having obtained such alignments, any sequence
labelling model can be trained to predict phoneme
ngrams from graphemes. However, different from
Jiampojamarn et al. (2007), we want to avoid train-
ing a chunker to deal with the many-to-1 case. We
convert the many-to-1 case to 1-to-1 cases in the fol-
lowing way: Assign the aligned phoneme as label
to the first grapheme in the grapheme ngram and
assign deletion as label to all following graphemes
in the grapheme ngram.

3.2 Gram-CTC Sequence Labelling

Gram-CTC as proposed by Liu et al. (2017) works
as follows: Given a whitelist of allowed ngrams, de-
compose the target sequence (here: the phonemes)
into all possible decompositions only containing
ngrams in the whitelist. Then, for each symbol in
the input sequence (here: the graphemes), calcu-
late prediction probabilities for all ngrams in the
whitelist. Also, prediction of a special blank to-
ken is possible (cf. Graves et al. (2006)). Finally,
the model is trained by maximising the prediction
probability of the target sequence, which is the sum
of prediction probabilities of all decompositions.
This sum can be efficiently computed by dynamic
programming.

As whitelist, we use all phoneme ngrams that
appear in alignments calculated for the supervised
method (see Section 3.1). Compared to the main
modus operandi described by Liu et al. (2017), who
propose to use all ngrams up to a certain length,
restricting the whitelist in this way stabilises and
speeds up training.

Compared to the supervised method described in
Section 3.1, Gram-CTC is not directly dependent
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on explicit grapheme-phoneme alignments, but
learns such grapheme-phoneme alignments from
scratch. Therefore, Gram-CTC can correct errors
made by the aligner that would otherwise directly
propagate to the sequence labelling model.

3.3 Inverse-Scatter-CTC Sequence Labelling

Inverse-Scatter-CTC works as follows: For each
grapheme, predict τ phoneme unigrams. Thereby,
the length of the predicted phoneme sequence is
increased and, given a suitable τ , so that the num-
ber of predicted phonemes is always strictly greater
than the number of target phonemes, we can use
standard CTC (Graves et al., 2006) to train the
model. We find τ ≥ 3 to work for all languages
in the shared task except for Persian, where only
τ ≥ 4 works. Therefore, we evaluate τ ∈ {3, 4, 5}.

Compared to the supervised approach (see Sec-
tion 3.1) and Gram-CTC (see Section 3.2), Inverse-
Scatter-CTC has the advantage of only using
phoneme unigrams as labels, thereby reducing the
number of labels and allowing for more flexible
alignments. Furthermore, Inverse-Scatter-CTC is
not affected by an external aligner in any way.

4 Models

For sequence labelling, we always use a plain 1-
layer BiLSTM model. Models are trained using the
different approaches described in Section 3. For
the transfer track, we do not entirely mix the target
language and the transfer language, but we share
the same embeddings and LSTM encoder for both
languages and use separate classification layers,
since we found this to yield better performance.
Our intuition is that transfer data stabilises training
and mitigates overfitting of embeddings and the
LSTM encoder, but the target phonemes differ to a
degree that makes separate decoding necessary.

For each language and track, we train 10 models
and keep the best 5 performing models in terms
of WER on the development set. We use these
5 models to compute word-level majority-voted
ensemble predictions. We resolve ties by choosing
the prediction from the model with lowest WER
on the development set among all predictions with
most votes.

The different approaches also require different
hyperparameters. However, common to all setups
are embedding size 64, no dropout or weight de-
cay, vanilla SGD optimizer with one-cycle learning
rate scheduler (Smith and Topin, 2019), and only

keeping the best checkpoint from each training run
based on WER on development set evaluated af-
ter every epoch. Hyperparameters that differ are
training for 100 epochs with batch size 2, max.
learning rate 0.01, clipping gradients with absolute
value greater than 1 and the LSTM encoder having
128 hidden units for supervised and Gram-CTC,
whereas Inverse-Scatter-CTC models are trained
for 80 epochs with batch size 16, max. learning
rate 0.1, no gradient clipping, and 256 hidden units
for the LSTM encoder. All models and training
routines are implemented in PyTorch (Paszke et al.,
2019).

5 Results

In Table 1, we report test set word error rates
(WER) of supervised and Gram-CTC models for
all languages and tasks. These are the official re-
sults made available by the organisers. For the high
and low resource scenarios, Gram-CTC improves
upon supervised training for 6 out of 10 languages,
and the macro-average WER is around 4 points
lower. The most pronounced difference is for Thai
in the high resource setting. This suggests that it is
indeed helpful to allow learning to realign phoneme
ngrams, as is done by Gram-CTC.

However, for the transfer task, we make different
observations: While Gram-CTC performs worse in
the transfer setting than in the low resource setting,
supervised training is able to use the additional
transfer data in order to improve upon its perfor-
mance in the low resource setting. The improve-
ment amounts to approximately 7 points in WER
(macro-average). Therefore, transfer data can in-
deed be very helpful when used with the right kind
of model.

This being said, Gram-CTC still outperforms su-
pervised training in 6 out of 10 languages (transfer
track). The fact that the macro-average WER of
the supervised model is eventually lower is mainly
due to the much better performance of supervised
training on Tagalog (24 vs 50). If we ignore Taga-
log when calculating macro-average scores, Gram-
CTC (both low and transfer tracks) and supervised
training (transfer track) perform almost equally
well, with a slight advantage for Gram-CTC in
transfer setting.

In Table 2, we report WER for Inverse-Scatter-
CTC. In the high resource setting, we observe
that greater τ (more outputs predicted from each
grapheme) is beneficial. While there does not seem
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high low transfer
gram-ctc supervised gram-ctc supervised gram-ctc supervised

ben 68.49 71.23 90.41 91.78 82.19 80.82
bur 37.00 51.00 90.00 95.00 92.00 94.00
ger 50.00 47.00 81.00 89.00 79.00 80.00
gle 33.00 39.00 78.00 86.00 78.00 82.00
ita 19.00 15.00 44.00 48.00 41.00 36.00
per 57.89 61.40 75.44 80.70 80.70 82.46
swe 54.00 51.00 84.00 86.00 82.00 74.00
tgl 15.00 14.00 40.00 42.00 50.00 24.00
tha 39.00 57.00 91.00 96.00 91.00 95.00
ukr 36.00 41.00 73.00 84.00 77.00 81.00

Avg. 40.94 44.76 74.68 79.85 75.29 72.93

Table 1: Word error rates (WER) for supervised and Gram-CTC models. Avg is macro-average over languages.

to be a visible trend for the low resource track,
greater τ seems harmful in terms of macro-average
WER for the transfer track.

Depending on τ , performance of Inverse-Scatter-
CTC can be slightly better than performance of
Gram-CTC, but we do not observe any decisive
advantages. We demonstrate this in Figure 1: The
numbers in the heatmap show for how many lan-
guages the model on the x-axis achieves strictly
lower WER than the model on the y-axis. De-
spite having the lowest macro-average, supervised
training actually is not superior to any model
for more than 50% of the languages. Contrar-
ily, Inverse-Scatter-CTC with τ=4 achieves bet-
ter performance than most models for more than
50% of the languages, but has second-worst macro-
averaged WER. Overall, Figure 1 shows that which
model is best is language dependent and there is no
clear winner among the models evaluated in this
paper. Similar results can be found also for the
high and the low resource tracks.

Compared to the baseline1, our models gener-
ally perform worse in the high-resource tack, but
better in the low resource and transfer tracks. This
suggests that sequence-to-sequence models may be
superior to sequence labelling models when enough
data is available, while it is still possible to train
neural (sequence labelling) models in the ultra-low
resource settings.

1Results taken from https://github.com/
sigmorphon/2022G2PST#baseline

sca
tte

r-c
tc-

3

sca
tte

r-c
tc-

4

sca
tte

r-c
tc-

5

sup
erv

ise
d

gra
m-ct

c

scatter-ctc-3

scatter-ctc-4

scatter-ctc-5

supervised

gram-ctc

0 5 4 5 7

3 0 6 6 6

5 3 0 4 4

5 4 4 0 4

2 4 6 6 0

0

1

2

3

4

5

6

7

Figure 1: Heatmap showing for how many languages
(out of 10) the model on the y-axis achieves strictly
lower test set WER than the model on the x-axis. Results
are shown for the transfer track.

6 Model Inspection

In the introduction, we claim that one advantage of
sequence labelling methods is that they define a di-
rect alignment between graphemes and phonemes,
which can be inspected. Therefore, in Table 3, we
give the 10 most frequent graphemes appearing in
the German development set and their respective
phonemes as predicted by the best trained German
Inverse-Scatter-CTC model (τ=5). From Table 3,
we can see that most alignments are reasonable
(of course one would also have to look at the con-
text). This means that the Inverse-Scatter-CTC
indeed learns useful alignments of graphemes to
phonemes. However, there are also some problems:
While the German model seems to handle deletions
(e.g. “sch” → “S”) rather well, it struggles with
predicting multiple phonemes from one grapheme.
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high low transfer
τ 3 4 5 3 4 5 3 4 5

ben 72.6 69.86 68.49 83.56 83.56 86.30 89.04 89.04 83.56
bur 31.0 37.00 35.00 87.00 86.00 87.00 90.00 93.00 86.00
ger 50.0 45.00 46.00 83.00 84.00 82.00 74.00 74.00 74.00
gle 35.0 37.00 36.00 76.00 76.00 79.00 74.00 80.00 81.00
ita 18.0 18.00 19.00 49.00 51.00 45.00 41.00 38.00 40.00
per 100.0 57.89 56.14 80.70 85.96 82.46 100.00 78.95 82.46
swe 53.0 51.00 52.00 81.00 81.00 81.00 77.00 80.00 74.00
tgl 16.0 18.00 15.00 35.00 37.00 32.00 40.00 68.00 92.00
tha 38.0 36.00 35.00 84.00 83.00 86.00 83.00 81.00 94.00
ukr 41.0 39.00 44.00 79.00 80.00 77.00 74.00 76.00 92.00

Avg. 45.46 40.88 40.66 73.83 74.75 73.78 74.20 75.80 79.90

Table 2: Word error rates (WER) for Inverse-Scatter-CTC models. τ is the number of outputs predicted from each
grapheme. Avg is macro-average over languages.

Grapheme Predicted Phonemes

e @, , a, E, e:, P a, O, P E, n
"n n, , N

r K, 5, 5
“
, r

t t,
a a, a:
i I, I

“
, i:, i, P i:

s S, s, z, ,
>
t s

h , h
l l,
u U, u, I

“
, u:, U

“

Table 3: Phoneme predictions of the 10 most frequent
graphemes in the development set. Both graphemes and
phonemes are sorted by frequency in descending order.
“ ” denotes deletion.

In German, this is a rather rare phenomenon, oc-
curring only for the grapheme “x”, which is pro-
nounced as “k s”, and also for the glottal stop P
when words start with a vowel. For example, the
pronunciation of German “axt” (English: “axe, ax”)
is predicted as “a k t”, while “a k s t” is correct.

One possibility of how to make use of these
direct alignments is using predefined mappings of
graphemes to phonemes to restrict which phonemes
may be predicted. Another advantage, of course, is
error analysis. For the German model, for exam-
ple, we would recommend adding more examples
containing “x” to the training set. In fact, there is
only one such example in the high resource training
data, namely “existieren” (English: “to exist”).

7 Conclusion

We presented and evaluated 3 sequence labelling
methods for g2p: Supervised, Gram-CTC, and
Inverse-Scatter-CTC. We show that all 3 meth-
ods can be applied to all 3 tracks, but no method
seems clearly superior to the other methods. In
the high resource setting, the baseline sequence-to-
sequence model seems to yield better performance
than sequence labelling methods. However, se-
quence labelling methods seem to perform better
in the very low resource settings. Finally, we show
that Inverse-Scatter-CTC models learn reasonable
alignments of graphemes and phonemes, thereby
validating the claim that sequence labelling models
allow for comparatively easy model inspection.
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