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Abstract

The NLI4CT task aims to entail hypotheses
based on Clinical Trial Reports (CTRs) and
retrieve the corresponding evidence support-
ing the justification. This task poses a sig-
nificant challenge, as verifying hypotheses in
the NLI4CT task requires the integration of
multiple pieces of evidence from one or two
CTR(s) and the application of diverse levels
of reasoning, including textual and numeri-
cal. To address these problems, we present
a multi-granularity system for CTR-based tex-
tual entailment and evidence retrieval in this
paper. Specifically, we construct a Multi-
granularity Inference Network (MGNet) that
exploits sentence-level and token-level encod-
ing to handle both textual entailment and evi-
dence retrieval tasks. Moreover, we enhance
the numerical inference capability of the sys-
tem by leveraging a T5-based model, SciFive,
which is pre-trained on the medical corpus.
Model ensembling and a joint inference method
are further utilized in the system to increase
the stability and consistency of inference. The
system achieves f1-scores of 0.856 and 0.853
on textual entailment and evidence retrieval
tasks, resulting in the best performance on both
subtasks. The experimental results corrobo-
rate the effectiveness of our proposed method.
Our code is publicly available at https://
github.com/THUMLP/NLI4CT.

1 Introduction

In recent years, with the fast development of digital
health, there has been a surge in the publication of
Clinical Trial Reports (CTRs). Currently, there are
over 10,000 CTRs for Breast Cancer alone1. This
proliferation of CTRs has enabled the construc-
tion of a Natural Language Inference (NLI) system
that can aid medical interpretation and evidence
retrieval for personalized evidence-based care. The

*: equal contribution
1https://sites.google.com/view/nli4ct/

home

Figure 1: An Example of NLI4CT.

NLI4CT task (Jullien et al., 2023) focuses on con-
structing an explainable multi-evidence NLI sys-
tem based on CTRs for Breast Cancer. It consists
of two sub-tasks: textual entailment (Task A) and
evidence retrieval (Task B). Task A requires the
system to determine if the CTRs entail or contra-
dict the given hypotheses. Task B requires the
system to find evidence in the CTRs necessary
to justify the prediction in Task A. The primary
difficulty inherent in NLI4CT is that the process
of hypothesis verification frequently involves the
integration of several pieces of evidence from the
premise. In certain cases, justifying a hypothesis re-
quires a comparison of two separate premise CTRs.
Moreover, unlike other clinical NLI benchmarks
(e.g., MedNLI), NLI4CT presents a unique feature
containing four distinct types of premises - Inter-
vention, Eligibility, Results, and Adverse Events
- that align with the four sections typically found
in each CTR. Validating hypotheses based on each
premise type requires different levels of inference
skills (textual, numerical, etc.). Fig.1 presents an
example of NLI4CT. The first hypothesis involves
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Figure 2: An overview of the proposed Multi-granularity System for NLI4CT task. MGNet refers to the proposed
multi-granularity inference network.

summating the numbers of patients who experi-
enced Diarrhoea in two distinct cohorts to conduct
the verification. Alternatively, verifying the second
hypothesis requires evaluating treatment modality
against the criteria outlined in the Exclusion Crite-
ria.

This paper proposes a multi-granularity infer-
ence system for the NLI4CT task to address the
aforementioned challenges. An overview of the
proposed system is presented in Fig.2. The sys-
tem comprises a multi-granularity inference net-
work that performs joint semantics encoding of
the hypothesis and premise, followed by multi-
granularity inference through sentence-level and
token-level encoding of the encoded sequence to
accomplish Task A and Task B. To handle the var-
ious levels of inference involved, we utilize the
SciFive model (Phan et al., 2021) to enhance the
system’s performance on hypotheses requiring nu-
merical inference skills. Our system is presented as
an ensemble of models to increase the stability and
consistency of inference. A joint inference module
is further proposed to refine the inference outcomes
of hypotheses by detecting semantic consistency
between hypothesis pairs sharing the same premise.
Our system achieves micro f1-scores of 0.856 and
0.853 on Task A and Task B, respectively. The
main contributions of this work are as follows:

• We present a multi-granularity inference net-
work that performs both textual entailment
and evidence retrieval tasks concurrently. We
further incorporate the SciFive model to
strengthen the system’s numerical inference
capability.

• We introduce a joint inference module that im-
proves the inference consistency by exploiting
the polarity of hypotheses pairs that share the
same premise.

• Our proposed framework achieves state-of-
the-art f1-scores of 0.856 and 0.853 on Task
A and B, respectively.

2 Related Work

BiolinkBERT BiolinkBERT (Yasunaga et al.,
2022) is a pre-trained model that utilizes hyper-
links within documents. The model incorporates
linked documents into the input of pre-training and
is pre-trained using masked language modeling and
document relation prediction tasks. BiolinkBERT
has demonstrated state-of-the-art performance on
various medical NLP benchmarks, such as BLURB
(Gu et al., 2021) and BioASQ (Nentidis et al.,
2020).

SciFive SciFive (Phan et al., 2021) is a T5-
based model pre-trained on large biomedical cor-
pora, namely PubMed Abstract and PubMed Cen-
tral. This model has shown the potential of text-
generating models in medical NLP tasks and has
achieved state-of-the-art performance on MedNLI
(Romanov and Shivade, 2018) and DDI (Herrero-
Zazo et al., 2013).

3 Task Formulation

The Multi-evidence Natural Language Inference
for Clinical Trial Data (NLI4CT) task comprises
two sub-tasks: textual entailment and evidence
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Figure 3: The structure of the proposed Multi-
granularity Inference Network (MGNet).

retrieval. Both sub-tasks share a common input
comprising a premise P and a hypothesis S. The
hypothesis is a single sentence, while the premise
comprises several sentences in the CTR(s), i.e.,
P = [P 1, P 2, · · · , Pm].

The textual entailment sub-task can be viewed
as a binary classification problem, with the entail-
ment module fEnt generating a predicted result ŷ ∈
{0, 1}n for all input hypotheses: fEnt(S, P ) = ŷ.
In this context, the predicted value ŷ = 1 indicates
that the premise entails the hypothesis, while ŷ = 0
denotes that the hypothesis contradicts the premise.
On the other hand, the evidence retrieval sub-task
can be seen as a binary classification problem tar-
geting each sentence in the premise. The evidence
retrieval module fRet produces a predicted result
r̂ ∈ {0, 1}m: fRet(S, P ) = r̂, where r̂j = 1 indi-
cates that the jth sentence in the premise supports
the justification of S, r̂j = 0 means the sentence is
not related to the justification of S.

4 Models

In this section, we introduce models applied in
our inference system: Multi-granularity Inference
Network (MGNet), SciFive (Phan et al., 2021),
and the joint inference network.

4.1 Multi-granularity Inference Network

The multi-granularity inference network aims to
handle both the textual entailment and evidence
retrieval subtasks using integrated token-level and

sentence-level representations. The network struc-
ture is illustrated in Figure 3. This section is orga-
nized as follows: Section 4.1.1 presents the joint
semantics encoder, which encodes the contextual
semantics between the hypothesis and the premise.
Section 4.1.2 describes the sentence-level encoder,
which learns the sentence-level contextual seman-
tics of the hypothesis and the premise. Section
4.1.3 describes the token-level encoder, which ex-
tracts the token-level joint representation between
the hypothesis and each sentence in the premise.
Finally, Section 4.1.4 introduces the classifier mod-
ule, which accomplishes Task A and Task B infer-
ence based on the learned multi-granularity seman-
tics.

4.1.1 Joint Semantics Encoder
The network initially employs a transformer-based
(Vaswani et al., 2017) language model to learn
the joint contextual representation of the hypoth-
esis and premise, aiming to incorporate medi-
cal domain knowledge into the network. Specif-
ically, we concatenate each hypothesis S with
the premise P to form an input token sequence
X = [[CLS],S, [SEP],P, [SEP]], where S and P
refer to the tokenization of S and P , respectively.
Further details regarding data preprocessing can
be found at Sec.B in the appendix. The token se-
quence is subsequently embedded and encoded by
the transformer-based language model as follows:

H0 = fEmb(X) (1)

Hl = f l
Enc(H

l−1) (2)

where H0 denotes the output of the embedding
layer, Hl ∈ RN×d (l ∈ {1, 2, · · · , L}) refers to
the output representation of the lth transformer en-
coder layer, N is the sequence length and d the
dimension of the representation vector. Here, fEmb

and f l
Enc refer to the embedding layer and the lth

encoding layer, respectively. Finally, the output
representation of the final layer, HL, is further pro-
cessed in the subsequent encoders.

4.1.2 Sentence-level Encoder
The sentence-level encoder conducts contextual en-
coding of the hypothesis and the premise based on
the learned token-level representation. Specifically,
the encoder first conducts max-pooling2 to extract

2We have tried other pooling methods (mean-pooling, at-
tention pooling, etc.). However, they fail to achieve higher
performance than max-pooling.
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sentence-level representation from the token-level
representation of each sentence, as follows:

Ĥ
s
i = Max-pooling({HL

j : j ∈ Ii}) (3)

where Ĥ
s ∈ R(m+1)×d refers to the pooled

sentence-level representation and Ii denotes the
subscript set of X that corresponds to the tokens in
the ith sentence. For example, Ĥ

s
1 corresponds to

the hypothesis, while Ĥ
s
i+1 corresponds to the ith

sentence in the premise.
After that, the resulting Ĥ

s
output is fed into an

encoder designed to capture contextual semantics.
The motivation for this encoder stems from the
need to justify some hypotheses using multiple
pieces of evidence. To achieve this, we implement
the encoder by two alternative networks:

(1) BiLSTM (Hochreiter and Schmidhuber,
1997): the network utilizes two LSTMs to com-
pute the representation of the given sequence from
both directions:

→
H

s

= LSTMs
for(Ĥ

s
) (4)

←
H

s

= LSTMs
rev(Ĥ

s
) (5)

The final representation of each sentence Hs ∈
R(m+1)×d is obtained by concatenating the forward
and backward representations and passing them to
a linear layer:

Hs
i = W1[

→
H

s

i ;
←
H

s

i ] + b1 (6)

where W1 ∈ Rd×2d,b1 ∈ Rd are trainable pa-
rameters. Finally, the global representation of the
hypothesis-premise pair h̃s ∈ Rd is computed by
concatenating the last hidden state of the forward
and backward encoding (W2 ∈ Rd×2d,b2 ∈ Rd

are also trainable parameters):

h̃s
= W2[

→
H

s

m+1;
←
H

s

1] + b2 (7)

(2) Transformer (Vaswani et al., 2017): a Ls-
layer transformer encoder integrates reasoning-
related evidence with the sentence-level attention
mechanism. In this case, we take the last hidden
state as the final representation of each sentence
and the hypothesis’s representation as the global
representation:

Hs = fs
Enc(Ĥ

s
) (8)

h̃s
= Hs

i (9)

4.1.3 Token-level Encoder
The purpose of the token-level encoder is to capture
the reasoning-related semantics of each sentence
in the premise. Compared to the sentence-level
encoder, it provides a fine-grained representation of
individual sentences in premise, which has aided in
evidence retrieval. To encode the ith sentence in the
premise, we concatenate it with the hypothesis and
input it into the encoder. Two alternative networks
can be used to implement the encoder:

(1) BiLSTM: A BiLSTM network is leveraged
to encode the forward and backward representation
of the given sequence:

→
H

t

i = LSTMt
for([H

L
I1 ,HL

Ii+1
]) (10)

←
H

t

i = LSTMt
rev([H

L
I1 ,HL

Ii+1
]) (11)

where HL
Ij ∈ RNj×d refers to the representation

of tokens from the jth sentence in X, Nj denotes
the length of the jth sentence, [·, ·] denotes the
concatenation of matrices on the first dimension,
→
H

t

i,
←
H

t

i ∈ R(N1+Ni+1)×d are the output representa-
tion of the LSTMs. Finally, the representation of
the ith sentence in the premise is also obtained by
concatenating the last hidden state of LSTMs:

Ht
i = W3[

→
H

t

N1+Ni+1
;
←
H

t

1] + b3 (12)

where W3 ∈ Rd×2d and b3 ∈ Rd are trainable
parameters as well.

(2) max-pooling: A simpler implementation of
the encoder is a max-pooling layer that merges the
representation of the sequence:

Ht
i = Max-pooling(([HL

I1 ,HL
Ii+1

])) (13)

4.1.4 Classifiers
We implement the classifiers with simple structures
for both Task A and B. For Task A (textual en-
tailment), we use a double-layer MLP that takes
the sentence-level global representation h̃s

as the
input:

pA = Softmax(WA
2 σ(W

A
1 h̃s

+ bA
1 ) + bA

2 ) (14)

where WA
1 ∈ Rd×d,bA

1 ∈ Rd,WA
2 ∈ R2×d,bA

2 ∈
R2 are MLP’s parameters, σ denotes the GELU
activation function (Hendrycks and Gimpel, 2016).
The output pA suggests that the given hypothesis
has a pA1 probability of being false and a pA2 proba-
bility of being true based on the premise. For Task
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B (evidence retrieval), we project the concatenation
of sentence-level and token-level representations
into a scalar value to determine whether the ith

sentence in the premise supports the hypothesis:

pBi = Sigmoid(WB[Hs
i ;Ht

i] + bB) (15)

where WB ∈ R1×2d, bB ∈ R are trainable pa-
rameters. pBi measures the probability that the ith

sentence in the premise supports the justification
of the hypothesis.

4.2 SciFive
The proposed MGNet performs well on Task A and
Task B through a unified multi-granularity encod-
ing process. Nevertheless, we found in experiments
that MGNet struggles with hypotheses that require
numerical inference skills. Motivated, we imple-
ment SciFive to enhance the system’s numerical
inference ability. Following the original paper, we
preprocess the input sequence X in the format of
“nli hypothesis: [hypothesis] premise: [premise]".
SciFive then computes the probabilities of gener-
ating “entailment" (P (“ent”|X)) and “contradic-
tion" P (“con”|X) given the input sequence. The
prediction for Task A is then calculated using the
following equations:

pA1 =
P (“con”|X)

P (“con”|X) + P (“ent”|X)
(16)

pA2 =
P (“ent”|X)

P (“con”|X) + P (“ent”|X)
(17)

4.3 Joint Inference Network
The inference models we implemented have
demonstrated satisfactory performance in justify-
ing single hypotheses. However, these models tend
to produce identical predictions for hypotheses that
share the same premise but contradict each other,
leading to inaccurate results. For example, con-
sider the hypotheses “Heart-related adverse events
were recorded in both the primary trial and the
secondary trial" and “Heart-related adverse events
were recorded in the secondary trial, but not the
primary trial," which are semantically exclusive.
Assigning the same label to both hypotheses is an
unreasonable outcome. It is worth noting that such
a problem will likely occur in real-world evidence-
based care systems, where users may interact with
the system multiple times and generate multiple
hypotheses based on the same premise.

Motivated by this, we aim to enhance infer-
ence consistency and performance by leveraging

the mutual information among hypotheses that
share the same premise. To achieve this, we
consider a set of hypotheses S1, S2, · · · , Sn that
share the same premise and design a joint infer-
ence network that determines whether a given
pair of hypotheses has the same label for Task
A under the given premise. We implement
the network with a L-layer transformer encoder.
The network initially takes the sequence X̄ =
[[CLS],Si, [SEP],Sj , [SEP],P, [SEP]] as input:

H̄L
= fJ

Enc(X̄) (18)

where fJ
Enc refers to the L-layer transformer en-

coder. A double-layer MLP is applied to make
predictions based on the last hidden state of [CLS]
that is considered as the representation vector of
the entire sequence:

ci,j = Softmax(WJ
2σ(W

J
1 H̄L

+ bJ
1 ) + bJ

2 ) (19)

where WJ
1 ∈ Rd×d,bJ

1 ∈ Rd,WJ
2 ∈ R2×d,bJ

2 ∈
R2 are trainable parameters and σ represents the
Tanh activation function. ci,j1 measures the proba-
bility that Si and Sj share the same label, and ci,j2
measures the probability of having different labels.
The joint inference module rectifies the predictions
of Task A with the prediction results of this net-
work, and we will introduce the details in the next
section.

5 System Details

Model Setup We initialized the joint semantics
encoder in MGNet and the joint inference network
with BiolinkBERT-Large-MNLI-SNLI, a language
model proposed by Yasunaga et al. (2022) that is
pre-trained on the PubMed dataset and further fine-
tuned on the Multi-Genre Natural Language In-
ference (MNLI) (Williams et al., 2018) and Stan-
ford Natural Language Inference (SNLI) datasets
(Bowman et al., 2015). Following the setting of
BiolinkBERT-Large, we set the number of layers
L and the dimension of hidden states d to 24 and
1024, respectively. We apply Adam (Kingma and
Ba, 2015) and Adafactor optimizers (Shazeer and
Stern, 2018) for finetuning MGNet and SciFive,
respectively.

To provide a comprehensive description of the in-
ference models used in our system, we first outline
the loss functions employed in model training:

(1) Cross-entropy loss for textual entailment:

LA = −(1− y) · log pA1 − y · log pA2 (20)
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Name Network ML Encoder LossSentence Token
Task A

M-512-Bi-Bi-mul MGNet 512 BiLSTM BiLSTM Lmul

M-512-Tf-Bi-cl MGNet 512 Transformer BiLSTM LCL

M-1024-Tf-Bi-mul MGNet 1024 Transformer BiLSTM Lmul

SciFive SciFive 1024 - - L∗
A

Task B
M-512-Tf-Bi MGNet 512 Transformer BiLSTM LB

M-512-Bi-Bi MGNet 512 BiLSTM BiLSTM LB

M-512-Bi-Max MGNet 512 BiLSTM Max-pooling LB

Table 1: The inference models applied in the proposed system. ML: max length of the input sequence, Tf:
transformer model, Bi: BiLSTM model, Max: Max-pooling. L∗

A denotes the sequence cross-entropy loss proposed
in Raffel et al. (2020).

Here, y ∈ {0, 1} represents the label of Task A.
(2) Cross-entropy loss for evidence retrieval:

LB = − 1

m

m∑

i=1

[(1−ri)·log (1− pBi )+ri ·log pBi ]

(21)
where ri ∈ {0, 1} is the label of the ith sentence in
the premise.

(3) Multitask learning loss: we use a multitask
learning loss, which is a combination of the CE
loss for Task A and Task B:

Lmul = LA + λLB (22)

Here, λ is a hyperparameter that controls the pace
of learning on both tasks.

(4) Contrastive learning loss: we use the con-
trastive learning loss proposed by Gunel et al.
(2020), which is a combination of the CE loss and
the supervised contrastive learning (SCL) loss:

LCL = γLA + (1− γ)LSCL (23)

Here, LSCL is the SCL loss that takes the
global representation h̃s

1, h̃s
2, · · · , h̃s

N and the la-
bels y1, y2, · · · , yN in the batch as input (N is the
batch size). Since our dataset is relatively small,
we apply the SCL loss as a regularization technique
during training.

The inference models applied in the proposed
system are listed in Table.1. To extend the max-
imum input length of the original BiolinkBERT
model from 512 to 1024, we append the positional
embeddings of BiolinkBERT with randomly initial-
ized parameters. In Task A, we set the number of
layers Ls for the transformer in the sentence-level
encoder as one and the learning rates of the joint
semantics encoder and other parts as 2e-5 and 1e-4,
respectively. The batch size, number of epochs,

and warmup ratio are set to 32, 100, and 0.3, re-
spectively. For SciFive, we set the learning rate,
batch size, number of epochs, and warmup steps
as 3e-5, 32, 100, and 500, respectively. The hy-
perparameter values λ = 0.01 and γ = 0.5 are
chosen, and the temperature of the supervised con-
trastive learning (SCL) loss is set to 0.3. In Task
B, we set the learning rate, Ls, batch size, number
of epochs, and warmup ratio as 5e-6, 2, 1, 50, and
0.05, respectively.

In the joint inference network, the learning rate,
batch size, number of epochs, and warmup ratio
are set to 2e-5, 32, 100, and 0.3, respectively. Pos-
itive samples, i.e., hypothesis pairs with the same
label, are created using back translation, while neg-
ative samples are obtained by identifying hypoth-
esis pairs with different labels that appear in the
datasets. Further training details of this network
are presented in Section C in the appendix, owing
to space limitations.

Soft Ensembling We apply a cross-validation-
based soft ensembling method to summarize the in-
ference results from different models. Specifically,
we perform 10-fold validation for each model in
Table.1 using all data in the train and dev sets. For
Task A, we save the checkpoint that achieves the
best f1-score on the corresponding dev set for each
fold, while for Task B, we save two of the best
checkpoints for each fold. Then, we average the
predictions of 4×10 = 40 models trained by cross-
validation for Task A and average the predictions
of 3 × 10 × 2 + 3 = 63 models trained by cross-
validation (two checkpoints for each fold) and hold-
out method (one checkpoint for each model) for
soft ensembling. The ensemble predictions for the
two tasks are denoted as p̃A and p̃B , respectively.
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system
Individual Inference Joint Inference

recall precision f1-score recall precision f1-score
original system 0.816 0.739 0.776 0.856 0.856 0.856
- M-512-Bi-Bi-mul 0.820 0.732 0.774 0.840 0.837 0.838
- M-512-Tf-Bi-cl 0.796 0.748 0.771 0.848 0.845 0.846
- M-1024-Tf-Bi-mul 0.820 0.745 0.781 0.848 0.851 0.850
- SciFive 0.792 0.717 0.753 0.844 0.844 0.844
BiolinkBERT-Large 0.712 0.674 0.693 0.768 0.768 0.768
SciFive 0.784 0.713 0.747 0.804 0.798 0.801

Table 2: Performance of the proposed system on Task A with ablation experimental results compared with baseline
models on the test set of NLI4CT.

system recall precision f1-score
original system 0.898 0.811 0.853
- M-512-Tf-Bi 0.884 0.818 0.850
- M-512-Bi-Bi 0.882 0.801 0.840
- M-512-Bi-Max 0.895 0.811 0.852

Table 3: Performance of the proposed system on Task B
with ablation experimental results.

Joint Inference As mentioned above, we utilize
a joint inference module to rectify the ensembling
results p̃A before performing Task A. This module
corrects the prediction of hypotheses that share the
same premise using the following equation:

p̂A,i =
1

n

n∑

j=1

(Iij p̃A,j+(1−Iij)(1− p̃A,j)) (24)

Here, p̃A,i represents the prediction of the ith hy-
pothesis after ensembling, while ci,j1 denotes the
prediction results of the joint inference network
discussed in Sec.4.3. The function Iij = I[ci,j1 >
0.5] employs an indicative function I[·], which is
equal to 1 if the condition in brackets holds, and
0 otherwise. We set Iii = 1 since two identical
hypotheses must share the same labels. Notably,
when n = 2 and the two hypotheses are predicted
to be contradicting each other (c1,21 < 0.5), the
hypothesis with a higher confidence level in its
prediction retains its original prediction, while the
hypothesis with a lower confidence level modifies
its prediction. Therefore, the joint inference mod-
ule improves the system’s prediction consistency.

System Output We use a threshold-based deci-
sion strategy in both tasks to obtain the ultimate pre-
dictions. Specifically, for Task A, hypotheses with
p̂A2 > ηA are predicted as “entailment", while the
remaining hypotheses are predicted as “contradic-

tion." For Task B, the system determines whether
the ith sentence in the premise supports the infer-
ence by checking if p̃Bi > ηB . In our implementa-
tion, we set the threshold values to ηA = 0.57 and
ηB = 0.53.

6 Evaluation

6.1 Data, Metrics, and Baselines

We conduct all the evaluations on the NLI4CT
dataset. The train, dev, and test sets contain 1,700,
200, and 500 hypotheses. The hypotheses can be di-
vided by the number of CTRs involved: (1) Single,
related to only one CTR; (2) Comparison, requiring
the comparison between two CTRs for justification.
The premise is categorized into four sections that
correspond to the CTR sections: (1) Intervention;
(2) Eligibility; (3) Results; (4) Adverse Events. Ad-
ditional dataset details are available in Sec.A in
the appendix. Recall, precision, and f1-score are
chosen as the evaluation metrics for both Task A
and Task B.

We compare our system with several baseline
models (BiolinkBERT-Large, SciFive) that achieve
SOTA performance on medical NLI tasks. For the
BiolinkBERT-Large model, we feed the concate-
nated hypothesis and premise sequence into the
language model and add an MLP that takes the
representation of [CLS] as input for classification.
Note that the performance of baseline models is
obtained by ensembling 10 models through cross-
validation to make the results comparable. We did
not train baseline models for Task B because it is
hard to find an existing implementation that can
directly be applied to Task B.

6.2 Overall Performance

The results of the proposed system on Task A and
B are presented in Table 2 and 3, respectively. Our
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Model Dev Test
M-512-Bi-Bi 0.896 0.829
- token-level 0.878 0.816
- sentence-level 0.857 0.827

Table 4: Ablation study of the multi-granularity encod-
ing in MGNet on Task B. All the models are trained on
the train set and evaluated on the dev and test sets. The
performance is reported by the f1-score.

system performs best on both tasks with f1-scores
of 0.856 and 0.853 for Task A and Task B, re-
spectively. Compared with the baseline models,
our system shows a significant improvement of ap-
proximately 3% and 5% on the f1-score with and
without the joint inference module, respectively,
demonstrating the effectiveness of our approach.
Note that the proposed multi-granularity encoding
method greatly improves the performance of the
original BiolinkBERT-Large model on Task A (-
SciFive vs. BiolinkBERT-Large) by around 6% in
f1-score (0.753 vs. 0.693, 0.844 vs. 0.768).

6.3 Ablation Study

We performed ablation experiments to investigate
the effect of the proposed joint inference method
and the contribution of each model in the soft en-
sembling. The results are presented in Table 2 and
3. The results show that the joint inference module
leads to a significant improvement of 8% points on
Task A, suggesting that the system is more likely
to make the correct prediction when considering
the mutual information between hypotheses, i.e.,
whether the hypotheses share the same label.

The experimental results suggest that the
MGNet, which employs both sentence-level and
token-level encoders implemented by BiLSTM (M-
512-Bi-Bi/M-512-Bi-Bi-mul), plays a crucial role
in both Task A and B, contributing to 1.8% and
1.3% improvements in f1-score, respectively. Fur-
thermore, the individual inference case results re-
veal that SciFive provides the most significant im-
provement in the system’s performance, with a
2.3% increase in the f1-score.

To further investigate the impact of multi-
granularity encoding in MGNet, we conduct an
additional ablation experiment on Task B by re-
moving either the sentence-level or token-level en-
coder (Task A only relies on the sentence-level
encoder). The results in Table 4 show that both
sentence-level and token-level encoders enhance
the system’s performance, with the sentence-level

Model Int Elig Res AE
M-1024-Tf-Bi-mul 0.749 0.727 0.735 0.709
SciFive 0.748 0.735 0.712 0.728
M-512-Bi-Bi-mul 0.746 0.739 0.755 0.708
M-512-Tf-Bi-cl 0.783 0.743 0.724 0.709

Table 5: Performance (f1-score) of each model on dif-
ferent sections of CTR in the cross-validation of Task
A. Int: Intervention, Elig: Eligibility, Res: Results, AE:
Adverse Events.

encoder contributing more to the dev set (4% im-
provement) and the token-level encoder contribut-
ing more to the test set (1.3% improvement). The
results indicate the effectiveness of the proposed
multi-granularity encoding.

6.4 Performance on Different Sections
We further examine the behavior of each model
that contributes to the ensembling by evaluating
the performance of our system on different sec-
tions of CTR. The analysis results are presented in
Table 5. It can be observed that MGNets demon-
strate superior performance on hypotheses involv-
ing the Intervention, Eligibility, and Results sec-
tions. In contrast, SciFive achieves a higher f1-
score on hypotheses related to the Adverse Events
section. Note that hypotheses concerning the Ad-
verse Events section generally require more numer-
ical calculations than those related to other sections.
These results demonstrate that SciFive enhances
the system’s performance with its numerical infer-
ence ability.

7 Conclusion

We propose a Multi-granularity system for CTR-
based textual entailment and evidence retrieval.
The system comprises an ensembling of inference
networks and a joint inference module to enhance
prediction consistency. A Multi-granularity Infer-
ence Network (MGNet) is proposed to handle the
two subtasks within a unified network. Another
text-generation-based network SciFive is also lever-
aged to enhance the numerical inference of the
system. We use model ensembling to integrate dif-
ferent models’ output and enhance the inference
stability, while a joint inference method is further
proposed to increase the consistency of inference.
Our system achieves the best performance on both
subtasks. The ablation experiments and analysis in-
dicate the effectiveness of different parts of the sys-
tem. In the future, we will try other large language
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models and new inference methods (e.g, in-context
learning) to inject more medical knowledge into
the system and further improve the performance on
this task.
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A Details of Data

Table 6 shows the basic statistics of NLI4CT. Avg
Hypo denotes the average number of words in hy-
potheses, Avg CTR Sents refers to the average num-
ber of sentences in CTRs, and Avg CTR Words is
the average number of words in CTRs.

Split #Hypothesis Avg Hypo
Avg CTR

Sents Words
Train 1,700 19.7 16.9 165.8
Val 200 18.7 16.2 166.3
Test 500 21.6 14.1 161.7

Table 6: The basic statistics of NLI4CT.

Fig.4 depicts the distribution of the input se-
quences (concatenation of the hypothesis with
premise) regarding the number of tokens in se-
quences. Most input sequences have less than
500 tokens, while there also exists input sequence
longer than 1750 tokens.

Figure 4: The proportion of input sequences regarding
the number of tokens in sequences.

As for the CTR, each CTR contains a total of
four sections:3

• Intervention: Information concerning the type,
dosage, frequency, and duration of treatments
being studied.

• Eligibility: A set of conditions for patients to
be allowed to take part in the clinical trial

• Results: Number of participants in the trial,
outcome measures, units, and the results.

• Adverse Events: These are signs and symp-
toms observed in patients during the clinical
trial.

3The definition of each section is from https://sites.
google.com/view/nli4ct/home.

It is worth to note that each hypothesis only in-
volves a single section in CTR. For hypotheses that
involve multiple CTRs, one is required to compare
the same section of different CTRs.

B Data Preprocessing

We process the evidence CTRs differently for Task
A and B. For hypotheses that require single CTR,
we simply concatenate all the sentences in the CTR
to form the premise sequence for Task A and B. For
hypotheses that require comparison between two
CTRs, we concatenate the first and second CTR
in a single sequence for Task A with the following
format: “primary trial: [CTR 1]. secondary trial:
[CTR 2]." Therefore, the joint semantics between
two CTRs can be captured by the language model.
Nevertheless, we find that encoding each CTR with
the hypothesis achieves higher performance for
Task B. Therefore, we conduct evidence retrieval
on each CTR individually.

C Details of Training Joint Inference
Network

It is hard to train the joint inference network on
NLI4CT, because most of the premise corresponds
to a pair of hypotheses that contradicts with each
other and we can’t find positive samples (hypothe-
ses that share the same label). To address this prob-
lem, we use the back-translate method to generate
positive samples. For each hypothesis S in the
train and dev set, we translate it to Chinese and
back translate to English to get a new hypothesis
S′. Then S and S′ share the same label for Task A.
For a pair of conflicting hypotheses S1, S2, we gen-
erate four input sequences for the joint inference
network:

1. [[CLS],S1, [SEP],S′1, [SEP],P, [SEP]]

2. [[CLS],S2, [SEP],S′2, [SEP],P, [SEP]]

3. [[CLS],S1, [SEP],S2, [SEP],P, [SEP]]

4. [[CLS],S2, [SEP],S1, [SEP],P, [SEP]]

After the data generation, we train the joint infer-
ence network on the train set and choose the best
model on the dev set. We set the learning rate,
warmup ratio, and batch size as 2e-5, 0.1 and 32
respectively.
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