Sabrina Spellman at SemEval-2023 Task 5: Discover the Shocking Truth
Behind this Composite Approach to Clickbait Spoiling!

Simon Birkenheuer and Jonathan Drechsel and Paul Justen and Jimmy Pohlmann
and Julius Gonsior and Anja Reusch
Technische Universitidt Dresden
firstname.lastname @mailbox.tu-dresden.de

Abstract

This paper describes an approach to automat-
ically close the knowledge gap of Clickbait-
Posts via a transformer model trained for
Question-Answering, augmented by a task-
specific post-processing step. This was part of
the SemEval 2023 Clickbait shared task (Frobe
et al., 2023a) - specifically task 5. We devised
strategies to improve the existing model to fit
the task better, e.g. with different special mod-
els and a post-processor tailored to different
inherent challenges of the task. Furthermore,
we explored the possibility of expanding the
original training data by using strategies from
Heuristic Labeling and Semi-Supervised Learn-
ing. With those adjustments, we were able to
improve the baseline by 9.8 percentage points
to a BLEU-4 score of 48.0%.

1 Introduction

This project was part of the SemEval 2023 Click-
bait shared task (Frobe et al., 2023a). Specifically,
we focused on the task of generating spoilers for
clickbait posts. We viewed this task as an extrac-
tive question-answering problem, since a knowl-
edge gap (or question) posed by a headline shall
be closed or answered by a passage from an arti-
cle. Based on this assessment, a transformer-based
approach has been chosen since these approaches
tend to perform well for question-answering prob-
lems (Shao et al., 2019). To improve the perfor-
mance of our models, additional data for use in
the training process has been generated. In ad-
dition, multiple models have been trained using
different approaches. Another challenge is that
some of the examples require multiple spoilers to
be generated as an answer. To address this issue,
a post-processing approach to generate multiple
relevant answers that are not too similar to each
other has been developed. Furthermore, a specific
pattern could be identified and used to develop a
heuristic in the pre- and post-processing step to

find solutions to these examples independent of the
model.

2 Background

The task we attempted to solve was as follows:
given a post text that introduces a so-called knowl-
edge gap that piques the reader’s interest in read-
ing the accompanying article, our objective was to
identify the passages within this article that best
addresses this knowledge gap.

2.1 Clickbait Dataset

A dataset was provided for solving the task (Ha-
gen et al., 2022) to which we will refer to as the
"Clickbait Dataset". This dataset consists of 3200
training samples and 800 validation samples. An-
other 1000 test samples were withheld and were
only accessible through the evaluation portal TIRA.
Each of these samples contains a postText which is
the text of a clickbait post. A clickbait post refers
to an article that shall be read. Therefore, the title
and also the text of the article are provided by the
sample. Note that the title and the clickbait post
might be the same, but that mostly depends upon
the author of the post whether they judged if the
title is interesting enough or not, i.e. it introduces
a knowledge gap that makes the reader want to
open the article to fill the gap. Each sample was
additionally labeled with a spoiler, i.e. one or more
passages from the article that were judged as filling
the knowledge gap. Those spoilers were classified
into 3 categories, which are the following:

1. Phrase: A single spoiler that consists of at
most 5 words

2. Passage: A single spoiler that consists of
more than 5 words

3. Multi: A collection of spoilers that consists
of any number of words

969

Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 969-977
July 13-14, 2023 ©2023 Association for Computational Linguistics

A label that defines this desired spoiler type was
therefore provided as well.

3 System Overview

For this task, a typical BERT-architecture con-
sisting of a tokenization- and an encoding step
was extended by a task-specific post-processing
step. As mentioned in previous sections, we re-
gard this task as a kind of question-answering prob-
lem. Consequently, we interpret the post-text as
a kind of question with regard to the article due
to the Knowledge-Gap it contains. Therefore, we
fine-tuned a pre-trained transformer for question-
answering. In the following, we will describe how
those models were trained and then how the men-
tioned post-processing step was designed.

3.1 Pre-processing & Additional Data

To have more data available to train the models
upon, we created the HuffPuff dataset. It consists
of 190,168 articles which were scrapped from the
Huffington Post website!. This website was se-
lected as the representative source for clickbait-
style examples, based on its disproportionate rep-
resentation in the original dataset. However, the
HuffPuff dataset is unlabeled, i.e. it doesn’t con-
tain any gold labels that could be used for training
our model for question answering. Therefore, we
used multiple approaches to automate the labeling
process.

3.1.1 Cloze-Style Post Generation

Many clickbait posts follow a template that is sim-
ilar to Cloze-Style Questions, such posts we will
call Cloze-Style Clickbait Posts (CSCP). Cloze-
Style Questions are sentences in which missing
spans of text need to be predicted or rather re-
trieved from the text. Such Cloze-Style Questions
have already been shown to achieve significant im-
provements when training with them for regular
question-answering on Wikipedia articles. Dhingra
et al. were able to exploit the structure of such arti-
cles to create large amounts of labelled data (Dhin-
gra et al., 2018). However, the news articles we
scrapped differed in structure from Wikipedia arti-
cles such that we needed to change the generation
approach. Additionally, we found the idea of me-
chanically creating CSCPs quite promising for our
scenario.

"https://www.huffpost.com

In CSCPs, hypernyms get used instead of blanks to
create an interesting knowledge gap for the reader.

You need to see this Twitter account
that predicted Beyoncé’s pregnancy
This Guy Cheated On ’The Price Is
Right” And Forced Them To Change
Their Entire System

For the generation of such posts, we created the
following pipeline:

1. A Named Entity Recognition (NER) model
identifies Named Entities (NE) in the title.

2. When one is found, it gets looked up whether
the same named entity can be found in the
article.

3. If the NE was found in the title as well as in the
article it was replaced in the title with a related
hypernym (e.g. a person’s name gets replaced
with “this person”) and the first appearance
of the NE in the article was assumed to be the
gold spoiler.

With this approach, we were able to create 79,136
newly labeled samples, which look like the follow-
ing:

Making this food: A Trend That Keeps
On Trending

Experts Answer "Why Isn’t this person
More Famous?!*

3.1.2 Enumeration Spoiler

Among the scrapped articles, a small portion of
samples follows an enumeration structure i.e. those
articles are similar to a list of multiple viable spoil-
ers extended by an explanation, description, etc.
We used this structure to generate 11,721 new
Mutli-Spoilers. The exact process is described in
more detail in Section 3.4.

However, we noticed while training that those sam-
ples did more harm than good. We assume that
this is because the heuristics we used to identify
the Multi-Spoilers were too obvious to the model,
such that it over-fitted on those heuristics rather
than finding new patterns and generalizing.
Therefore, we employed a strategy we call "Cover
Your Tracks" (CYT) with which we simply remove
from those samples all the reference points we have
used to identify those spoilers. For this, we used

970

a CYT-Factor to define from how many samples
those reference points shall be removed. For ex-
ample, a CYT factor of 0.4 implies that we re-
move from 40% of all samples the reference points.
We found that when employing this CY'T-Strategy
(with a sufficiently high CYT-Factor to mitigate
the negative effects of the Enumeration Data) the
impact on the results still fluctuates, i.e. some-
times it has a positive impact on the final model
performance and sometimes a negative one. The
effects depend strongly on the configuration of the
other hyper-parameters, as described in Appendix
A.1.1. We assume that this is because the rules and
patterns that get learned through this kind of train-
ing are already hard-coded in our post-processing
step, as described in Section 3.4. This means that
it only helps in the rare cases where either the
post-processor fails or when similar patterns ap-
pear in other contexts, like while predicting phrase-
spoilers, which is rare but not impossible.

3.2 Model

For our study, we employed a DeBERTa model
that had already undergone pre-training on a large
corpus of English texts to serve as our underly-
ing language model. Additionally, we found that
a specialization of the models by the spoiler-type
they are meant to predict can lead to significantly
improved results, due to allowing the models to
further specialize. Accordingly, we developed and
trained three distinct models, each designed to pre-
dict one of three specific types of spoilers: Phrase,
Passage, or Multi-Spoilers. Consequently, those
models were only trained on the prediction of the
spoiler-types they are meant to predict. We then
did some lightweight hyper-parameter tuning to
find the best configurations for our models’ hyper-
parameters and how to use the additional data
which we provided. While doing so, we found
that both the phrase and multi-spoiler model prof-
ited from the generated CSCP and enumeration
data. We then used those datasets in a step we
call pre-tuning, i.e. a fine-tuning step which is ap-
plied between the pre-training on generic text data
and the final fine-tuning on the high-quality man-
ually labelled Clickbait data (Hagen et al., 2022).
Additionally, we found that a BERT model out-
performed the DeBERTa model on the task of pre-
dicting multi-spoilers. We replaced therefore the
DeBERTa model in the model for predicting the
multi-spoilers, for the prediction of the other spoil-

ers DeBERTa has been found to outperform BERT
by a significant amount. Further details are de-
scribed in Appendix A.1.

3.3 Post-Processor

To transform the output of the model into a textual
spoiler, we use a task-related post-processor. A
schematic overview is visualized in Figure 4. De-
pending on the spoiler type, different approaches
are used to create the spoiler. In the case of a phrase
or passage-spoiler, the goal is to find only a single
continuous snippet from the article. Since the out-
put of the model, called logits, describe how likely
a token of the text is at the start or the end of the
spoiler respectively, it is easy to find a sorted list
of spoiler candidates. Then the most likely spoiler
is returned which satisfies further constraints such
as not containing a line break. Additionally, if the
spoiler type is a phrase, the spoiler can not contain
more than five words. Similarly, the spoiler for pas-
sages must contain at least six words. In the case of
a multi-spoiler, another distinction is made regard-
ing whether the article is in an enumeration-like
form. Those multi-spoilers containing enumera-
tions can be automatically detected, as described
in detail in the next section. Then a rule-based ap-
proach is used to identify the enumeration spoiler
text. In case this approach fails, as well as for all
other multi-spoilers, the multi-spoiler entries are
generated iteratively. In each iteration, a spoiler
candidate is created using the same process as for
phrase and passage-spoilers (without text length
constraints). If this candidate adds new informa-
tion to the spoilers already found, this candidate
will be added to the spoiler list. The way similar
spoilers are identified is explained in detail in Ap-
pendix A.2. After a maximum of seven iterations or
with five spoilers found, the generation is finished.
Otherwise, the logits are modified to disable the
tokens of the current spoiler in the next iterations.

3.4 Enumeration Spoiler Prediction

The multi-spoilers proved to be the most difficult
type of spoiler to correctly predict using the model.
This led to an investigation into approaches to
support the model, enabling it to make better
predictions. The basis for these approaches would
be a heuristic based on some pattern identified in
the data.

971

3.4.1 Enumeration Type Questions

7 Things We Know About the New Sea-
son of Stranger Things

53 out of 143 multi-spoiler samples in the valida-
tion data follow a pattern like the example above.
This represents a considerable portion of the multi-
spoiler samples and therefore provides an oppor-
tunity to develop an effective heuristic. The main
focus here is the cardinal number preceding the ob-
ject of the sentence. Spacy (Honnibal et al., 2020)
was used to detect and extract the cardinal num-
ber from these examples. This information could
be used to identify that a certain format of the an-
swer is expected, where a number of similar points
are simply enumerated. A fourth tag was added
to these samples, identifying them as both multi-
spoilers and enumeration type spoilers. Addition-
ally, the extracted number directly informs about
the number of expected answers.

3.4.2 Enumeration Spoiler Generation

Furthermore, explicit enumerations can also be
identified in the article text by using Spacy (Hon-
nibal et al., 2020) to look for cardinal numbers,
followed by some form of punctuation. In the next
step, ascending or descending sequences of these
cardinal numbers were identified. Afterward, a
short passage of text following the cardinal number
was returned. This method was used to generate
multi-spoilers for all samples that were labelled
as enumeration type questions. In the following
example the detected cardinal number is printed in
bold, followed by the identified spoiler in italic.

29 of the most beautiful TV quotes of all
time:

1. "You can’t live your life according to
maybes." — Poussay Washington, Orange
Is the New Black

A further use case was found in the generation
of new training data. As explained in Section 3.1.2,
the additional HuffPuff dataset is unlabeled. How-
ever, with this algorithm we are able to search the
dataset for enumerations, extract multi-spoilers and
label the data with these multi-spoilers as desired
solutions.

4 Experimental Setup

The training for all our models was done using one
A100 GPU. Multiple models were trained for each

Figure 1: Evaluation of our post-processing based on
the transformer baseline model.

Naive Baselinefj2-1%
Transformer Baseline

+ Our Base Postprocessing
+ Use Tags

+ Enumeration Spoiler;

0% 10% 20% 30% 40% 50%
BLEU-4 Score

Model Versions

version of the model, and afterwards, the best per-
forming model on the validation data was selected.
To evaluate the performance of a model, we used
the BLEU-4 score (Papineni et al., 2002) which is
a similarity measure for strings using cumulative
n-grams up ton = 4.

The models were trained with different combina-
tions of input data. Furthermore, for some mod-
els, hyper-parameter tuning was performed (see
Table 5).

For running the spoiler prediction, a trained
model is required. Our models were packaged
together with the code into docker containers and
then submitted to TIRA (Frobe et al., 2023b).

The following evaluation in Section 5 is based
on the validation Clickbait Dataset containing 800
samples.

5 Results

Two baselines are available for comparison (Frobe
etal., 2023a): a naive one that returns the title of the
article as a spoiler and a transformer-based one that,
like ours, uses the question-answering approach.
Figure 1 shows the results of these baselines as well
as the evaluation of our post-processing using the
transformer baseline model. The transformer base-
line (38.2%) significantly outperforms the naive
one (2.1%). Overall, our post-processing improves
the transformer baseline to a BLEU-4 score of
46.2%. Most of the improvement is caused by the
use of the spoiler tags (text length limit and multi-
spoiler iterations) and the rule-based enum-spoiler
generation.

Additionally, we evaluated the performance for
two of our released versions compared to the trans-
former baseline model using our post-processing.
The first version uses only a single DeBERTa-
model for all spoiler types, and is therefore univer-
sal. In contrast, the second version uses a special-
ized model for each spoiler type (DeBERTa-model

972

Figure 2: Evaluation of different models on different
subsets of the validation dataset.

B Baseline Transformer Model
[Best Universal Model
I Best Specialized Models

Spoiler Types

0% 10% 20% 30% 40% 50% 60% 70%
BLEU-4 Score

for phrase and passage, BERT-model for multi).
The results for different subsets of the validation
dataset are shown in Figure 2.

Both the universal model and the special-
ized models improve the baseline with our post-
processing to 47.2% and 48.0% respectively. The
advantage of using specialized models can be
clearly seen for passage and multi-spoilers. How-
ever, in the case of phrase-spoilers, our specialized
model could not improve the universal one and
is even worse than the baseline. The enumera-
tion spoiler generation achieves a BLEU-4 score
of 69.8% on the relevant 24 samples. Compared
to the otherwise low scores for multi-spoilers, this
represents a remarkable improvement.

An interesting property related to the distribution
of the BLEU-4 score across each sample of the
validation dataset is shown in Figure 3. Our model
finds (almost) perfect spoiler texts in about one
third of the samples. On the other hand, another
third performs really badly. The remaining samples
are almost evenly spread between 10% and 90%
BLEU-4 score. Further results based on the test
dataset can be found in Appendix A.5.

6 Conclusion

With all the improvements applied to our baseline,
we were able to increase the BLEU-4 score for our
predictions by 9.8 percentage points from 38.2%
to 48.0%.

Using specialized models for different spoiler types

Figure 3: The distribution of the BLEU-4 score on the
validation dataset for our best model.

90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -

0% -

BLEU-4 Score

0 100 200 300
Occurrences

provides the opportunity to configure the training
process for each model individually. The presented
post-processing approach leverages model outputs
to improve on these results further. Even on
the transformer baseline, this approach shows a
solid improvement of 8 percentage points in the
BLEU-4 score. Adding in the enumeration spoiler
generation has proven to provide a considerable
improvement in the results. Overall, the use of
transformer-based language models show solid
results for this task. Combining this approach with
additional heuristics for specific cases and creating
a composite approach shows great promise.

A number of opportunities exist to improve this
approach even further. For example, at the moment
the enumeration spoiler generation as part of the
post processing is only performed on samples
tagged as enumeration type questions. Refining
the heuristic and applying it to all samples could
yield further improvements (see Appendix A.4).
An additional possibility to enhance the perfor-
mance of the model is improving the dataset
further, e.g. by using a better NER model that can
differentiate more classes than the one we used. By
checking for classes like Actors, Tips, and Twitter
Accounts we could find more CSCP candidates
and create a larger, as well as more diverse CSCP
Dataset, which represents the official CSCPs better.

7 Acknowledgments

We are grateful to the Center for Information Ser-
vices and High Performance Computing [Zentrum
fiir Informationsdienste und Hochleistungsrechnen
(ZIH)] at TU Dresden for providing the HPC
resources for this project.

973

References

Bhuwan Dhingra, Danish Pruthi, and Dheeraj Rajagopal.
2018. Simple and effective semi-supervised question
answering.

Maik Frobe, Tim Gollub, Benno Stein, Matthias Hagen,
and Martin Potthast. 2023a. SemEval-2023 Task 5:
Clickbait Spoiling. In 17th International Workshop
on Semantic Evaluation (SemEval-2023).

Maik Frobe, Matti Wiegmann, Nikolay Kolyada, Bas-
tian Grahm, Theresa Elstner, Frank Loebe, Matthias
Hagen, Benno Stein, and Martin Potthast. 2023b.
Continuous Integration for Reproducible Shared
Tasks with TIRA.io. In Advances in Information
Retrieval. 45th European Conference on IR Research
(ECIR 2023), Lecture Notes in Computer Science,
Berlin Heidelberg New York. Springer.

Matthias Hagen, Maik Frobe, Artur Jurk, and Martin
Potthast. 2022. Clickbait Spoiling via Question An-
swering and Passage Retrieval. In 60th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2022), pages 7025-7036. Association for Com-
putational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation.

Taihua Shao, Yupu Guo, Honghui Chen, and Zepeng
Hao. 2019. Transformer-based neural network for an-
swer selection in question answering. /IEEE Access,
7:26146-26156.

A Appendix

A.1 Model Training Configurations

We employed a hyper-parameter tuning step to find
out how to best use the training data that was avail-
able to us. For this we performed an exhaustive
search over the search space defined in Table 1
(With some pruning to ignore some, to us, obvi-
ously uninteresting configurations like different
values for the CYT-Factor when no Enumeration
Data was used). Each configuration was trained
multiple times and averaged to reduce random error.
Through this step, we ended up with the following
discoveries and strategies to train our specialized
models.

Table 1: Search space for hyper-parameter tuning.
Model refers to the underlying language model that was
used. Train Epochs refers to the number of epochs the
model was trained upon the Clickbait Dataset. The
Cloze and Enumeration Epochs refer similarly to the
number of epochs the model was trained on the CSCP
and Enumeration data respectively. CYT refers to the
CYT-Factor that was employed when trained on enu-
meration data. Use Only refers to the degree of special-
ization all data underwent before letting the model train
upon, i.e. Phrase implies the model was only trained on
phrase-spoilers (at most 5 words long), the same applies
to Passage and Multi. The option All means that there
was no exclusion at all.

Options
Model BERT, DeBERTa
Train Epochs 1,2,3,4,5
Cloze Epochs 0,1,2
Enumeration Epochs | 0,1
CYT 0,0.3,0.6,0.9
Use Only Phrase,Passage,Multi,All

A.1.1 Enumeration Spoilers & The Impact of
CYT

One of the first discoveries we had due to the hyper-
parameter tuning step was that a high value for the
CYT-Factor performs best. The CYT-Factor is the
factor that defines from how many samples of the
Enumeration dataset shall all the reference points
be removed. 'Reference points’ refers here to any-
thing our heuristic used to identify the enumeration
spoilers, like numbers and line-breaks. The impact
of different CYT-Factors on an example configu-
ration is shown in Table 2. As can be seen in this
table, a CYT-Factor of 0.9 was found to perform
best, i.e. we removed from 90% of all samples all
reference points.?. Even though a high CYT-Factor
helps to mitigate the negative effects of the Enu-
meration Data while preserving the positive ones,
the impact of this data still depends largely on what
other data was used and which type of spoiler needs
to be predicted. Therefore, all the following mod-
els use either Enumeration Data with a CY'T-Factor
of 0.9 or no Enumeration Data at all.

2A few CYT factors higher and lower around 0.9, e.g.
0.999, were shortly tested as well but when first results were
worse than the ones achieved with 0.9 we decided on not in-
vesting further resources and time in getting this value perfect.
Therefore, those other values for CYT aren’t included in the
table

974

https://doi.org/10.48550/ARXIV.1804.00720
https://doi.org/10.48550/ARXIV.1804.00720
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/ACCESS.2019.2900753
https://doi.org/10.1109/ACCESS.2019.2900753

Table 2: BLEU-4 score in percent of a model when
trained on no Enumeration Data (-) and when trained on
Enumeration Data with different CYT-Values

CYT | Overall Phrase Passage Multi
- 42.3 61.5 35.0 13.7
0.0 354 52.9 27.5 12.4
0.3 39.9 59.5 31.4 13.5
0.6 |40.2 60.4 31.1 13.7
0.9 41.0 60.9 322 144

Table 3: BLEU-4 score in percent of a model when
trained without and with Cloze-Style Post Data.

‘ Overall Phrase Passage Multi
No Cloze | 36.4 62.1 21.0 10.5
Cloze 36.1 63.1 19.7 9.9

A.1.2 Phrase-Spoiler-Model

As can be seen in Table 3 and 4, we found that
pre-tuning the Phrase-Spoiler-Model on the Cloze-
Style Post dataset let to improved performance
for predicting phrase-spoilers. Further pre-tuning
on Enumeration Data had minor positive effects
as well, despite its difference in style to phrase-
spoilers. We observed that Enumeration Data was
most helpful when only using multi-spoilers that
were also phrase-spoilers, i.e. the ones that contain
at most five words. We assume that this minimized
the negative effects of generalization while pre-
serving the positive ones. Therefore, we pre-tuned
this model on the Cloze-Style Post dataset for one
epoch, then for another epoch on the Enumeration
Data with a CYT-Factor of 0.9 as described in Sec-
tion 3.1.2 and finally we fine-tuned this model on
the Clickbait Dataset (Hagen et al., 2022) for an
additional epoch.

A.1.3 Passage-Spoiler-Model

For the passage-spoiler prediction, neither the
CSCP data nor the enumeration data led to any sig-
nificant improvements. Therefore, we fine-tuned
this model only on the passage-spoilers of the man-

Table 4: Average performance when predicting Phrase-
Spoilers of the best found config (Cloze+Enum) com-
pared to when only pre-tuned on enumeration data,
when only pre-tuned on Cloze-Data and without any
pre-tuning (-). Note: All configurations were still fine-
tuned on the Clickbait Dataset (Hagen et al., 2022).

- Cloze Enum Both
BLEU—4‘62.1% 63.1% 62.3% 63.7%

ually labelled Clickbait dataset for 2 epochs. (Ha-
gen et al., 2022)

A.1.4 Multi-Spoiler-Model

While tuning our Multi-Spoiler Model, BERT has
surprisingly been found to perform better than De-
BERTa. After some adjustments®, we were able
to increase the BLEU-4 score on Multi-Spoilers
by more than 6 percentage points, i.e. from 20.7%
with DeBERTa to an average of 26.9% with BERT.
Therefore, we used for the prediction of Multi-
Spoilers a large BERT model in the background
instead of DeBERTa. This model was then pre-
tuned for 1 epoch on the Cloze-Style Post dataset,
then for 1 epoch on all the Enumeration Data with
a CYT-Factor of 0.9, and finally it was fine-tuned
for 2 epochs on the Clickbait dataset. Unfortu-
nately, we found that those high gains in perfor-
mance strongly correlate with the gains achieved by
our post-processing step, which will be explained
in the following sections. Therefore, the achieved
gain through those adjustments dropped to less than
2 percentage points for our final model.

A.2 Similarity Measures

As mentioned before, in the case of multi-spoilers,
where multiple phrases of the text have to be re-
turned, a problem arises. Since the model returns
a pool of phrases that are likely to be spoilers, re-
occurring phrases in the text may appear multiple
times in the pool of predictions, like names or lo-
cations. Just choosing the top results of the pool
may result in choosing a similar phrase multiple
times, while neglecting other possibilities that may
not have scored as high as the others in likelihood
to contain a spoiler, but contain different informa-
tion, which would improve the functionality of the
model. The process of rooting out similar spoilers
starts with the candidate list of spoilers, ordered
by their achieved score, high to low, and an empty
collection of selected spoilers. Each candidate is
compared to all previously selected spoilers and
is judged on its similarity to them. If the similar-
ities with all selected spoilers are below a certain
threshold, the candidate is added to the collection
of selected spoilers. Since the similarity of con-
tent was the metric that had to be judged, spoilers

3 Adjustments refers here to switching from DeBERTa to
a large BERT and a BERT-Base model that were compared
to each other. And performing a drastically shortened hyper-
parameter tuning step (i.e. we only chose the configurations
that were found to perform already well on DeBERTa).

975

containing the same content in meaning, but differ-
ent wording should also score high on similarity.
Therefore, each spoiler was stripped from unnec-
essary stop-words, punctuation and capitalization
before being compared to each other. To judge
how the process of calculating this similarity score
would affect the overall performance of the model,
multiple methods of producing a score were chosen.
Those were:

* Cosine Similarity *

e The *TheFuzz’ package >

* The Jaccard Index ©

* The *Spacy’ package ’

* A combination of all the above

When the impact of these different approaches
was explored, we realized it was not as much
as believed and *TheFuzz’ was chosen as the go-
to method for determining the similarity between
spoilers. It is based on Levenshtein-Distance and al-
lows comparing strings in their full length, partially,
with the words sorted beforehand and removing re-
curring words. Instead of choosing one of these
methods, we just applied all and used the highest
achieved similarity.

A.3 Packages used

In all occurrences of spacy the "en_core_web_lg"
model version "3.4.1" was used.?
The transformer baseline model used in Section 5
can be found on Hugging Face.’

A.4 Further Opportunities for Improvement

Given the fact a third of our model predictions are
almost correct, a third are almost completely false,
and the remaining third are evenly distributed
in between (Figure 3), developing a method to
predict the confidence for each generated spoiler
could be useful. It would allow for discarding low

*https://www.machinelearningplus.com/nlp/
cosine-similarity/

5https://github.com/seatgeek/thefuzz

®https://www.statology.org/
jaccard-similarity/

"https://spacy.io

8https://github.com/explosion/spacy-models/
releases/download/en_core_web_lg-3.4.1/en_core_
web_lg-3.4.1.tar.gz

9https://huggingface.co/webis/
clickbait-spoiling-with-question-answering/
tree/debertalarge-all-cbs20-both-checkpoint-1200

confidence spoilers or developing further methods
to specifically improve in these areas.

In our current models, the tag is not included
in the input for the training process. Adding
this information might increase the performance
of the models, enabling the model to better
distinguish between different types of expected
answers. Additionally, this might add additional
utility to identifying and tagging enumeration
type questions. The number of expected answers
generated for enumeration type questions also is
of limited utility, since the number of answers for
multi-spoiler questions is capped at 5. Therefore,
the additional information is only really useful in
cases with less than 5 expected answers. This is a
property of the data for this task, and little can be
done about it.

The enumeration spoiler generation as part of
the post-processing has proven to provide a
considerable improvement in the results. The
heuristic could be expanded to look for different
formats of enumeration, or possibly even to
detect section headers within the text. A possible
approach might be to learn the features for this
detection by creating a training dataset for this
use case. Currently, the enumeration spoiler gen-
eration is only performed on samples previously
identified as enumeration type questions. However,
enumerations in the text could occur in the rest
of the samples as well. Performing the spoiler
generation on all multi-spoiler samples could be
investigated. Looking for enumerations in these
other samples might introduce a source of false
positives. However, especially when combined
with improving the heuristic as mentioned above,
the risk of false positives from performing the
enumeration spoiler detection on all multi-spoiler
samples could be reduced and the overall score
improved.

A.5 More Results

Table 5 shows detailed results for some of our offi-
cially submitted models as part of SemEval 2023
Task 5. Note that the models were tested using
the test Clickbait Dataset which has been unknown
to us while working on the challenge. The fourth
submission of Table 5 is equal to the specialized
models of Figure 2. Comparing these results to

10https://huggingface.co/microsoft/
deberta-v3-large
11https://huggingface.co/bert—large—uncased

976

https://www.machinelearningplus.com/nlp/cosine-similarity/
https://www.machinelearningplus.com/nlp/cosine-similarity/
https://github.com/seatgeek/thefuzz
https://www.statology.org/jaccard-similarity/
https://www.statology.org/jaccard-similarity/
https://spacy.io
https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.4.1/en_core_web_lg-3.4.1.tar.gz
https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.4.1/en_core_web_lg-3.4.1.tar.gz
https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.4.1/en_core_web_lg-3.4.1.tar.gz
https://huggingface.co/webis/clickbait-spoiling-with-question-answering/tree/debertalarge-all-cbs20-both-checkpoint-1200
https://huggingface.co/webis/clickbait-spoiling-with-question-answering/tree/debertalarge-all-cbs20-both-checkpoint-1200
https://huggingface.co/webis/clickbait-spoiling-with-question-answering/tree/debertalarge-all-cbs20-both-checkpoint-1200
https://huggingface.co/microsoft/deberta-v3-large
https://huggingface.co/microsoft/deberta-v3-large
https://huggingface.co/bert-large-uncased

Table 5: Evaluation of the different submitted models for subtask 2 at SemEval 2023 Task 5. The used metrics are
BLEU-4 (BL4), BERTScore (BSc.) and METEOR (MET). Multiple tests were conducted over all clickbait-posts
as well as over the three subsets that only use phrase, passage, or multi-spoilers from the test set (N=1000). The
used language models are a large DeBERTa model (DB) '° and a large BERT model (B) '!. All models use multiple
specialized models except the first one which uses the same model to predict phrase-, passage- and multi-spoilers
alike. The last two models are the result of a hyperparameter-tuning process (HPT) the previous ones not. The
models are trained on training data (T), validation data (V), Cloze-Style Post data (C) and enumeration data (E).

Submission All Phrase Passage Multi
Models HPT trained on BL4 BSc. MET BL4 BSc. MET BL4 BSc. MET BL4 BSc. MET
B no T 0.26 0.89 0.26 042 092 044 0.16 0.88 0.31 0.08 0.85 0.18
DB-DB-DB no TC 0.46 093 0.52 0.64 095 0.70 0.34 091 049 030 0.90 0.53
DB-DB-DB no TVC 0.47 093 0.53 0.64 095 0.68 0.36 091 0.51 030 0.90 0.55
DB-DB-B yes TCE 0.47 093 0.51 0.65 095 0.70 0.35 091 0.51 0.30 0.90 0.47
DB-DB-B yes TVCE 0.47 093 0.50 0.64 095 0.69 0.36 091 0.51 030 0.90 0.45

Figure 4: A schematic overview of the post-processing which transforms the original text and the logits of the model

into a textual spoiler.

phrase

passage

no enum
multi

\ 4

continuous spoiler generator

‘ logits ‘—»‘ find best start/ end pair }—

maximum length = 5 words minimum length = 6 words

A AT

Y multi spoiler
enum spoiler generator

generator @

A

X

good update logits

spoiler? >
X

v

stop

iterations?
y

add spoiler
to answers

spoiler
adds new
information?

> join answers

those from Figure 2, which are based on the valida-
tion Clickbait Dataset, the BLEU-4 score is slightly
worse, but overall the performance of the last four
submissions is about the same on validation and
test data. Therefore, our models are not overfitted.

977

