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Abstract

We propose an ensemble method that combines
several pre-trained language models to enhance
entity recognition in legal text. Our approach
achieved a 90.9873% F1 score on the private
test set, ranking 2nd on the leaderboard for Se-
mEval 2023 Task 6, Subtask B - Legal Named
Entities Extraction. Our code is available for
further exploitation at: https://github.com/
tqgminh/SemEval2023_LegalNER_VTCC.

1 Introduction

Named Entity Recognition (NER) is a key prob-
lem in natural language processing (NLP) that in-
volves recognizing named entities in text and clas-
sifying them into specific types. Recent studies on
NER have achieved many promising results. Most
of state-of-the-art NER models are based on pre-
trained language models, which have been trained
on large text corpora and are effective for word
representation.

However, Domain-Specific NER, such as Legal
NER, remains a challenging task. Named entities
in legal texts are more different and specific than
named entities in general texts. For example, a per-
son’s name in legal texts may refer to a petitioner,
respondent or lawyer. Therefore, some pre-trained
language models for legal domain have been re-
leased for use not only in Legal NER, but also for
other NLP tasks in legal texts.

In this work, we propose a model that combines
a pre-trained language model and some techniques,
such as CRF or dependency parsing, for NER in
legal texts. An ensemble method is used to further
boost the performance.

2 Related Works

NER in legal texts has been researched for many
years and in many languages, but it still remains
a challenging task. Dozier et al. (2010) defined
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five legal named entities in US legal texts (judges,
attorneys, companies, jurisdictions and courts) and
developed a named entity recognition and resolu-
tion system based on pattern-based and statistical
models. Cardellino et al. (2017) trained a Named
Entity Recognizer, Classifier and Linker by map-
ping the LKIF ontology to the YAGO ontology
and developed a structured knowledge represen-
tation of legal concepts. Due to variant writing
style and vocabulary across different languages
and forms, some datasets have been published to
create separate models, such as German LER (Leit-
ner et al., 2020), LegalNERo (Pdis et al., 2021),
LeNER-Br (Luz de Araujo et al., 2018), and Legal
NER (Kalamkar et al., 2022).

Applying pre-trained language models boost the
accuracy of NER tasks. BERT (Devlin et al., 2018)
is a language model based on Transformer archi-
tecture, and was trained on two different tasks:
Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). RoBERTa (Liu et al.,
2019) is a robust version of BERT, and was trained
on a much larger dataset and using a more effec-
tive training procedure. XLM-RoBERTa (Conneau
et al., 2019) is based on RoBERTa architecture
and was trained on the large multi-lingual dataset.
DeBERTa-V3 (He et al., 2021) replaced MLM
with Replaced Token Detection (RTD) and imple-
mented a gradient-disentangled embedding sharing
method. DeBERTa-V3 achieves state-of-the-art
performance on many downstream NLP tasks.

Regarding the NLP tasks in legal texts includ-
ing NER, some pre-trained language models have
been trained exclusively in legal texts in order to en-
hance the performance. For instance, Legal-BERT
(Chalkidis et al., 2020), based on BERT architec-
ture, was trained on 12GB of diverse English legal
texts and achieved better results than BERT with
the same number of parameters on some Legal NLP
tasks. InLegalBERT and InCaseLegal BERT (Paul
et al., 2022) were initialized from Legal-BERT and
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Figure 1: The archiecture of the proposed method

were trained on 27GB of Indian legal documents.

CRF (Collobert et al., 2011) is popular tech-
niques used for NER. Many studies have stacked
them on top of other methods and achieved im-
pressive results, as demonstrated by Lample et al.
(2016), Ma and Hovy (2016), Peters et al. (2018),
Yang and Zhang (2018), Akbik et al. (2019).

3 Methodology

For the Legal NER Subtask in SemEval 2023 Task
6 (Modi et al., 2023), the architecture of the pro-
posed method is illustrated in the Figure 1. Ac-
cordingly, we first execute the task with various
benchmark pre-trained language models (PLMs) in
this research field such as BERT, RoBERT, Inlegal-
BERT, and so on. The output of aforementioned
PLMs are then put into an ensemble module for
extracting the final results. The processes of the
proposed method are sequentially described as fol-
lows:

3.1 PLMs for legal name entity extraction
task

We processed the benchmark dataset using two
approaches. The first approach use the model based
on the spaCy framework, following the work in
Kalamkar et al. (2022). The second approach is our
custom model using IOB format incorporating with
CRF Layer and Dependency parsing as features in
the model.

3.1.1 The first approach

With the input dataset, we adopt the pipeline pro-
posed by Kalamkar et al. (2022). This pipeline
used a transition-based parser, proposed by Honni-
bal and Johnson (2015), on the top of a PLM.

For the PLMs, we used RoBERTa, BERT, Legal-
BERT, InLegalBERT, and XLM-RoBERTz2 as the
backbones of the pipeline, and all experiments were
performed using the spaCy framework.

3.2 The second approach

The second approach is our custom model for
the task. Specifically, given the input X
x1,T2,...,T¢, €ach word in the input is assigned
a different tag depending on whether it is the begin-
ning (B-y), inside (I-y), or outside (O) of a named
entity phrase Y = y1,y2, ..., Y+, respectively. For
the NER task, we adopted the baseline model of
SemEval 2022 (Malmasi et al., 2022). Further-
more, we also incorporated dependency parsing
as a feature of the model. The PLMs were fed
subword to obtain contextualized embedding in-
formation, which are then concatenated with the
dependency feature and part-of-speech feature of
each word. Subsequentially, the output are fed into
a CRF layer to classify the label of each word in
the sequence.

For the backbone PLMs, we selected various
models such as XLM-RoBERTa, RoBERTa, De-
BERTa, BERT, LegalBERT, InLegalBERT, and In-
CaseLegal BERT.
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3.3 Ensemble Module

After obtaining results from two aforementioned
approaches, we apply an ensemble strategy for
each approach in order to improve the performance.
Specifically, ensemble strategy combines multiple
models through majority voting with weights. In
particular, For each token z;, we predict the final
label y; based on the majority label f of the models,
which is formulated as follows:

yi = f(wihi(x;), waho(4), . .., wphn(x;)) (1)

where h;(z;) denotes the output of token z; by the
PLM h;. w; denotes the weight of the PLM £,
which can be set equally (w; = wy = ... = wy)
or dynamically based on the validation process.
Specifically, the values of the weights are discussed
in the experiment section.

4 Experiment

4.1 Dataset

Our experiments were conducted on the Legal
NER dataset, introduced by Kalamkar et al. (2022),
which includes training and dev data. The dataset,
collected from Indian court judgments, consists of
two parts: preamble and judgment. Each preamble
and judgment were split into sentence for training
and evaluation. Named entities to be recognized
belong to 14 labels.

4.2 Setting

For the first approach, we trained for 30,000 iter-
ations with 4 sentences per batch. The gradient
accumulation was set to 3. The optimizer used was
Adam, with an initial learning rate of 5e — 5. We
selected the checkpoint with the best performance
on the dev set for each model. First, we combined
five models with RoOBERTa, BERT, LegalBERT, In-
LegalBERT, and XLLM-RoBERTa as the backbone,
with equal weights. Second, we assigned weights
of4,2,1, 1, and 1 to the RoOBERTa, BERT, Legal-
BERT, InLegalBERT, and XLM-RoBERTa models,
respectively, based on their performance on the dev
set. We assigned higher weights to ROBERTa and
BERT since they outperformed the other models,
as shown in Table 1. Due to submission limitations,
we only submitted the predictions of two highest

models. As shown in Table 3, RoBERTa outper-
formed BERT, so we assigned a higher weight to
RoBERTa in the ensemble.

For the second approach, we set the gradient
accumulation to 4 and trained for 50 epochs. The
optimizer was Adam, with an initial learning rate of
le — 4. We saved the checkpoint of the model after
each epoch and kept the ten latest checkpoints after
training. The checkpoint with the best performance
on the dev set was selected for inference. We used
the Transkit (Nguyen et al., 2021) to obtain the
dependency feature. Ensemble method with equal
weights were then applied, similar to the first ap-
proach. All experiments were executed on a single
40G Nvidia-A100 GPU.

4.3 Results

\ Model Micro-F1 (%) |

RoBERTa + Transition-based Parser 89.29
BERT + Transition-based Parser 89.31
LegalBERT + Transition-based Parser 88.07
InLegalBERT + Transition-based Parser 88.77
XLM-RoBERTa + Transition-based Parser 88.55
Ensemble model with equal weights 91.12
Ensemble model with dynamic weights 89.91

Table 1: Evaluation on the dev set in the first approach

| Model Micro-F1 (%) |

XLM-RoBERTa+CRF 90.25
DeBERTa-V3+CRF 90.59
RoBERTa+CRF 87.89
BERT+CRF 89.12

Legal BERT+CRF 87.95
Inlegal BERT+CRF 88.94
InCaseLawBERT+CRF 88.57
XLM-RoBERTa+Dep+CRF 89.94
DeBERTaV3+Dep+CRF 90.73
RoBERTa+Dep+CRF 87.45
BERT+Dep+CRF 89.14

Table 2: Evaluation on the dev set in the second ap-
proach

Table 1 and Table 2 show the Micro-F1 score
of each single and ensemble model on the dev set,
based on the two following approaches. In the first
approach, the model using BERT as its backbone
achieved the highest performance. Our ensemble
method helped improve the performance, with the
highest score by implementing following the first
way. In the second approach, the highest perfor-
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mance was achieved by DeBERTa-V3, which in-
corporated dependency parsing as a feature and
added a CRF layer on top (the model named De-
BERTaV3+Dep+CRF).

\ Model | Micro-F1 (%) |
RoBERTa+Transition-based Parser 90.9851
BERT+Transition-based Parser 88.8245
Ensemble model with equal weights 90.3567
Ensemble model with dynamic weights 90.9873

Table 3: Evaluation on the private test set in the first
approach

\ Model | Micro-F1 (%) |
DeBERTaV3+Dep+CRF 87.3298
Ensemble model with equal weights 86.9233

Table 4: Evaluation on the private test set in the second
approach

Table 3 and Table 4 show the results of our sub-
mission to the competition evaluation on the private
test set. Our highest score, 90.9873, was achieved
by implementing the second way of the ensem-
ble method with five models in the first approach.
The ensemble model with the first approach outper-
formed the baseline model, which uses RoBERTa
and incorporates a transition-based parser. How-
ever, ensemble models with the second approach do
not improve the performance on the private test set.
Furthermore, the models from the first approach
achieved better performance than the second ap-
proach on the private test set

Table 5 shows the resulting score for the Legal
NER task. Our team achieved the 2nd place ranking
on the final leaderboard.

5 Conclusion

To summarize, we applied two approaches to solve
the named entity recognition of SemEval 2023 Task
6, Subtask B. Specifically, we applied an ensem-
ble method to improve performance in the first
approach. In contrast, the model did not perform
well on the private test in the second approach. For
the future work of this study, we try to optimize the
weight for each PLM in the ensemble module in
order to improve the performance.
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