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Abstract

Successful word sense disambiguation (WSD)
is a fundamental element of natural language
understanding. As part of SemEval-2023 Task
1, we investigate WSD in a multimodal setting,
where ambiguous words are to be matched with
candidate images representing word senses. We
compare multiple systems based on pre-trained
CLIP models. In our experiments, we find
CLIP to have solid zero-shot performance on
monolingual and multilingual data. By em-
ploying different fine-tuning techniques, we are
able to further enhance performance. However,
transferring knowledge between data distribu-
tions proves to be more challenging.

1 Introduction

Determining the correct meaning of an ambiguous
word in a given textual context is a fundamental
element of successful understanding of natural lan-
guage. Formulated in the task of Word Sense Dis-
ambiguation (WSD), it remains a key challenge
of Natural Language Processing (NLP). Recent
successful approaches tackling this task often lever-
age large pre-trained language models (Bevilacqua
et al., 2021). With the rise of large pre-trained
vision-and-language (V&L) models such as CLIP
(Radford et al., 2021), the question arises how well
these models can tackle WSD in a multimodal set-
ting.

Towards answering this question, Task 1 of
SemEval-2023 proposes a visual WSD task (Ra-
ganato et al., 2023), combining ambiguous con-
textualized words with images encoding different
word senses. Instead of selecting the correct word
sense from a sense inventory, a system now has to
retrieve the best matching image from a set of can-
didate images, thereby bridging the gap between
vision and language.

In this paper, we present our contributions to
the SemEval-2023 Visual-WSD task. Our work

∗* equal contribution

focuses on empirically comparing the WSD perfor-
mance of multiple CLIP models in different trans-
fer learning settings. This includes the investigation
of zero-shot transfer and adapters (Rebuffi et al.,
2017; Houlsby et al., 2019) as a parameter-efficient
means of transfer learning. We especially aim to
highlight to which degree simple techniques are suf-
ficient for successful task performance. Our best
submitted system ranks 9th out of 54 on the official
task leaderboard (counting only one submission
per person).

2 Background

2.1 Word Sense Disambiguation (WSD)

WSD is the task of determining the exact meaning
of an ambiguous word in a given context. Typi-
cally, this is achieved by selecting the most suitable
word sense from a pre-defined, static word sense
inventory such as WordNet (Miller et al., 1990).
Existing solutions for this task mainly follow two
approaches: Knowledge-based approaches exploit
the knowledge encoded into lexical resources, such
as the graph structure of WordNet. Supervised ap-
proaches aim to learn a parameterized model, such
as a neural network, that directly predicts the cor-
rect sense s given a word w and a context c in
a classification setting (Hadiwinoto et al., 2019).
Training these models in a supervised setup re-
quires large sets of word-context pairs annotated
with correct sense labels. One such dataset is Sem-
Cor (Miller et al., 1993), consisting of 200,000
sense annotations based on the WordNet sense in-
ventory. Recent state-of-the-art WSD systems can
often be described as a combination of knowledge-
based and supervised approaches. E.g., EWISER
(Bevilacqua and Navigli, 2020) combines a pre-
trained BERT encoder (Devlin et al., 2019) with a
synset graph extracted from WordNet. ESCHER
(Barba et al., 2021) on the other hand augment the
word-context pair with textual definitions for all
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possible senses from a sense inventory.

2.2 SemEval-2023 Visual-WSD Task

Existing work on WSD almost unanimously fo-
cuses only on the text domain. The SemEval-2023
Visual-WSD task (Raganato et al., 2023) extends
the scope of WSD by formulating it as a multi-
modal V&L problem. Similar to the classical WSD
formulation, a pair (w, c) consisting of an ambigu-
ous word w and a short textual context c is given
as input. The goal now is to select an image from
a set of candidates. More concretely, from a set of
ten candidate images {I0, . . . , I9}, a system has to
select the image Iy that best represents the intended
meaning of w given c.

The Visual-WSD task provides a labeled
English-language training dataset consisting of
12,869 (w, c) pairs along with 12,999 unique im-
ages representing word senses. The test split con-
tains samples in three languages, including English
(463 samples), Italian (305 samples) and Farsi (200
samples). Samples of all three languages share a
set of 8100 test images.

Performance of WSD systems on the Visual-
WSD task is measured using two metrics. Accuracy
(or hit rate at 1) is used to measure in how many
cases a system correctly ranks Iy as the most likely
candidate. Mean reciprocal rank (MRR) is used to
evaluate the overall ranking quality of a system by
taking into account at which position it ranks Iy.

3 Methodology

3.1 CLIP

CLIP (Radford et al., 2021) has been proposed as
an approach to learn multimodal V&L represen-
tations by pre-training on a large-scale dataset of
image-text pairs. The CLIP architecture follows
a "late interaction" design, where image and text
are encoded independently by a vision encoder V
and a text encoder T . Both encoders are jointly
optimized during pre-training to maximize the co-
sine similarity between the embeddings of both
modalities for matching image-text pairs.

While Radford et al. (2021) show that CLIP
has strong zero-shot capabilities on downstream
tasks, subsequent work such as CLIP-ViL (Shen
et al., 2021) incorporates the frozen CLIP vision en-
coder into existing architectures for various vision-
language tasks. We directly leverage both pre-
trained CLIP encoders for transfer to the down-
stream task. As the formulation of the Visual WSD

task is similar to the pre-training task of CLIP, our
fine-tuning objective closely follows CLIP’s pre-
training objective. Instead of passing N image-
text pairs as done during pre-training, our input
consists of one (w, c) pair alongside 10 images.
The symmetric cross entropy loss employed during
pre-training therefore collapses to a regular cross
entropy loss (CE) over the candidate images. In
simplified form, the full fine-tuning objective there-
fore can be formulated as:

L = CE(V ([I0, . . . , I9]) · T ([w, c]), y)

where · denotes the dot product. In our work, we se-
lect pre-trained checkpoints with Transfomer-based
models (Vaswani et al., 2017) for V and T .

3.2 Adapter Methods
Adapters have been introduced to computer vision
(Rebuffi et al., 2017) and NLP (Houlsby et al.,
2019) as a parameter-efficient alternative to full
fine-tuning for transfer learning. Initially focused
on simple feed-forward bottleneck modules, the
scope of parameter-efficient transfer learning meth-
ods has recently broadened to include a wide range
of methods (Li and Liang, 2021; Hu et al., 2022;
He et al., 2022; Liu et al., 2022) and extensions to
new domains such as V&L tasks (Sung et al., 2021;
Zhang et al., 2022; Lu et al., 2023). We refer to all
of these approaches as adapter methods.

All adapter methods have in common that they
introduce a small number of new parameters to
specific locations in a pre-trained neural network.
During training on the downstream task, only the
newly introduced parameters are updated while all
pre-trained model weights are kept frozen. In this
work, we consider the following methods:
Bottleneck adapters introduce bottleneck feed-
forward layer modules in each Transformer layer.
They consist of a down-projection into a lower
dimension, a non-linearity, an up-projection that
projects back into the original hidden layer dimen-
sion and a residual connection. We follow the ap-
proach of Pfeiffer et al. (2021) in adding adapter
modules sequentially after the feed-forward com-
ponent of each Transformer layer.
Low-Rank Adaptation (LoRA) (Hu et al., 2022)
injects trainable low-rank decomposition matrices
into Transformer layers. For a weight matrix W0,
LoRA performs a re-parametrizations using low-
rank matrices A ∈ Rr×k and B ∈ Rd×r of rank r
such that W = W0 +BA. Following the original
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implementation, we add LoRA to the query and
value matrices of each Transformer self-attention
layer.

3.3 Intermediate Task Transfer

Due to their modular nature, the parameters of
multiple adapters can be composed to leverage the
knowledge from multiple downstream tasks. In our
work, we study whether enriching our visual WSD
system with knowledge learned from a text-only
WSD intermediate task s benefits final performance
on the target task t. To achieve this, we employ
sequential fine-tuning of adapters (Poth et al., 2021;
Zmarsly, 2022), which first optimizes adapter pa-
rameters on s before subsequently fine-tuning the
same parameters on t.

For s, we choose the SemCor dataset (Miller
et al., 1993), which provides (w, c) pairs annotated
with the sense key k best describing w in its context.
We train a bottleneck adapter on s by letting a
multiple choice model choose k from a list of 10
possible sense keys and transfer its parameters to
our models for t.

4 Experimental Setup

4.1 Model Checkpoints

We evaluate the following pre-trained models:

OpenAI CLIP denotes the original model check-
points provided by Radford et al. (2021). These
checkpoints are pre-trained on 400M image-text
pairs collected from the Internet by the CLIP au-
thors. For our experiments, we select the model
variants using Vision Transformer (ViT) (Dosovit-
skiy et al., 2021) as the vision encoder. Specifically,
we select the variants with ViT-B/32 and ViT-L/14-
336 for zero-shot evaluation.

LAION CLIP denotes models pre-trained in an
open-source replication of the original CLIP mod-
els (Cherti et al., 2022). The best performing mod-
els of this family are pre-trained on LAION-2B, the
English subset of the LAION-5B dataset (Schuh-
mann et al., 2022), consisting of 2.3B English lan-
guage image-text pairs collected from Common
Crawl. We select multiple checkpoints using ViT
as vision encoder for evaluation, including ViT-
B/32, ViT/L-14, ViT-H/14 and ViT-G/14. As of
writing this paper, ViT-G/14 has the best zero-shot
performance of all publicly available CLIP mod-
els1.

1https://laion.ai/blog/giant-openclip/

Method # Parameters % Parameters

Zero-Shot 0 0.00
Projection Layer Tuning 1,212,417 0.33
LoRA Adapter 1,802,241 0.49
Bottleneck Adapter 3,001,473 0.82
Text Encoder Fine-Tuning 278,665,473 76.11
Full Fine-Tuning 366,121,473 100.00

Table 1: Total number and percentage of trainable
parameters for different transfer learning methods of
LAION XLM-R Base.

LAION Multilingual CLIP denotes multilingual
variants of LAION CLIP pre-trained on the full
LAION-5B dataset consisting of 5.85B image-text
pairs in over 100 languages. These models use
XLM-R (Conneau et al., 2020), a pre-trained mul-
tilingual language model, as text encoder. In our
experiments, we select two checkpoints, one using
ViT-B/32 and XLM-R Base and one using ViT-
H/14 and XLM-R Large.

4.2 Transfer Learning Methods

We compare multiple transfer learning methods on
the pre-trained CLIP checkpoints. In increasing
order of parameters updated during application on
the Visual WSD task, these include: 1) Zero-shot
transfer, i.e. evaluation on the downstream task
without any training. 2) Projection layer tuning,
i.e. fine-tuning of the final projection layers on top
of CLIP’s vision and text encoders while keeping
all other parameters fixed. 3) Adapter methods as
described in § 3.2. 4) Partial fine-tuning, i.e. fine-
tuning the full text encoder while keeping the vision
encoder frozen. 5) Full fine-tuning, i.e. fine-tuning
all CLIP parameters on the downstream task.

Their number of trainable parameters is com-
pared in Table 1.

4.3 Training Details

To evaluate our models and compare different ap-
proaches during training, we keep a fixed set of
1286 (w, c) pairs (10%) from the training dataset,
leaving us 11583 pairs to actually train models on.

In the provided datasets, each context contains
the word it is paired with, making it sufficient to
only use the tokenized context as input for our text
encoder models without further preprocessing. We
limit all tokenizers to a maximum sequence length
of 20, which is enough to represent all samples
from the different datasets.

Preprocessing of the input images consists of
rescaling them to have a shorter side of 224 pix-
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Model Accuracy MRR

Random Baseline 10.50% 29.91%

Zero-Shot

OpenAI ViT-B/32 72.94% 82.23%
OpenAI ViT-L/14-336 81.03% 87.75%
LAION ViT-B/32 72.94% 82.23%
LAION ViT-L/14 78.38% 85.98%
LAION ViT-H/14 79.16% 86.43%
LAION ViT-G/14 80.72% 87.31%
LAION XLM-R Base 74.88% 83.51%
LAION XLM-R Large 79.00% 86.89%

LAION XLM-R Base

Projection Layer Tuning 86.94% 92.15%
LoRA Adapter 85.23% 91.10%
Bottleneck Adapter 86.31% 91.88%
Text Encoder Fine-Tuning 86.78% 92.01%
Full Fine-Tuning 85.23% 91.11%

LAION XLM-R Large

Projection Layer Tuning 89.11% 93.50%
LoRA Adapter 89.35% 93.78%
Bottleneck Adapter 90.20% 94.18%
Full Fine-Tuning 91.91% 95.37%

Table 2: Evaluation results on the English language
validation set

els, cutting out the center to form a 224x224 pixel
square, and normalizing them. To save disk space
and unnecessary operations during training, we
rescale all images beforehand.

Full models are fine-tuned for 5 epochs, using an
initial learning rate of 10−6. Adapters are trained
for 30 epochs and start with a learning rate of 10−4.
In both cases, the learning rate is decreased lin-
early after every epoch. After training, we keep the
checkpoint scoring the highest accuracy on our left-
out validation split for inference. We use a batch
size of 8 for all training runs.

For all evaluated CLIP models, we rely on Py-
Torch implementations in the HuggingFace Trans-
formers library (Wolf et al., 2020). Adapter method
implementations are provided by the adapter-
transformers library (Pfeiffer et al., 2020).

5 Results and Analysis

5.1 Results on Validation Data

We first analyze the performance of all evaluated
methods on our held out validation set (Table 2).

Zero-shot Comparing the zero-shot performance

of the selected CLIP checkpoints, it is apparent
that all pre-trained models perform reasonably well
without fine-tuning on the training set. With ac-
curacy scores between 72% and 81%, they sub-
stantially outperform a random baseline. Compar-
ing between the evaluated models, performance in-
creases with model size. The best zero-shot scores
are obtained by OpenAI ViT-L/14-336 and LAION
ViT-G/14, the largest evaluated representatives of
their family. For base size models, we find that the
multilingual LAION XLM-R Base slightly outper-
forms its monolingual counterparts. As we also
suspect this model to have the highest potential on
the multilingual test data, we focus on evaluating it
in the following.

Fine-tuning Switching to the fine-tuned models,
we observe that all evaluated methods are able to
improve performance on the validation split. In
general, accuracy scores on XLM-R Base increase
by roughly 12 points compared to zero-shot perfor-
mance of the same model. Interestingly, we find no
substantial performance differences between the
different transfer learning methods. Costly full
fine-tuning of both the vision and text encoder of
CLIP performs similar to various adapter methods
and simple fine-tuning of CLIP’s vision and text
projection layers. The picture for LAION XLM-
R Large is similar. Here, full fine-tuning slightly
outperforms the other two methods, achieving our
overall best scores of 91.91% accuracy and 95.37%
MRR. From these results, we can conclude that it
is possible to adapt CLIP to visual WSD efficiently
without costly fine-tuning of all parameters on task
data.

5.2 Results on Test Data

We transfer various approaches for the multilingual
models to the test set. Table 3 shows accuracy and
MRR scores per language as well as average scores
across all languages.

Zero-shot Again, we find that zero-shot perfor-
mance of the two evaluated multilingual LAION
XLM-R models is substantially better than random
across all languages. Similarly, they outperform the
baseline provided by the task organizers, consisting
of a zero-shot OpenAI ViT-L/14-336 for English
and a zero-shot variant of OpenAI ViT-B/32 for
Italian and Farsi. The latter has been made mul-
tilingual using Knowledge Distillation (Reimers
and Gurevych, 2019). The best evaluated zero-shot
model, LAION XLM-R Large, improves over the
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Model / Version
Average English Farsi Italian

Accuracy MRR Accuracy MRR Accuracy MRR Accuracy MRR

Random Baseline 10.10% 29.67% 12.57% 31.67% 11.50% 31.27% 6.23% 26.07%

Zero-Shot

Organizer Baseline 37.20% 54.39% 60.48% 73.88% 28.50% 46.70% 22.62% 42.61%
LAION XLM-R Base 52.63% 67.04% 68.47% 79.96% 35.00% 52.19% 54.43% 68.97%
LAION XLM-R Large 56.19% 69.73% 69.76% 81.23% 37.50% 54.38% 61.31% 73.59%

LAION XLM-R Base

Projection Layer Tuning 53.28% 67.56% 69.11% 80.15% 35.00% 52.51% 55.74% 70.02%
LoRA Adapter 55.01% 69.09% 69.33% 80.42% 38.00% 55.49% 57.70% 71.37%
Bottleneck Adapter 52.60% 67.29% 68.90% 80.04% 33.50% 51.83% 55.41% 70.01%
SemCor Adapter 53.04% 67.79% 68.03% 79.81% 36.00% 53.65% 55.08% 69.92%
Full Fine-Tuning 52.64% 66.85% 67.17% 78.85% 35.00% 52.19% 55.74% 69.50%

LAION XLM-R Large

Projection Layer Tuning 55.59% 69.56% 69.33% 81.24% 34.50% 53.03% 62.95% 74.40%
LoRA Adapter 58.65% 71.44% 72.35% 82.85% 40.00% 55.92% 63.61% 75.56%
Bottleneck Adapter 57.88% 71.34% 70.19% 81.86% 39.50% 56.27% 63.93% 75.90%
SemCor Adapter 58.59% 71.67% 70.84% 82.14% 41.00% 57.29% 63.93% 75.59%
Full Fine-Tuning 58.63% 71.43% 70.63% 82.22% 41.00% 56.23% 64.26% 75.85%

Table 3: Evaluation results on the multilingual test set.

baseline by 9 points on English and Farsi and by
39 points on Italian in terms of accuracy.

Fine-tuning Comparing the fine-tuned LAION
XLM-R Base models, we find no meaningful im-
provements over zero-shot performance on the
test set in most cases. Only LoRA improves
over zero-shot performance by 2.4 accuracy points
and 2 MRR points on average. On LAION
XLM-R Large, LoRA and Bottleneck adapters im-
prove slightly over zero-shot performance, reach-
ing MRR scores over 70%.

Intermediate Task Transfer Results correspond-
ing to the method described in § 3.3 are listed as
SemCor Adapter. They perform similar to our other
approaches, with the base variant even being outper-
formed by LoRA. We can conclude that knowledge
transfer between text-only and multimodal WSD is
non-trivial and requires further investigation.

Analysis In general, fine-tuning CLIP on the train-
ing set does not substantially improve results on the
test set in our setup. To investigate potential causes
for the limited knowledge transfer between training
and test sets, we further analyze the data. Figure 1
compares the distribution of number of WordNet
synsets2 per target word in both data splits. We
can observe that the majority of target words in
the training set are found in zero to two WordNet

2Synsets are groups of words sharing the same meaning
within WordNet.
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Figure 1: Distribution of number of WordNet synsets
per target word in the training set and English test set
of Visual-WSD. Values of 15 synsets and above are
accumulate.

synsets. In contrast, samples from the test set are
found in 6 synsets on average, with some samples
occurring in 15 or more synsets. Samples in the
training set thus are overwhelmingly specific in
their meaning, leaving less room for ambiguity,
while test samples show diverse sets of meanings
that might prove more difficult to disambiguate.
We hypothesize that a WSD system fine-tuned on
the Visual-WSD train split using the presented sim-
ple techniques therefore could generalize poorly to
the test split. We leave further investigation of this
issue to future work.
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6 Conclusion

As part of the SemEval-2023 Visual-WSD task,
we investigated the multimodal WSD capabilities
of various pre-trained CLIP models in a zero-shot
and multiple transfer learning settings. We found
that large pre-trained CLIP models perform rea-
sonably well in the zero-shot setting, even across
languages, yielding the conclusion that these mod-
els have substantial inherent visual WSD capabili-
ties. Fine-tuning CLIP checkpoints using different
techniques, including parameter-efficient adapter
methods, leads to further improvements on in-
distribution validation data. However, improve-
ments over zero-shot performance on the multilin-
gual test set are little. We conclude that knowledge
transfer to the test set is non-trivial and approaches
beyond the simple ones tested might be required
for further substantial improvements.
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