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Abstract

The goal of the NLI4CT task is to build a Nat-
ural Language Inference system for Clinical
Trial Reports that will be used for evidence
interpretation and retrieval. Large Language
models have demonstrated state-of-the-art per-
formance in various natural language process-
ing tasks across multiple domains. We suggest
using an instruction-finetuned Large Language
Models (LLMs) to take on this particular task in
light of these developments. We have evaluated
the publicly available LLMs under zeroshot set-
ting, and finetuned the best performing Flan-T5
model for this task. On the leaderboard, our sys-
tem ranked second, with an F1 Score of 0.834
on the official test set.

1 Introduction

Building a Natural Language Inference (NLI) sys-
tem for Clinical Trial Reports (CTRs) is the objec-
tive of the Multi-evidence Natural Language Infer-
ence for Clinical Trial Data (NLI4CT) task Jullien
et al. (2023), which focuses on the interpretation
and retrieval of medical evidence. Clinical practi-
tioners struggle to keep up with the large number of
CTRs published yearly to provide individualised,
evidence-based care DeYoung et al. (2020). The
main task is separated into two subtasks. Task 1 is
to determine the relationship of the claim to the in-
formation in a single CTR or to compare two CTRs
to see if there is entailment or contradiction. The
supporting factor required to back up the predicted
label in Task 1 must be extracted from the CTRs
in Task 2. English is the only language used in the
task.

BERT Devlin et al. (2019), ULMFiT Howard
and Ruder (2018), and GPT Radford et al. (2018)
models revolutionised the field of Natural Lan-
guage Processing by introducing a new technique
of pretraining on Language modelling and fine-
tuning on task-specific data using supervised data,
resulting in state-of-the-art results on a variety of

datasets and benchmarks Wang et al. (2018), Wang
et al. (2019). When applying the same model ar-
chitecture to domains such as biomedical, they
also achieved state-of-the-art results on domain
specific tasks; domain specific trained models like
BioBERT Lee et al. (2020), PubMedBERT Gu et al.
(2021), BioELECTRA raj Kanakarajan et al. (2021)
further improved performance. Furthermore, the
introduction of Large Language Models (LLMs)
GPT-3 Brown et al. (2020), PaLM Chowdhery et al.
(2022), OPT Zhang et al. (2022), GLM Zeng et al.
(2022), BLOOM Scao et al. (2022) ushered in a
new strategy known as Prompt-based learning Liu
et al. (2023), which allows these models to be more
effectively adapted to tasks. Prompt-based learning
is a technique for using LLM models to predict
what will happen next in a sentence. The mod-
els fill in the blanks to form the final sentence,
which can then be used to determine the correct
answer. With the implementation of Prompt-based
learning, the model can now carry out few-shot
or even zeroshot learning, enabling it to adjust to
new circumstances with either a limited amount of
labelled data or none at all. LLMs’ potential for
zeroshot success on unseen tasks was improved by
supervised finetuning their instruction-following
skills across multiple tasks. Instruction tuning ap-
plies to both decoder only models like GPT-3, OPT
and encoder-decoder models like T5 Raffel et al.
(2020).

In this paper, we investigate the effectiveness
of Flan-T5 Longpre et al. (2023) models for the
NLI4CT task. Flan-T5 is an instruction tuned T5
model. In the zeroshot setting, we assessed Flan-T5
models with various instructions for this task. On
the official test set, our finetuned Flan-T5 model
on the NLI4CT task received an F1 Score of 0.834,
placing it second on the leader-board. The code to
reproduce the experiments mentioned in this paper
is publicly available.1

1https://github.com/kamalkraj/NLI4CT
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Data No. of Samples Type Section Label

Count Intervention Eligibility Adverse Events Results Contradiction Entailment

Train 1700
Single 1035 155 317 309 254 502 533
Comparison 665 241 169 187 68 348 317

Dev 200
Single 140 26 44 32 38 70 70
Comparison 60 10 12 20 18 30 30

Test* 500
Single 229 74 44 48 63 - -
Comparison 271 68 88 72 43 - -

Table 1: The Single type is based on a single CTR, while the Comparison type is based on two CTRs. Section
illustrates the count of four distinct sections from which the statements are annotated. * Test set labels are not public.
More details in section 2.1.

2 Background

2.1 Task and Dataset Description

This task is based on a collection of Clinical Trial
Records (CTRs) extracted from clinicaltrials.gov 2

and statements annotated by domain experts. The
task uses four sections from the CTRs: Eligibility
criteria, Intervention, Results, and Adverse events.
The annotated statements are sentences that make
some claim about the information contained in
one of the sections in the CTR (premise). Task
1 is to predict the Entailment vs Contradiction be-
tween CTR-statement pairs. The statements may
make claims about a single CTR or compare two
CTRs. For the "Single" type, all evidence will
be contained in the primary CTR, while for the
"Comparison" type, evidence will have to be re-
trieved from both CTRs same section. Task 2 is
to identify the supporting factor extracted from the
CTRs (premise) to justify the prediction from task
1, given CTR, annotated statement, and prediction.

There are 999 breast cancer CTRs in the dataset.
The datasets, which are divided into train, develop-
ment, and test sets, contain a total of 2400 anno-
tated statements. The distribution of labels between
the train and development sets is even. Eligibility
sections are used most often in Single annotated
statements, while Intervention is used in Compari-
son statements. Detailed statistics are in table 1.

2.2 Related Work

Large Language models have shown promising
results when doing tasks in the biomedical and
clinical domains without domain-specific training.
In Agrawal et al. (2022), evaluate InstructGPT
Ouyang et al. (2022) for clinical information ex-
tractor under zeroshot and few-shot settings. In
addition, they present a new dataset for bench-

2https://clinicaltrials.gov/ct2/home

marking few-shot clinical information extraction.
PaLM Chowdhery et al. (2022) and its instruction-
tuned variant, FlanPaLM Chung et al. (2022), are
evaluated on MultiMedQA Singhal et al. (2022), a
collection of seven Question Answering datasets
in the biomedical/clinical domain. Li’evin et al.
(2022) assess InstructGPT and Codex’s Chen et al.
(2021) ability to answer and reason in USMLE
Jin et al. (2021), MedMCQA Pal et al. (2022),
and PubMedQA Jin et al. (2019) datasets. Re-
cent additions to the LLMs family include BioGPT
1.5B Luo et al. (2022) and BioMedLM 2.7B3. On
the MedNLI Romanov and Shivade (2018) dataset
Clinical-T5-Large Lehman et al. (2023) model
achieves state-of-the-art results and outperforms
models double its parameters. Unlike the others
mentioned above, these models are pre-trained only
on domain-specific data (PubMed) using a domain-
specific vocabulary.

Figure 1: Zeroshot performance of various instruction-
tuned models on the test set.

3https://github.com/stanford-crfm/
BioMedLM
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3 System overview

It has been demonstrated that finetuning the LLMs
to follow natural language instructions improved
the models’ ability to perform better on previously
unseen tasks in zeroshot and few-shot settings. For
the CTRs NLI task, we will use Flan-T5, an instruc-
tion tuned T5 model. The Flan-T5 model was cho-
sen based on its zeroshot performance in this partic-
ular task. T0pp Sanh et al. (2021), Tk-Instruct-11B
Wang et al. (2022), OPT-IML-Max-30B4 Iyer et al.
(2022), Instruct-GPT-175B were the other models
considered for this experiment. Figure 1 depicts
the zeroshot performance of these models. For all
the models, instructions are adapted to their instruc-
tion tuning style. There is no single instruction that
works across all models efficiently. The expected
model labels are also passed to the model via the
same instruction to get the proper output from the
model. Under the zeroshot settings, the Flan-T5
xxl(11B) and xl(3B) have the best F1 scores.

The T5 is an encoder-decoder Sutskever et al.
(2014) model transforms all tasks into a text-to-text
format. The model has parameters ranging from 60
million to 11 billion. A denoising objective is used
to pre-train the T5 model. The Flan-T5 model is
trained from Lester et al. (2021) Language Model-
ing objective adapted T5 model. The original T5
model is trained with a maximum sequence length
of 512, whereas the Flan-T5 model is trained with
a maximum encoder length of 1024 and a decoder
length of 256. The Flan-T5 model has been fine-
tuned on 1836 tasks with 15M examples.

For zeroshot evaluation and finetuning experi-
ments, we construct the input to the model using
an instruction template, CTRs data, and the state-
ment as shown in figure 2. Given the following
instruction to the model, the model generates the
entailment or contradiction label.

4 Experimental setup

4.1 Dataset Preprocess

The NLI task has single and comparison types,
as mentioned in the section 2.1. The evidence
from the primary and secondary CTRs is com-
bined to form the premise. In the domain ex-
pert’s annotated statement, they specifically use
the keyword primary or secondary trial while mak-
ing a claim. Even if it is a single type, they
use the primary trial keyword, for Example: "Pa-

4The OPT-IML-175 is skipped as unable to get access.

Figure 2: Flan-T5 model input and output flow.

tients eligible for the primary trial must live in
the USA.". Following that, the evidence is com-
piled into a single text for a single type: "Primary
trial evidence are {primary_evidence}." and for
comparison type "Primary trial evidence are {pri-
mary_evidence} and Secondary trial evidence are
{secondary_evidence}.". The annotated statement
has not been pre-processed in any way.

Figure 3: Final instruction template

4.1.1 Instruction templates
We have collected various instruction templates
suitable for this task from the FlanT5 templates
collection. We have used the same sentence
joining method mentioned in preprocess 4.1 for
all the different instruction templates. Figure
3 shows the final instruction template used for
the model. The premise is replaced by the ev-
idence mentioned above and hypothesis is re-
placed by the statement annotated by the do-
main expert. The options are replaced by
OPTIONS:\nEntailment\nContradiction. Instruc-
tion templates used for zero-shot evaluation of
T0pp, Instruct-GPT-3, Tk-instruct-11B, and OPT-
IML-Max-30B models are available in the code
open-sourced. Refer to Appendix B for various
instruction templates and their corresponding F1
score on the test set.
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4.2 Zeroshot

Model Data Split F1 Score

xxl
Train 0.701
Dev 0.734
Test 0.727

xl
Train 0.675
Dev 0.690
Test 0.703

Table 2: Results on Train, Dev and Test data using
zeroshot Flan-T5 xl and xxl models.

Using different instructions, we evaluated the
Flan-T5 model from small (60 million) to xxl (11
Billion) parameters. The initial choice of instruc-
tions comes from the open-sourced FLAN reposi-
tory5. This experiment uses unique instruction tem-
plates from NLI task collection in Flan-T5, which
includes datasets ANLI Nie et al. (2019), RTE Ben-
tivogli et al. (2009), CB De Marneffe et al. (2019),
SNLI bowman2015large, WNLI Levesque et al.
(2012), QNLI Rajpurkar et al. (2018), and MNLI
Williams et al. (2017). Results with best perform-
ing instruction are shown in table 2. We have also
tried various NLI dataset instructions from T0pp,
Tk-Instruct-11B and OPT-IML-Max-30B projects.
For all the instruction templates used, the output
options are mentioned using the standard FLAN
format in section 4.1.1 to get the proper output
from the model. Few-shot experiments are skipped
as the task (NLI) is already familiar to FLAN-T5
models.

4.3 Finetuning

Following the original research, the Flan-T5 mod-
els are finetuned to task-specific data to better adapt
to the domain and task. We finetuned all five Flan-
T5 models during our experiments with this task.
The model was trained using both single and mul-
tiple instruction templates. For finetuning with a
single instruction template, we chose the one in-
struction template with the highest F1 score in the
zeroshot setting. We used a total of ten instruction
templates across multiple instruction settings. The
Flan-T5 model is based on a T5 model tailored to
the language modelling task Lester et al. (2021),
which is also better at following prompts. We also

5https://github.com/google-research/
FLAN/tree/main/flan/v2

finetune that model directly to task data to get the
baseline performance of the T5 model.

Figure 4: Zeroshot and finetuned performance of Flan-
T5 model from small to xxl on the test set.

The single task finetuning in the Flan-T5 re-
search is done with an adafactor Shazeer and Stern
(2018) optimizer and a learning rate of 1e-3 with a
batch size of 128 and a maximum sequence length
of 512. In our experiments, we used a much lower
learning rate of 7e-6 with a batch size of 8 and the
Adam Kingma and Ba (2014) optimizer for two
epochs. As in the original research, we use a con-
stant learning rate. Refer to Appendix A for the
full set of hyper-parameters. The Flan-T5 model
is trained on samples with a maximum length of
1024 tokens. As the T5 model uses relative posi-
tional encoding, it is possible to train the model
with much more tokens; however, in our experi-
ments, training with samples with a length greater
than 1024 tokens hurts model performance. As a
result, any samples with more than 1024 tokens
have been dropped in finetuning. There are less
than 1024 tokens in 1576 of 1700 data points from
the training set. We also train using development
set samples for the final submission to the leader-
board. Combining the development set, we have
used 1770 samples for training with less than 1024
tokens.

4.4 Software and Hardware
The entire experiment is carried out with the T5
implementation of huggingface transformers Wolf
et al. (2020). We have modified the example sum-
marization script6 from huggingface repository for

6https://github.com/huggingface/
transformers/blob/v4.26.1/examples/
pytorch/summarization/run_summarization.
py
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this task. Models with parameters up to 3B (xl) are
finetuned using a 4xQuadro RTX(48GB VRAM)
card, while models with parameters up to 11B (xxl)
are finetuned in 8xA100(40GB VRAM) instances.
DeepSpeed Rasley et al. (2020) ZeRO Rajbhan-
dari et al. (2020) optimization is used to fit the
model into the multi-gpu for training efficiently.
For memory fitting of large models, we use ZeRO-
3 Ren et al. (2021) specifically, which partitions
and offloads parameters, optimizer states, and gra-
dients to CPU memory. The model is trained on
the A100 with BFLOAT16 (BF16) precision and
on the Quadro RTX with Automatic Mixed Preci-
sion (AMP) because the original model was pre-
trained with BF16 precision, and model training
with FLOAT16 (FP16) precision is unstable7.

5 Results

Training Data Test Data Epoch 1 Epoch 2 Epoch 3

Train
Dev 0.810 0.845 0.878
Test 0.796 0.829 0.826

Train + Dev
Dev 0.892 0.916 0.931
Test 0.804 0.834 0.829

Table 3: Results on Dev, Test data using finetuned Flan-
T5-xxl model trained on Train and Train + Dev data.

The finetuned Flan-T5-xxl model finished sec-
ond in the leaderboard with an F1 score of 0.834.
The xxl model’s zeroshot evaluation on the train,
dev, and test splits achieves a remarkable average
score of 0.71 across the splits. Figure 4 shows that
as the number of parameters in the model increases,
so does the zeroshot performance. The difference
in zeroshot results between xl and xxl is small, but
when finetuning the model on task, the xxl results
improve by +0.107, whereas the xl results improve
only by +0.06. Even though the small model per-
forms poorly in zeroshot mode, when finetuned,
the F1 score improved by +0.60. For Flan-T5-xxl
tasks with zeroshot settings, the model always out-
puts the label Entailment or Contradiction given
the same label options in the model’s instruction.
We discovered that Flan-T5 small to xl models also
output "Yes" or "No" to the instructions rather than
the template’s given options. We mapped the Yes
and No labels from the model to Entailment and
Contradiction, respectively. However, after finetun-
ing it with task-specific data, we avoided this issue

7https://github.com/huggingface/
transformers/issues/10830

with any model. Comparison of zeroshot vs fine-
tuned results of Flan-T5 at different scale is shown
in figure 4. The zeroshot and finetined performance
of model greatly varies from instruction template
to template. We observed a maximum variation
of ± 7 points from the best to worst instruction
template.

Model Test Data

T5-xxl-lm single + Adam 0.437

Flan-T5-xxl single + Adam 0.834
multi + Adam 0.820
single + Adafactor 0.829
multi + Adafactor 0.822
single + Adam + >1024 tokens 0.793

Table 4: Results on Test data with single, multi instruc-
tion templates and Adam, Adafactor optimizer combi-
nation. >1024 indicates model trained with sequence
length greater than 1024.

The xxl model performs best when finetuned on
task specific data for two epochs. As we can see
in table 3, the model performs best on the test set
when combined both train and dev data for training.
After training with the same data as Flan-T5-xxl,
the T5-xxl model, adapted for language modelling,
only achieves an F1 score of 0.437. The perfor-
mance of the instruction tuned model is nearly
twice that of the baseline language model. Further-
more, finetuning Flan-T5 with a single instruction
template produced the best results, whereas using
multiple instruction templates reduced the best F1
score by 0.014 points. Results in table 3 are ob-
tained using the Adam optimizer with other hy-
perparameter mentioned in 4.3. Using the Adafac-
tor optimizer, the model performance was lower
by 0.005 on average across different settings com-
pared to Adam optimizer. The model performed
worse by 0.040 points when finetuned with a se-
quence length greater than 1024.

6 Conclusion

In our work, we have evaluated various instruction
tuned Large Language models under the zeroshot
setting and finetuned the best-performing instruc-
tion tuned T5, Flan-T5-xxl and achieved an F1
score of 0.834 and finished second position in the
NLI4CT task. We observed that instruction tuned
models are better for datasets with fewer train-
ing samples. For Flan-T5, the model performance
steadily increased as the model size increased. In
the zeroshot setting, we also observe that the in-
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struction/prompt given to the model significantly
affects its performance. We open-source instruc-
tion templates, code and pre-trained models for the
reproducibility of our work.

Limitations

In our paper, we have finetuned only Flan-T5 mod-
els on the task specific data, and other models are
only evaluated under zeroshot setting. This paper
focuses solely on Task 1 NLI classification using
various instruction template settings and hyperpa-
rameter tuning. Another experiment was to com-
bine Tasks 1 and 2 and train the model to classify
and identify the supporting factor in the CTR. How-
ever, this experiment would make the model’s input
and output lengths longer than Flan-T5 pretrained.
Even though the Flan-T5 model can accept inputs
longer than its pretrained length, we have seen a
loss in model performance.

The paper doesn’t discuss any results using
non-generative transformer models like BioBERT.
These models are typically trained with a fixed
512 positional embedding, and most input for this
NLI4CT task is longer than 512. In our preliminary
experiments, these models produced skewed results.
Additionally, the BioMedical domain-specific GPT
models BioGPT and BioMedLM are skipped be-
cause they are not instruction tuned. Their zeroshot
prompt/instruction following accuracy is very low
without instruction tuning.
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A Hyperparameters

Hyperparameter Value

Learning rate 7e-5
Batch size 8
Max instruction length 1024
Max output length 8
Epochs 2
optimizer Adam

Table 5: Hyperparameter used for the best performing
model.

The hyperparameter used to achieve the highest
F1 score on the task is listed in Table 5, and the
total hyperparameter search space is listed in Table
6. Using the Flan-T5 original hyperparameter, 1e-3
learning rate, batch size 128, results in a skewed
model with only one label for all test inputs. Max
output length is set to 8 as only one label needs
to be generated. The maximum output length in
the original Flan-T5 implementation is 256. The
optimizer-specific hyperparameters have been set
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to the default except for the learning rate. The T5-
xxl-lm also follows the same hyperparamters as the
Flan-T5-xxl model.

Hyperparameter Value

Learning rate 1e-3, 4e-5, 5e-5, 6e-5,
5e-6, 6e-6, 7e-6, 8e-6

Batch size 8, 16, 32, 128
Max instruction length 1024
Max output length 8
Epochs 1-5
optimizer Adafactor, Adam

Table 6: The full hyperparameter search space.

B Instruction templates

Instruction templates 1-9 are taken from the FLAN-
V2 repository, and instruction template 10 is the
final template used for the submission. The F1
score for these templates using the finetuned Flan-
T5-xl model is shown in table 7.

1. "{premise} Based on the paragraph above can
we conclude that {hypothesis}? {options_}"

2. "{premise} Based on that paragraph can we
conclude that this sentence is true? {hypothe-
sis} {options_}"

3. "{premise} Can we draw the following conclu-
sion? {hypothesis} {options_}"

4. "{premise} Does this next sentence follow,
given the preceding text? {hypothesis} {op-
tions_}"

5. "{premise} Can we infer the following? {hy-
pothesis} {options_}"

6. "Read the following paragraph and determine
if the hypothesis is true: {premise} Hypothe-
sis: {hypothesis} {options_}"

7. "Read the text and determine if the sentence
is true: {premise} Sentence: {hypothesis} {op-
tions_}"

8. "Can we draw the following hypothesis from
the context? Context: {premise} Hypothesis:
{hypothesis} {options_}"

9. "Determine if the sentence is true based on
the text below: {hypothesis} {premise} {op-
tions_}"

10. {premise} Question: Does this imply that {hy-
pothesis}? {options_}

Template No. Score

1 0.7520
2 0.7400
3 0.7280
4 0.7415
5 0.7423
6 0.7467
7 0.7228
8 0.7350
9 0.7432
10 0.7631

Table 7: Results on Test data using finetuned Flan-T5-
xl model trained on Train + Dev data.

C Implementation details

The whole experiment is done using hugging-
face transformers. We have modified the ex-
ample summarization script8 from huggingface
repository. The script is modified to drop exam-
ples by the Max Sequence length, the original
script truncated the inputs. Deepspeed ZeRO-3
configuration is directly used from the hugging-
face examples9 without any changes for sequence
length upto 1024, for sequence lengths greater than
1024 parameters stage3_max_live_parameters and
stage3_max_reuse_distance is updated to 1e − 6
to avoid memory overflow issue. To experiment
with multiple optimizers, the optimizer section in
deepspeed config has been removed.

8https://github.com/huggingface/
transformers/blob/v4.26.1/examples/
pytorch/summarization/run_summarization.
py

9https://github.com/huggingface/
transformers/blob/v4.26.1/tests/
deepspeed/ds_config_zero3.json
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