
Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 905–912
July 13-14, 2023 ©2023 Association for Computational Linguistics

IRIT_IRIS_A at SemEval-2023 Task 6: Legal Rhetorical Role Labeling
Supported by Dynamic-Filled Contextualized Sentence Chunks

Alexandre G. de Lima1,2,3, Jose G. Moreno3, Eduardo H. da S. Aranha2

1Instituto Federal do Rio Grande do Norte, Natal, Brazil
2Universidade Federal do Rio Grande do Norte, Natal, Brazil

3Institut de Recherche en Informatique de Toulouse, UMR 5505 CNRS, Toulouse, France
alexandre.lima@ifrn.edu.br, jose.moreno@irit.fr,

eduardoaranha@dimap.ufrn.br

Abstract

This work presents and evaluates an approach
to efficiently leverage the context exploitation
ability of pre-trained Transformer models as
a way of boosting the performance of models
tackling the Legal Rhetorical Role Labeling
task. The core idea is to feed the model with
sentence chunks that are assembled in a way
that avoids the insertion of padding tokens and
the truncation of sentences and, hence, obtain
better sentence embeddings. The achieved re-
sults show that our proposal is efficient, despite
its simplicity, since models based on it over-
come strong baselines by 3.76% in the worst
case and by 8.71% in the best case.

1 Introduction

SemEval-2023 Task 6 (LegalEval) focuses on the
understanding of texts from the legal domain and it
comprises three sub-tasks: Legal Rhetorical Role
Labeling, Legal Named Entity Recognition, and
Court Judgment Prediction with Explanation (Modi
et al., 2023). The Legal Rhetorical Role Labeling
(Legal RRL) task aims to assign semantic roles
to the sentences from a legal document. Exam-
ples of such roles are facts, arguments, and rulings.
The exact roles are defined by the documents’ na-
ture and by the following utilization of the labeled
sentences. Legal documents are usually long and
complex, so the task is relevant because the labeled
sentences assist the document interpretation and the
extraction of information. The labeled sentences
are useful for downstream tasks, such as summa-
rization and judgment prediction. The task is not
trivial even for professionals from the legal domain,
mainly because of its inherent subjectivity. The
Legal RRL sub-task dataset comprises judgment
documents written in English from the Indian legal
system. The documents’ sentences were manually
labeled by students from Indian law universities,
whose each sentence was assigned with one of 13
pre-defined rhetorical roles (Modi et al., 2023).

The Legal RRL can be tackled as a sentence
classification task, and this approach requires the
utilization of an encoder to convert text sentences
into numeric vectors. Recent Legal RRL works
exploit pre-trained Transformer models to encode
sentences. However, they do not fully leverage the
context exploitation ability of Transformer models:
sentences are usually encoded in isolation and the
inter-sentence context is lost (Savelka et al., 2020;
Aragy et al., 2021), the inter-sentence context is
yielded by a Recurrent Neural Network (RNN) (Li
et al., 2021; Bhattacharya et al., 2021) or by using
data augmentation (de Lima et al., 2022), or only
cover facts instead of the full range of rhetorical
roles (de Lima et al., 2023).

This work presents the approach exploited by
the IRIT_IRIS team to tackle the SemEval-2023
Task 6, sub-task A. We propose a novel strategy
to encode sentences that fully leverages the con-
text exploitation ability of Transformer and hence
yields richer sentence embeddings. Instead of en-
coding sentences in isolation, we exploit sentence
chunks that avoid the truncation of core sentences
and the utilization of padding tokens. Achieved
results lead us to deem that our proposal is efficient
as the respective models overcome strong base-
lines by 3.76% in the worst case and by 8.71% in
the best case. A secondary finding is that models
based on pre-trained RoBERTa and Longformer
models benefit more from the proposed approach
than BERT-based models1.

2 Background

To leverage the context exploitation ability of Trans-
formers, we just need to feed the encoder with a
sequence of sentences separated by a special to-
ken such as the [SEP] one from BERT (Devlin
et al., 2019). Because most Transformer models

1The code of our models is available at https:
//github.com/alexlimatds/SemEval_2023_
Task_6A

905

https://github.com/alexlimatds/SemEval_2023_Task_6A
https://github.com/alexlimatds/SemEval_2023_Task_6A
https://github.com/alexlimatds/SemEval_2023_Task_6A


BERT

Classifier

BERT

chunk chunk

Figure 1: Model based on sentence chunks with over-
lapped edge sentences. Black and white circles re-
spectively represent core sentences and edge sentences.
This example illustrates the processing of two sentence
chunks sharing only one sentence at each edge. Remark
that only core sentences are forwarded to the classifier.

have a limit regarding the sequence length (e.g.,
512 for BERT) and legal documents are usually
long, feeding the encoder with a whole document
is not computationally feasible. A workaround is
breaking the documents into sentence chunks and
feeding the encoder with such chunks as proposed
by Cohan et al. (2019). A downside of this ap-
proach is that inter-sentence context is restricted
to chunks (sentences in a chunk are not aware
of sentences in other chunks). Mullenbach et al.
(2021) and van den Berg and Markert (2020) rely
on overlapped chunks to overcome this: consecu-
tive chunks share some of their edge sentences as
illustrated in Figure 1.

Only two works about Legal RRL leverage sen-
tence chunks and Transformers to encode sentences.
In Malik et al. (2022) a chunk comprises up to three
sentences: the core sentence (i.e., the sentence to
be classified) and its left and right neighboring sen-
tences (remark that the first sentence does not have
a left neighbor and the last sentence does not have
a right neighbor). Nevertheless, this model per-
forms worse than one that encodes sentences in
isolation. Kalamkar et al. (2022) exploit chunks
without sharing sentences as proposed by Cohan
et al. (2019) but the model performs significantly
inferior to one that leverages inter-sentence context
through RNNs.

3 Dynamic-Filled Contextualized
Sentence Chunks

The approaches from Cohan et al. (2019), Mullen-
bach et al. (2021), and van den Berg and Markert

(2020) differ in the number of shared sentences,
number of core sentences, and how the sentences
are distributed among chunks.

In Cohan et al. (2019) there are no shared sen-
tences and the number of chunks is dynamically set
from the number of sentences in the document and
from a hyperparameter delimiting the maximum
number of sentences in a chunk. The chunks are
filled so that they contain almost equal amounts of
sentences. To assure that, sentences can be trun-
cated. To establish chunks with the same number of
tokens, which allows batch processing, the chunks
are often filled with padding tokens.

Mullenbach et al. (2021) and van den Berg and
Markert (2020) propose chunks with a fixed num-
ber of core sentences and edge sentences that must
be set in advance. The drawback of this approach
is that it yields chunks with a small number of con-
tent tokens when the concerned sentences are short.
A large number of core sentences could avoid this,
but it may lead to many truncated core sentences.

Chunks with many padding tokens are context-
poor and truncation of core sentences results in data
loss. Such facts may result in poor sentence embed-
dings that harm the performance of classification
models.

Algorithm 1 Assembly logic of DFCSCs
Require: {s1, s2, ..., sn} : sentences in a document
Require: m : minimum desired number of edge tokens
Require: c_len : number of tokens in a chunk
1: chunkList← new List
2: chunk ← new chunk
3: i← 1
4: while i ≤ n do
5: ts ← number of tokens in si
6: tc ← number of tokens in chunk
7: if tc = 0 then
8: Put chunk into chunkList
9: Put si into chunk

10: if c_len− ts < m then
11: Fill the edges of chunk until reach c_len
12: chunk ← new chunk
13: i← i+ 1
14: else
15: if c_len− ts − tc ≥ m then
16: Put si into chunk
17: i← i+ 1
18: else
19: Fill the edges of chunk until reach c_len
20: chunk ← new chunk
21: return chunkList

To overcome the limitations of the three cited ap-
proaches, we propose Dynamic-Filled Contextual-
ized Sentence Chunks (DFCSC). These are chunks
with a variable number of core and edge sentences,
without truncated core sentences, and that usually

906



do not require padding tokens. These characteris-
tics lead to better leverage of the context exploita-
tion ability of Transformer models. The procedure
of filling a DFCSC has two hyperparameters, the
number of tokens in a chunk c_len, and the mini-
mum desired number of edge (shared) tokens, m.
The goal is to get a chunk with the maximum num-
ber of consecutive sentences while maintaining a
desired minimum number of shared tokens among
successive chunks. A minimum number of edge
tokens assures that inter-sentence context is not
restricted to a chunk and the more content tokens
in a chunk, the better the representations of core
sentences. Working oriented to tokens in the chunk
edges, instead of sentences, avoids the insertion
of padding tokens. To fully leverage the context
exploitation ability of a PTLM, c_len must be set
equal to the maximum sequence length supported
by the model (e.g., 512 for BERT).

Algorithm 1 presents the assembly logic of DFC-
SCs. A sentence s is put into a chunk if it does not
harm m (lines 15 to 16). Harming m means that
the remaining capacity of the chunk after insert-
ing s is lesser than m. Otherwise, the remaining
capacity in the chunk is filled with edge tokens ex-
tracted from the neighboring sentences (lines 18 to
19). Then, an empty chunk is created (line 20) and
s is put into it (lines 7 to 9). When the chunk is
empty, s is always inserted into the chunk (lines 7
to 9). This is the unique case in which harming m
is allowed, and the chunk is filled with edge tokens
when it happens (lines 10 to 11). Remark that a
core sentence is truncated only when its number of
tokens is larger than the chunk supports (c_len).

Algorithm 1 abstracts some details such as the
special tokens. In practice, a chunk starts with a
special token to mark its beginning (e.g., [CLS]),
and sentences and context edges are separated by
another special token (e.g., [SEP]). The examples
in Figure 2 present the resulting DFCSCs, with spe-
cial tokens, assembled from a set of five sentences.
The first chunk has s1 and s2 as core sentences.
Because there are no sentences at left, only the
right edge is filled with tokens from neighboring
sentences (s3 and s4). The second chunk has only
s3 as core sentence. This is because inserting s4
would harm m. The edges are filled with tokens
from s1 and s2 at left, and from s4 at right. The
third chunk has only s4 as core sentence and it
harms m. This happens because the length of s4 is
greater than c_len, but since s4 is the first sentence

in the chunk, the insertion is allowed. The fourth
chunk contains only s5 as core sentence since this
sentence is the remaining one. Because there are
no sentences at right, only left edge is filled with
tokens from the neighboring sentence (s4).

4 Experimental Setup

4.1 Dataset

The available dataset (Kalamkar et al., 2022) com-
prises 277 judgment documents written in English
from the Indian legal system and it is split into
two sets, train (247 documents and 28,986 sen-
tences) and validation (30 documents and 2,879
sentences). The documents’ sentences were labeled
by law students and each sentence is labeled with
one of 13 pre-defined rhetorical roles. The Fleiss
Kappa score is 0.59, which indicates a moderate
agreement among annotators and highlights the in-
herent subjectivity of the task. The dataset is highly
unbalanced. The most and lesser frequent rhetori-
cal roles are ANALYSIS and PRE_NOT_RELIED
with respectively 11,609 and 170 sentences. The
dataset also presents a high variation in sentences’
length. The shortest and longest training sentences
respectively have 1 and 669 tokens. We refer the
reader to Kalamkar et al. (2022) for more details
about the dataset and its development.

4.2 Models and Evaluation

We employ two sets of models relying on DFCSCs,
namely DFCSC-SEP and DFCSC-CLS.
1) DFCSC-SEP: the three models in this set rely
on DFCSCs to get sentence embeddings from a
pre-trained Transformer model. The first model ex-
ploits InCaseLaw (Paul et al., 2022) as a sentence
encoder (c_len = 512). The second model exploits
RoBERTa-base (Liu et al., 2019) (c_len = 512)
while the third one exploits Longformer-base (Belt-
agy et al., 2020) (c_len = 1, 024). InCaseLaw is
a BERT model pre-trained with corpora from the
Indian legal system. Longformer is a model that
relies on a sparse self-attention mechanism which
allows it to deal with longer sentences than the
BERT-based models. In all models, core sentences
are represented by the hidden states of the respec-
tive separator tokens (the token at the right of a core
sentence). We set m = 350 for the three models.
2) DFCSC-CLS: as before, but each core sentence
is represented by the concatenation of hidden states
of the special token marking the beginning of the

907



 'the cunning fox'
 'jumped the lazy dog'
 'hello world!'
 'Bob is the best player of chess in the world for sure'
 'My name is Bond'

1st chunk: [CLS][SEP]the cunning fox[SEP]jumped the lazy dog[SEP]hello world ! bob is the[SEP]
2sd chunk: [CLS]cunning fox jumped the lazy dog[SEP]hello world ![SEP]bob is the best player[SEP]
3rd chunk: [CLS]![SEP]bob is the best player of chess in the world for sure[SEP]my[SEP]
4th chunk: [CLS]the best player of chess in the world for sure[SEP]my name is bond[SEP][SEP]

Figure 2: Example of a set of DFCSCs assembled from a set of five sentences. The core sentences’ tokens are
formatted in bold. The employed tokenizer is the one from the DistilBERT-base-uncased model (Sanh et al., 2019).

chunk ([CLS] or <s>) and of the respective sepa-
rator token ([SEP] or </s>).

We also employ SingleSC, Cohan, and Sharing
edges as baselines. Each model is presented bellow.
SingleSC: single sentence classification models,
that is, models that do not rely on chunks. Each
sentence is individually fed to the model and it is
represented by the hidden state of the respective
token marking the beginning of the sentence (<s>
or [CLS]). The exploited pre-trained Transform-
ers are BERT-base-uncased, RoBERTa-base, and
InCaseLaw.
Cohan: models that follows the chunk design from
(Cohan et al., 2019), that is, chunks without sen-
tence sharing. The exploited pre-trained Transform-
ers are InCaseLaw, RoBERTa, and Longformer.
Models based on InCaseLaw and RoBERTa have
the following hyperparameter values: 85 as the
maximum sentence length, 512 as the chunk length,
and 7 as the maximum number of sentences in a
chunk. The model based on Longformer has the
following hyperparameter values: 90 as the max-
imum sentence length, 1,024 as the chunk length,
and 16 as the maximum number of sentences in a
chunk. Each sentence is represented by the hidden
state of the following separator token.
Sharing edges: models relying on chunks with
a fixed number of core sentences and edge sen-
tences. The exploited pre-trained Transformers are
InCaseLaw, RoBERTa-base, and Longformer-base.
Models based on InCaseLaw and RoBERTa have
the following hyperparameter values: 80 as the
maximum sentence length, 512 as the chunk length,
2 as the number of core sentences in a chunk, and 2
as the number of edge sentences. The model based
on Longformer has the following hyperparameter

values: 85 as the maximum sentence length, 1,152
as the chunk length, 9 as the number of core sen-
tences in a chunk, and 2 as the number of edge
sentences. Each core sentence is represented by the
hidden state of the following separator token.

Appendix A presents the remaining hyperparam-
eters.

For all models, a fully-connected layer is em-
ployed as a classifier. All models are fine-tuned
over the train set for four epochs and evaluated over
the validation set. For each model, the fine-tuning
is repeated four times with a different random seed
for each repetition (the same four seeds for all
models). The evaluation metric is the weighted
F1 score.

5 Results

5.1 Experimental Results

Table 1 presents the scores achieved by all models.
We start our analysis by considering the models
employing the same pre-trained Transformer model
as a sentence encoder. Firstly, and as expected,
we verify that inter-sentence context exploitation
is advantageous as all SingleSC models perform
lower than their counterparts.

Secondly, we verify that both DFCSC ap-
proaches are really effective as they always over-
come the baselines: DFCSC-SEP InCaseLaw and
DFCSC-CLS InCaseLaw are respectively 4.29%
and 3.76% better than Cohan InCaseLaw; DFCSC-
SEP RoBERTa and DFCSC-CLS RoBERTa are
respectively 4.12% and 4.52% better than Co-
han RoBERTa; and DFCSC-SEP Longformer and
DFCSC-CLS Longformer are respectively 6.32%
and 8.71% better than Cohan Longformer.

908



Model Epoch F1 std

SingleSC BERT 2/4 0.6402 0.0068
SingleSC InCaseLaw 1/4 0.6774 0.0055
SingleSC RoBERTa 4/4 0.6666 0.0028

Cohan InCaseLaw 2/4 0.6992 0.0086
Cohan RoBERTa 4/4 0.7573 0.0042
Cohan Longformer 4/4 0.7487 0.0045

Sharing edges InCaseLaw 1/4 0.6923 0.0182
Sharing edges RoBERTa 1/4 0.6910 0.0055
Sharing edges Longformer 4/4 0.6537 0.0103

DFCSC-SEP InCaseLaw 2/4 0.7293 0.0076
DFCSC-SEP RoBERTa 4/4 0.7886 0.0043
DFCSC-SEP Longformer 4/4 0.7960 0.0054

DFCSC-CLS InCaseLaw 4/4 0.7256 0.0040
DFCSC-CLS RoBERTa 4/4 0.7915 0.0018
DFCSC-CLS Longformer 4/4 0.8139 0.0026

Table 1: Performance of models. The scores are aver-
ages of four evaluations and concern the best fine-tuning
epoch. std stands for Standard Deviation. The best score
is formatted in bold.

Thirdly, we realize that DFCSCs provide more
gains to RoBERTa and Longformer-based models
than to InCaseLaw-based ones. This suggests that
the formers exploit contextual data in a better way
than the last, and we believe this is due to the pre-
training process of such models: InCaseLaw fol-
lows the same procedure of BERT whereas Long-
former and RoBERTa are pre-trained with another
and the same procedure.

DFCSC-SEP Longformer and DFCSC-CLS
Longformer achieve the two highest scores
among all models. We hypothesize this is be-
cause Longformer-based models work with longer
chunks that result in richer sentence embeddings
since they are yielded from chunks with more con-
text, and in no truncation of core sentences.

Histograms in Figure 3 show the number of
padding tokens inserted into the chunks following
Cohan and Sharing edges layouts. We can realize
that most of such chunks have more padding tokens
than content tokens. In our experiments, the DFC-
SCs do not have padding tokens because the edges
of a DFCSC are always filled with content tokens.
We deem that this is the main factor of the supe-
rior performance of DFCSC-based models: chunks
with fewer padding tokens allow the Transformer
encoders to yield better sentence embeddings.

The DFCSC-CLS approach appears to be better
than DFCSC-SEP. Besides the improvements that
the DFCSC-CLS approach provides to RoBERTa
and Longformer-based models, the standard devi-
ation scores of DFCSC-CLS models indicate that

0 100 200 300 400 500
Number of padding tokens per chunk

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

(a) c_len = 512

100 200 300 400 500
Number of padding tokens per chunk

0

100

200

300

400

500

Fr
eq

ue
nc

y

(b) c_len = 512

0 200 400 600 800
Number of padding tokens per chunk

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

(c) c_len = 1, 024

300 400 500 600 700 800 900 1000 1100
Number of padding tokens per chunk

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

(d) c_len = 1, 512

Figure 3: Histograms of the number of padding tokens
per chunk according to the respective model and the
training set. (a) Cohan InCaseLaw/RoBERTa, (b) Shar-
ing edges InCaseLaw/RoBERTa, (c) Cohan Longformer,
(d) Sharing edges Longformer.

they have higher training stability.
The performance differences among Cohan and

Sharing edges models are remarkable. We believe
this is mainly due to a bad tuning of Sharing edges
models’ hyperparameters. This highlights another
advantage of the DFCSC-based approach: it de-
fines fewer hyperparameters and hence it presents
an easier tuning.

5.2 DFCSC Hyperparameter Analysis

Based on the hypothesis that a richer context leads
to better sentence embeddings, we deem that a
good practice of hyperparameter optimization is by
setting c_len with the maximum sequence length
supported by the employed sentence encoder (e.g.,
512 for BERT) and by the hardware platform.

Regarding the m hyperparameter, it is not ob-
vious whether the larger its value, the larger the
model performance. In order to assess the impact
of m, we perform experiments on selected models
with several values of m whose results are pre-
sented in Table 2. From such results, we see that
250 is the best value for both models. This suggests
that the absolute amount is more important than the
proportion of edges tokens in a chunk.

The assembly logic of DFCSC was not designed
to deal with m = 0 and so we employ m = 2
to assure at least one token in each edge. This
value leads to the worst results for each model. Al-
though, the achieved results (0.7856 and 0.8009)
are still better than the ones achieved by the mod-
els based on the Cohan layout (0.7573 and 0.7487

909



Model m c_len m/c_len Epoch F1 std

DFCSC-CLS RoBERTa

2 512 0.00 4/4 0.7856 0.0025
100 512 0.20 4/4 0.7969 0.0045
250 512 0.49 4/4 0.8105 0.0051
350 512 0.68 4/4 0.7915 0.0018

DFCSC-CLS Longformer

2 1,024 0.00 4/4 0.8009 0.0055
100 1,024 0.10 4/4 0.8155 0.0038
250 1,024 0.24 4/4 0.8188 0.0035
350 1,024 0.34 4/4 0.8139 0.0026
512 1,024 0.50 4/4 0.8163 0.0008
700 1,024 0.68 4/4 0.8167 0.0034

Table 2: Impact of m on the models’ performance. The scores are averages of four evaluations and concern the best
fine-tuning epoch. std stands for Standard Deviation.

0 100 200 300 400 500
Number of edge tokens per chunk

100

101

102

Fr
eq

ue
nc

y

(a) c_len = 512

0 200 400 600 800 1000
Number of edge tokens per chunk

100

101

102

Fr
eq

ue
nc

y

(b) c_len = 1, 024

Figure 4: Histograms of the number of shared tokens
per chunk regarding the DFCSC layout with m = 2 and
the training set.

from Table 1). We remark that, despite the value
assigned to m, many chunks will have more than
2 edge tokens as can be verified in Figure 4. As
consequence, rich context is often employed when
generating sentence embeddings.

There are no large differences in performance
from the exploited values of m. We believe this is
due to the characteristics of the DFCSC approach:
core sentences are usually not truncated and hence
there is no data loss; context is always provided
since the filling of edges is oriented to tokens in-
stead to sentences; and edges are filled with content
tokens instead padding tokens. The low sensitivity
to m is a good characteristic of the approach since
it eases the hyperparameter optimization effort and
leads to more predictable models.

5.3 Shared Task Results

The resulting board of the shared task shows 27 par-
ticipants from which our team took 9th place with a
0.8076 weighted F1 score. The best-achieved score
is 0.8593 by the AntContentTech team. We made
five submissions and our best model was a DFCSC-
CLS Longformer fine-tuned for four epochs over
the train and development sets (c_len = 1, 280
and m = 350). This model overcomes the hierar-

chical baseline model reported by the authors of
the dataset (Kalamkar et al., 2022) that achieves a
0.7900 F1 score.

6 Conclusions

This work presents a novel approach to leverage
the context exploitation ability of Transformers
and employs it to tackle the Legal RRL subtask of
SemEval-2023 Task 6. The proposal relies on DFC-
SCs as a way of achieving better sentence embed-
dings from Transformers’ hidden states. Models
based on DFCSCs are compared to baselines based
on similar approaches and the results show that
our proposal is effective: the best DFCSC model
achieves a 0.8139 F1 score whereas the best base-
line does 0.7573. In the future, we plan to employ
DFCSCs over other Legal RRL datasets as a way
of reinforcing our findings.

Acknowledgements

This work has been supported by the Coordina-
tion for the Improvement of Higher Education Per-
sonnel - Brasil (CAPES) and was partially sup-
ported by the LawBot project (ANR-20-CE38-
0013), granted by ANR the French Agence Na-
tionale de la Recherche.

References
Roberto Aragy, Eraldo Rezende Fernandes, and Ed-

son Norberto Cáceres. 2021. Rhetorical role identifi-
cation for portuguese legal documents. In Intelligent
Systems - 10th Brazilian Conference, BRACIS 2021,
Virtual Event, November 29 - December 3, 2021, Pro-
ceedings, Part II, volume 13074 of Lecture Notes in
Computer Science, pages 557–571. Springer.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

910

https://doi.org/10.1007/978-3-030-91699-2_38
https://doi.org/10.1007/978-3-030-91699-2_38
http://arxiv.org/abs/2004.05150


Paheli Bhattacharya, Shounak Paul, Kripabandhu
Ghosh, Saptarshi Ghosh, and Adam Wyner. 2021.
Deeprhole: deep learning for rhetorical role label-
ing of sentences in legal case documents. Artificial
Intelligence and Law, pages 1–38.

Arman Cohan, Iz Beltagy, Daniel King, Bhavana Dalvi,
and Dan Weld. 2019. Pretrained language models for
sequential sentence classification. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3693–3699, Hong Kong,
China. Association for Computational Linguistics.

Alexandre G de Lima, Mohand Boughanem, Eduardo
Henrique da S Aranha, Taoufiq Dkaki, and Jose G
Moreno. 2022. Exploring sbert and mixup data aug-
mentation in rhetorical role labeling of indian legal
sentences. In Joint Conference of the Information
Retrieval Communities in Europe (CIRCLE) 2022.

Alexandre G de Lima, Jose G Moreno, Mohand
Boughanem, Taoufiq Dkaki, and Eduardo Henrique
da S Aranha. 2023. Leveraging positional encoding
to improve fact identification in legal documents. In
First international workshop on Legal Information
Retrieval (LegalIR) at ECIR 2023, pages 11–13.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Prathamesh Kalamkar, Aman Tiwari, Astha Agarwal,
Saurabh Karn, Smita Gupta, Vivek Raghavan, and
Ashutosh Modi. 2022. Corpus for automatic struc-
turing of legal documents. In Proceedings of the
Thirteenth Language Resources and Evaluation Con-
ference, pages 4420–4429, Marseille, France. Euro-
pean Language Resources Association.

Dongjin Li, Ke Yang, Lijun Zhang, Dawei Yin, and
Dezhong Peng. 2021. Class: A novel method for chi-
nese legal judgments summarization. In Proceedings
of the 5th International Conference on Computer Sci-
ence and Application Engineering, CSAE ’21, New
York, NY, USA. Association for Computing Machin-
ery.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Vijit Malik, Rishabh Sanjay, Shouvik Guha, Angshu-
man Hazarika, Shubham Kumar Nigam, Arnab Bhat-
tacharya, and Ashutosh Modi. 2022. Semantic seg-
mentation of legal documents via rhetorical roles.

In Proceedings of the Natural Legal Language Pro-
cessing Workshop, EMNLP 2022, Abu Dhabi, UAE.
Association for Computational Linguistics.

Ashutosh Modi, Prathamesh Kalamkar, Saurabh Karn,
Aman Tiwari, Abhinav Joshi, Sai Kiran Tanikella,
Shouvik Guha, Sachin Malhan, and Vivek Ragha-
van. 2023. SemEval-2023 Task 6: LegalEval: Un-
derstanding Legal Texts. In Proceedings of the
17th International Workshop on Semantic Evalua-
tion (SemEval-2023), Toronto, Canada. Association
for Computational Linguistics (ACL).

James Mullenbach, Yada Pruksachatkun, Sean Adler,
Jennifer Seale, Jordan Swartz, Greg McKelvey, Hui
Dai, Yi Yang, and David Sontag. 2021. CLIP: A
dataset for extracting action items for physicians from
hospital discharge notes. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1365–1378, Online. Association
for Computational Linguistics.

Shounak Paul, Arpan Mandal, Pawan Goyal, and Sap-
tarshi Ghosh. 2022. Pre-training transformers on
indian legal text. CoRR, abs/2209.06049.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Jaromír Savelka, Hannes Westermann, and Karim
Benyekhlef. 2020. Cross-domain generalization and
knowledge transfer in transformers trained on legal
data. In Proceedings of the Fourth Workshop on Au-
tomated Semantic Analysis of Information in Legal
Text held online in conjunction with the 33rd Inter-
national Conference on Legal Knowledge and Infor-
mation Systems, ASAIL@JURIX 2020, December 9,
2020, volume 2764 of CEUR Workshop Proceedings.
CEUR-WS.org.

Esther van den Berg and Katja Markert. 2020. Con-
text in informational bias detection. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, COLING 2020, Barcelona, Spain
(Online), December 8-13, 2020, pages 6315–6326.
International Committee on Computational Linguis-
tics.

A Training and Implementation Details

Python 3.8.8, PyTorch 1.9.0, and Hugging Face
4.17.0 are the programming language and main
libraries utilized by us to develop all models. Hug-
ging Face is mainly used to load pre-trained Trans-
former models.

Pre-trained Transformer models are utilized with
default parameters, except for Longformer ones
whose global attention is set to take <s> and </s>
tokens into account.

911

https://doi.org/10.18653/v1/D19-1383
https://doi.org/10.18653/v1/D19-1383
https://ceur-ws.org/Vol-3178/CIRCLE_2022_paper_29.pdf
https://ceur-ws.org/Vol-3178/CIRCLE_2022_paper_29.pdf
https://ceur-ws.org/Vol-3178/CIRCLE_2022_paper_29.pdf
https://tmr.liacs.nl/legalIR/LegalIR2023_proceedings.pdf
https://tmr.liacs.nl/legalIR/LegalIR2023_proceedings.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.lrec-1.470
https://aclanthology.org/2022.lrec-1.470
https://doi.org/10.1145/3487075.3487161
https://doi.org/10.1145/3487075.3487161
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.acl-long.109
https://doi.org/10.18653/v1/2021.acl-long.109
https://doi.org/10.18653/v1/2021.acl-long.109
https://doi.org/10.48550/arXiv.2209.06049
https://doi.org/10.48550/arXiv.2209.06049
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://ceur-ws.org/Vol-2764/paper5.pdf
http://ceur-ws.org/Vol-2764/paper5.pdf
http://ceur-ws.org/Vol-2764/paper5.pdf
https://doi.org/10.18653/v1/2020.coling-main.556
https://doi.org/10.18653/v1/2020.coling-main.556


Model Batch Size Dropout LR Training Time

SingleSC BERT 8 0.1 10−5 07h27m29s
SingleSC InCaseLaw 8 0.1 10−5 07h21m36s
SingleSC RoBERTa 8 0.1 10−5 07h30m46s

Cohan InCaseLaw 4 0.1 10−5 01h35m00s
Cohan RoBERTa 4 0.1 10−5 01h37m18s
Cohan Longformer 2 0.1 2 · 10−5 03h34m54s

Sharing edges InCaseLaw 4 0.1 10−5 04h45m33s
Sharing edges RoBERTa 4 0.1 10−5 04h52m32s
Sharing edges Longformer 2 0.1 2 · 10−5 08h55m11s

DFCSC-SEP InCaseLaw 4 0.1 10−5 02h21m03s
DFCSC-SEP RoBERTa 4 0.1 10−5 02h33m24s
DFCSC-SEP Longformer 2 0.1 2 · 10−5 02h24m12s

DFCSC-CLS InCaseLaw 4 0.1 10−5 02h22m07s
DFCSC-CLS RoBERTa 4 0.1 10−5 02h32m05s
DFCSC-CLS Longformer 2 0.1 2 · 10−5 02h16m28s

Table 3: Training hyperparameters and training time of models referenced in Table 1. Training time concerns four
executions of a model. LR indicates the initial Learning Rate.

For all models, we employ the Cross-Entropy
loss function and Adam optimizer (β1 = 0.9, β2 =
0.999, ϵ = 10−8, weight_decay = 10−3). The
learning rate is linearly scheduled from an initial
value to zero and there are no warm-up steps.

A single NVIDIA GeForce GTX 1080 Ti GPU
with 11GB is used to train all models.

Table 3 presents the training hyperparameters
values employed to train the models presented in
Table 1. The indicated dropout rate is applied only
in the fully-connected layer.

912


