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Abstract

The objective of the SemEval-2023 Task 1: Vi-
sual Word Sense Disambiguation (VWSD) (Ra-
ganato et al., 2023) is to identify the correct
image illustrating the indented meaning of a
target word and some minimal additional con-
text.The omnipresence of textual and visual
data in the task strongly suggests the utiliza-
tion of the recent advances in multi-modal ma-
chine learning, i.e., pretrained visiolinguistic
models (VLMs). Often referred to as founda-
tion models due to their strong performance on
many vision-language downstream tasks, these
models further demonstrate powerful zero-shot
capabilities. In this work, we utilize various per-
tained VLMs in a zero-shot fashion for multiple
approaches using external knowledge sources
to enrich the contextual information. Further,
we evaluate our methods on the final test data
and extensively analyze the suitability of differ-
ent knowledge sources, the influence of train-
ing data, model sizes, multi-linguality, and dif-
ferent textual prompting strategies. Although
we are not among the best-performing systems
(rank 20 of 56), our experiments described in
this work prove competitive results. Moreover,
we aim to contribute meaningful insights and
propel multi-modal machine learning tasks like
VWSD.

1 Introduction

This paper presents and analyses effective zero-shot
approaches for the SemEval-2023 Task 1: Visual
Word Sense Disambiguation (VWSD) (Raganato
et al., 2023). In traditional word sense disambigua-
tion (WSD), the context or sentence in which am-
biguous words, i.e., words with multiple meanings,
occur is used for disambiguation by identifying the
correct sense in a sense inventory. Frequently used
as sense inventories are dictionaries or knowledge
bases such as WordNet or DBPedia. As opposed to
traditional WSD, in the VWSD shared task, images
are used to disambiguate a word given a context.
Precisely, given a word and another word serving

as context, the task is to identify the image that
corresponds to or illustrates the correct meaning
in a set of ten images. In the trial phase of the
task, 12869 samples in English, including gold la-
bels, were provided. However, besides 463 English
samples, the final phase test data also contains 305
Italian and 200 Farsi samples. A random VWSD

Figure 1: An illustration of a random VWSD sample
with the target word ’bonxie’, the context ’bonxie skua’,
and the correct image highlighted by a a golden border

sample is illustrated in Figure 1.
Due to the multi-modal nature of the task, it re-

quires methods or models to understand textual
semantics contained in the target word and context
word and visual semantics contained in the images.
Therefore, our approach leverages state-of-the-art
pretrained visiolinguistic models (VLMs) in a zero-
shot fashion, i.e., we do not continue pretraining or
finetune. This is motivated by several reasons based
on the tasks data: First, the samples are not re-
stricted to a particular topic, e.g., animals or plants,
but can belong to any topic (open-domain), which
rules out domain adaption strategies. Further, since
current VLMs are trained on massive amounts of
text-image pairs crawled from the internet, continu-
ing pretraining on additional open-domain data will
likely have no effect. Second, the textual context
is minimal and contains only a single or, at most,
two additional words, which are often rare English
words like the Latin names of certain plants. Addi-
tionally, it frequently requires expert knowledge to
identify the correct image because the set of ten im-
ages often contains images very similar to the gold
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image. Due to this, finetuning a VLM on the pro-
vided data is ineffective, which we also confirmed
in conducted but not reported finetuning experi-
ments. Third, recent pretrained VLMs have proven
capable of grasping textual and visual semantics
out of the box by demonstrating strong zero-shot
performance in many vision-language downstream
tasks.

The central strategy of the approaches presented
by this work is to utilize given information to ac-
quire additional context from external knowledge
sources. A pretrained VLM then computes embed-
dings for the acquired context and all images to
find the image with the maximum similarity. See
Section 3 algorithmic details and an illustrative
overview.

Our code is publicly available on GitHub1

2 Background

Pretrained Visio-Linguistic Models The com-
bination of recent advances in Natural Language
Processing and Computer Vision has greatly in-
creased interest and performance in the emerg-
ing field of multi-modal machine learning, es-
pecially in visio-linguistic models (VLMs) with
strong zero-shot performance on many downstream
tasks (Long et al., 2022). In this work, we specif-
ically focus on VLMs referred to as CLIP (Rad-
ford et al., 2021), which we utilize to compute
semantic representations of text and images in a
joint vector space. There exist various versions
of CLIP, all having the following in common: A
CLIP model implements a dual encoder architec-
ture with two separate encoders: a textual encoder,
typically a BERT-based (Devlin et al., 2019) lan-
guage model, and a visual encoder, typically CNNs
like ResNet (He et al., 2016) or ConvNext (Liu
et al., 2022) or a transformer (Vaswani et al., 2017)
like ViT (Dosovitskiy et al., 2021). The encoders
are jointly trained on massive amounts of text-
image pairs to maximize the similarity between
matching pairs in large batches via contrastive
loss in an unsupervised fashion. While there are
other VLMs with strong zero-shot capabilities,
such as ALIGN (Jia et al., 2021), FLAVA (Singh
et al., 2022), or CoCa (Yu et al., 2022), we pre-
fer CLIP because there exist many publicly avail-
able pretrained versions, it is conveniently us-
able via multiple open-source libraries and frame-
works like huggingface (Wolf et al., 2020) or Open-
1 https://github.com/uhh-lt/vwsd_semeval_23

Clip (Ilharco et al., 2021), and it has an active
and large community. Specifically, we evaluate
the performance of our VWSD approaches us-
ing different sizes of the original model (Radford
et al., 2021), models trained on the publicly avail-
able datasets LAION (Schuhmann et al., 2022),
and multi-lingual versions from SentenceTrans-
former (Reimers and Gurevych, 2019, 2020) and
OpenClip (Cherti et al., 2022). An overview with
more details about the CLIP models employed in
this work is given in Table 1.

External Knowledge Since the provided con-
text in a VWSD sample is minimal, we use dif-
ferent external knowledge sources to acquire addi-
tional contextual information. One of the sources
is Wikipedia, from which we retrieve article sum-
maries using the target word and the additional con-
text word(s). Another source is a large-scale cor-
pus (Panchenko et al., 2018), containing 252B to-
kens based on English CommonCrawl data, which
we have indexed using ElasticSearch (Gormley and
Tong, 2015). The only multi-modal external knowl-
edge source we employ is VisualSem (Alberts et al.,
2021), a high-quality knowledge graph containing
90K nodes with 1.3M glosses in 14 languages and
930K images associated with the nodes. Unfor-
tunately, our request to use the large-scale multi-
modal knowledge graph BabelNet (Navigli et al.,
2021) was rejected. BabelNet arguably would have
improved our results significantly since it contains
1.4M senses described by 135M glosses in 500 lan-
guages and illustrated by 51M images.

3 Approaches

This section provides details for the zero-shot ap-
proaches to VWSD presented by this work. Sec-
tion 4 then analyzes and discusses the evaluation
results.

Figure 2: A schematic overview of the general strategy
for the VWSD zero-shot approaches presented by this
work.

The general strategy, illustrated in Figure 2, com-
prises five primary steps: In (1), we acquire addi-
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Name Alias # P H # TS BS ML
sentence-transformers/clip-ViT-B-32-multilingual-v1 SBCM 28M 512 400M 32K yes
openai/clip-vit-base-patch32 OAIB 15M 512 400M 32K no
openai/clip-vit-large-patch14 OAIL 42M 768 400M 32K no
laion/CLIP-ViT-L-14-laion2B-s32B-b82K LCL 42M 768 2B 82K no
laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-lai... LCH 119M 1024 5B 90K yes

Table 1: Details on different pretrained CLIP models evaluated in this work. The Alias column describes the alias
for the model within this paper; # P is the number of parameters; H is the embedding dimension; # TS and BS is
the number of text-image pairs, and the batch size used during pretraining, respectively; ML indicates whether the
model is multi-lingual or not. Note that the names are hyperlinks directing to huggingface for more information.

tional context from an external knowledge source
(see Section 2) using the textual information pro-
vided in a VWSD sample. In (2) and (3), we
leverage a pretrained CLIP model to compute em-
beddings from the acquired context and all ten im-
ages contained in the sample. (4), we compute
the cosine similarity of the text embedding and
all image embeddings and (5) select the image
with the maximum similarity as the best matching
image. Depending on the method, we use differ-
ent external knowledge sources, employ different
pretrained CLIP models, or compute the textual or
visual embeddings differently.

Baseline – No External Knowledge Our base-
line method does not use external knowledge but
computes the textual embedding only from the
target word and or context in a VWSD sample.
However, we test different template sentences or
prompts to compute the textual embedding (see
Table 2).

Wikipedia Summaries In this approach, we im-
plemented a multi-stage algorithm to retrieve the
summary of the best-matching Wikipedia article
for the target word and the provided context. For
more details on this algorithm, please refer to the
implementation published on our GitHub reposi-
tory. Although Wikipedia is available in many lan-
guages, we translate the Italian and Farsi samples
to English using Google Translate2 for library limi-
tation reasons. If we cannot retrieve a summary for
a given VWSD sample, we use a template sentence
that contains the target word and the context. We
then truncate too-long summaries and use the CLIP
text encoder to compute the textual embedding.

Common Crawl Sentences In this approach, we
query the index Common Crawl corpus (see Sec-
tion 2) to retrieve all sentences that contain the
target word and the context. We use a template
2 https://translate.google.com/

sentence containing the target word and context
if we cannot find any sentence. Since the corpus
only contains English documents, we translate the
Farsi and Italian samples into English using Google
Translate. Further, because the original authors
have cleaned the corpus, i.e., noisy, too long, and
too short sentences are removed, we pick the top-5
longest sentences because we assume more contex-
tual information in longer sentences. After trun-
cating the sentences to fit the maximum length of
the CLIP text encoder, we compute an embedding
for each sentence and average them to obtain the
textual embedding.

VisualSem Arguably the most sophisticated ap-
proaches are based on the multi-modal knowledge
graph (KG) VisualSem (see Section 2). There, we
first retrieve the best-matching node in the KG for
the textual or visual information in a VWSD sam-
ple. To do so, we use a pretrained CLIP to compute
node embeddings for each node in the KGs and
use the FAISS (Johnson et al., 2019) for index-
ing and efficient similarity search. To compute the
node embeddings, we tested four strategies: For the

”single_image” and ”single_gloss” strategies, one
node in the KG has several embeddings, i.e., we
compute an embedding for each associated image
up to a maximum of 50 images, and each associated
gloss in a particular language. For the ”avg_image”
and ”avg_gloss” strategies, we compute a single
embedding for each node in the KG, which is the
average of the respective single embeddings. Then,
to retrieve the best matching node(s) for a VWSD
sample, we first use the same CLIP model used to
compute the KG node embeddings and compute a
query embedding from the sample’s textual or vi-
sual information. When using textual information
of a sample, we refer to it as ”text_first”; when us-
ing visual information, i.e., the images, we refer to
it as ”image_first”. Using the query embedding, we
then perform an exhaustive similarity search over
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all nodes to find the best matching node(s). Finally,
we find the most similar image, i.e., our prediction
for the image with the intended meaning, using the
embedding of the retrieved node and the ”text_first”
or ”image_first” embedding.

Since this algorithm has many possible parame-
ters and combinations thereof, it is challenging to
describe, hence, please refer to our GitHub reposi-
tory for implementation details.

4 Evaluation and Analysis

In this section, we present and analyze the evalu-
ation results of our approaches described in Sec-
tion 3. The evaluation is based on the final multi-
lingual evaluation data, including the gold labels re-
leased in the Google Group after the competition3.
Evaluation results for the approaches discussed in
this section are depicted in Figure 3.

Baseline – No External Knowledge In our first
experiments, we tested the performance of different
pretrained CLIP models without external knowl-
edge. From the results shown in the first row of
Figure 3, it can be observed that all models show
strong performance on the English test data. As
expected, the largest model, LCH, outperforms the
smallest model by a significant margin. Notice-
able is also the linear decrease in performance with
respect to the complexity of the model and the
number of text-image pairs in the training data.
When inspecting the baseline results for Italian and
Farsi languages, a remarkable decrease in perfor-
mance is noticeable. However, as expected, the
multi-lingual CLIP variants significantly outper-
form English-only versions. Further, a pattern seen
across all models and approaches is that the Hit@3
score is significantly higher than the Hits@1 score.
This leads to the conclusion that the samples often
contain a few very similar images, which are hard
to disambiguate and require expert knowledge.

In another experiment, we measured the per-
formance impact of the employed template string.
Therefore we used the 9 different template strings
described in Table 2 to compute textual embed-
dings using the LCH model and evaluated the per-
formance of the baseline approach on the English
test data. Note that we took inspiration for the
template strings from (Radford et al., 2021) From
the results depicted in Figure 4, we can see that the
most influential parameter of our template strings is

3 See the CodaLab competition page for details.

Template String Alias
An image of a ”WORD” as in ”CONTEXT” . A
A photo of a ”WORD” as in ”CONTEXT” . B
A picture of a ”WORD” as in ”CONTEXT” . C
An image of a ”WORD” . D
A photo of a ”WORD” . E
A picture of a ”WORD” . F
An image of a ”CONTEXT” . G
A photo of a ”CONTEXT” . H
A picture of a ”CONTEXT” . I

Table 2: Different template strings for English samples.
The Alias column defines the alias within this paper.

whether or not it contains the context information.
Template strings containing context information
work significantly better than template strings con-
taining only the target word.

Wikipedia Summaries From the results in the
second row of Figure 3, we can notice substantial
improvements in performance for the Italian and
Farsi data, often on par with English data that im-
proved only slightly or even decreased. From this,
we can conclude that the Italian and Farsi transla-
tion into English worked reasonably well and that
Wikipedia is a promising resource for VWSD. We
argue that this approach could be further improved
when using Wikipedia in the respective languages
directly and when additional information, such as
images, is used.

Common Crawl Sentences From the third row
of Figure 3, we can see that this approach substan-
tially outperforms all other approaches regardless
of the employed model or language of the VWSD
samples. Especially for Farsi, the improvements
compared to our baseline are significant and are
in a similar range as the corresponding English
samples. This again proves the effectiveness of
our simple translation approach. We argue that the
translation works so well because only a single or
a few words need to be translated, which could be
easily done by a dictionary lookup. Another reason
this approach works well is arguably the web-scale
size of the corpus.

VisualSem As shown by the results in the last
two rows of Figure 3, the VisualSem approaches
did not work. All results are worse than or equal to
our baseline results independent of the employed
model and language. These are unexpected results
since it is the only multi-modal knowledge source
we employ and therefore needs further investiga-
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Figure 3: Evaluation results of different zero-shot VWSD approaches presented in this paper. The y-Axis label of
each row describes the name of the approach. The x-Axis label of each column indicates the language of the VWSD
samples, whereas the x-Axis ticks refer to the alias of the CLIP model used in the experiment (see Table 1).

Figure 4: Evaluation results from the baseline approach
using different template strings as described in Table 2

tion and error analysis in future work. Probable
causes for the poor performance could be algorith-
mic flaws, the relatively small size of VisualSem,
or ignoring meaningful but eventually important
information, such as relations between the nodes,
in our approaches.

5 Conclusion

This work presents various zero-shot Visual Word
Sense Disambiguation approaches using different
external knowledge sources. Across all approaches,
we analyzed different pretrained versions of the
CLIP model varying in size, training data, and
multi-lingual capabilities. Further, we assessed
the suitability of three external knowledge sources:
Wikipedia, a large-scale English Common Crawl
corpus, and the multi-modal knowledge graph Visu-
alSem. Our best-performing approach involved the
Common Crawl corpus which we queried for sen-
tences containing the target word and context, serv-
ing as additional context. By translating Farsi and
Italian samples into English, we achieved strong
competitive results not only for English samples.
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