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Abstract

A traditional concept in phonological theory
is that of the underlying form. However, the
history of phonology has witnessed a debate
about how abstract underlying representations
ought to be allowed to be, and a number of argu-
ments have been given that phonology should
abandon such representations altogether. In
this paper, we consider a learning-based ap-
proach to the question. We propose a model
that, by default, constructs concrete represen-
tations of morphemes. When and only when
such concrete representations make it challeng-
ing to generalize in the face of the sparse statis-
tical profile of language, our proposed model
constructs abstract underlying forms that al-
low for effective generalization. As a case
study, we consider the highly agglutinative lan-
guage, Turkish. We demonstrate that the un-
derlying forms that our model constructs ac-
count for the complexities of Turkish phonol-
ogy resulting from its multifaceted vowel har-
mony. Moreover, these underlying forms en-
able the highly-accurate prediction of novel sur-
face forms, demonstrating the importance of
some underlying forms to generalization.

1 Introduction
A traditional conception of phonological theory in-
volves abstract underlying representations (URs)
together with phonological processes (stated as
rules or constraints) mapping between this abstract
level of representation and a concrete, surface-
level representation. Debates in the 1960’s and
1970’s questioned how abstract URs should be al-
lowed to be (Hyman, 2018, p. 597), with a partic-
ularly famous article by Kiparsky (1968) arguing
that the positing of non-concrete representations
should only be done when motivated. Any percep-
tion of this debate as fading in subsequent years is
probably better attributed to the field moving on to
other questions than it is to a satisfactory resolution
of the debate (Anderson, 2021).

Indeed, some phonologists have taken the posi-
tion that URs should not be used in phonological
theory because doing so is “(i) wrong, (ii) redun-
dant, (iii) indeterminate, (iv) insufficient, or (v) un-
interesting,” as Hyman (2018, p. 591) summarized
the objections. Meanwhile, much of the work on
learning phonology has either focused on surface
restrictions (e.g., Hayes and Wilson 2008) or con-
tinued to assume URs (e.g., Tesar and Smolensky
1998; Boersma 1997), abstracting away from the
question of how (and if) such representations are
constructed (see Jarosz 2019 for a summary).

One of the main justifications for the use of un-
derlying representations is to capture generaliza-
tions. For example, the form of the English plural
affix—[z], [s], or [@z]—depends on the stem-final
segment, but is predictable from the stem-final seg-
ment, as in (1).

(1) [dAg-z]
[kæt-s]
[hOrs-@z]

Positing an underlying /-z/ derived by process
into [z], [s], or [@z] allows this generalization to be
captured. However such an analysis is not neces-
sary. The allomorphs could each be listed along
with a set of sounds each occurs after, or the ap-
parent relationship between singulars and plurals
could be ignored altogether and both forms could
simply be memorized.¹

How then are we to choose from these analy-
ses? Is the desire to capture a generalization suf-
ficient motivation to choose the /-z/ analysis? In
this work we propose a learning-based approach to
this question. Specifically, we propose a computa-
tional model that assumes, by default, that underly-
ing forms are fully concrete. The model attempts
to formmorphological generalizations out of sheer

¹As one reviewer pointed out, evidence of overgeneraliza-
tion (e.g., MacWhinney 1978) suggests that memorization is
not an empirically-tenable hypothesis in all cases.
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necessity to deal with the sparse statistical profile
of language (Yang 2016, ch. 2; Chan 2008).

The question then becomes learning-based:
when does surface-alternation of a morpheme
prevent the learner from forming morphologi-
cal generalizations from concrete representations?
In some—but critically not all—cases, surface-
alternations are pervasive enough to drive the
learner to resort to abstract URs in order to effec-
tively generalize. We present the model in § 2.

We evaluate the model on natural-language cor-
pora of the highly agglutinative language Turkish,
demonstrating both when abstract URs are nec-
essary for generalization and when they are not
(§ 3). When combined with a recent model for
learning local and non-local alternations, the pro-
posed model achieves high accuracy generalizing
to held-out test words (§ 3.4).

2 Model
2.1 Model Input
The input to the model is a set of morphologically-
analyzed surface forms. An example input of nine
forms is shown in Tab. 1. These word forms are
processed by the model incrementally, modeling
the growth of a learner’s lexicon.

While morphological segmentation is an impor-
tant area of study in its own right, we believe it
is a justified assumption given experimental evi-
dence that infants can effectively morphologically
segment nonce words. These results have been ob-
served for French-learning 11mo-old (Marquis and
Shi, 2012) and English-learning 15mo-old (Mintz,
2013) infants. The finding is corroborated by
results for 15mo Hungarian-learning infants, de-
spite the high-level of agglutination in Hungarian
(Ladányi et al., 2020).

2.2 Model Output
The output of the model is a lexicon, which con-
tains a representation for each morpheme, and a
lexicalized list of any input word forms not decom-
posable into those morphemes. The representation
of a morpheme may be concrete or abstract.² As
discussed by Ettlinger (2008, sec. 4.3.4), a UR can
be called abstract because it lacks the phonetic de-
tail of an actual speech sound (e.g., /D/ as an alveo-
lar stop lacking a voicing specification), or because

²We treat surface and underlying representations, whether
concrete or abstract, as sequences of segments, where each
segment is a set of distinctive features.

Surface Form Morphological Analysis

1. [buz-lAr] ‘ice-PL’
2. [kWz-lAr] ‘girl’-PL
3. [el-ler] ‘hand-PL’
4. [jer-ler-in] ‘place’-PL-GEN
5. [søz-ler] ‘word-PL’
6. [dAl-lAr-Wn] ‘branch’-PL-GEN
7. [sAp-lAr] ‘stalk-PL’
8. [jyz-yn] ‘face’-GEN
9. [ip-ler-in] ‘rope’-PL-GEN

Table 1: An example Turkish input consisting of
morphologically-analyzed surface forms.

it contains different segments from a surface form.
For simplicity, we will refer to the representation
constructed in the lexicon as a UR, regardless of its
abstractness. This assumes, following prior work
(§ 4), that each morpheme has a single UR. Future
work will consider scenarios where this may not be
the case.

2.3 Model Description
By default, the model creates a concrete UR for
each morpheme. Prior work (§ 4) often resorts to
phonological processes to produce the various sur-
face forms of a morpheme at the first instance of
surface alternation. Our model differs from this
approach by treating underlying forms as concrete
even after the first instance of surface alternation.
Instead of immediately collapsing surface forms
into a single, abstract UR, our model simply lexi-
calizes all word forms inwhich amorpheme occurs
as something other than its most frequent form. It
is only when the resulting lexicalization becomes
unsustainable (see § 2.4) that the model then con-
structs abstract underlying forms from which the
surface realizations are derived by morphophono-
logical process.

The pseudocode for the algorithm is shown in
(2).³ As discussed in § 2.1, the input to the model
is an incremental stream of morphologically-
analyzed surface forms. Whenever the model re-
ceives a new surface form (2; step 1), it initially
creates a concrete underlying form for each mor-
pheme, storing the most frequent form of the mor-
pheme concretely (2; step 3), and lexicalizes any
wordforms that contain a different form of the mor-
pheme (2; step 8). However, if too many word-

³Code is available at https://github.com/cbelth/underlying-
forms-SCiL
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Meaning UR Plural Form

PL /lAr/ N/A

‘ice’ /buz/ Stem-PL‘girl’ /kWz/

‘hand’ /el/ /el-ler/

Table 2: When the first three words from Tab. 1 enter
the lexicon, the stems and plural affix are all stored con-
cretely (left two columns). The plural form of the ‘ice’
and ‘girl’ stems are predictably decomposable into their
concrete stems and the PL affix (denoted with the bold-
face concatenation), so those forms need not be stored
in the lexicon. However, with /-lAr/ as the UR of the
plural, the plural form of ‘hand’ cannot be so decom-
posed, so it is instead lexicalized.

forms in the lexicon are exceptions—where the
measurement of “too many” occurs as described
in § 2.4—the model instead constructs an abstract
UR (2; step 5) and then learns a phonological pro-
cess, via a separate model (see § 2.6), to account
for the resulting alternation.

(2) Input: Incremental stream of morphologi-
cally analyzed SRs
1. While surface form in input do
2. – For morpheme in segmentation do
3. — Morpheme UR← most freq form
4. — If too many alternative forms do
5. —– Construct abstract UR
6. —– Learn phonological process
7. — Else do
8. —– Lexicalize exceptions

For example, consider the PL suffix after the first
2 (of 9) inputs listed in Tab. 1 have entered the
learner’s lexicon. At this point, the model will be
storing the only attested surface form [-lAr] as the
concrete UR /-lAr/.

When the third word enters the lexicon, our
model will lexicalize the form ‘hand-PL’ as /el-ler/,
rather than immediately constructing an abstract
PLmorpheme. This is shown in Tab. 2, where each
stem and the plural affix have concrete underlying
forms, and the plural form of ‘ice’ and ‘girl’ are
formed by suffixing the plural to the stem, but the
plural form of ‘hand’ is lexicalized.

By the time all 9 words enter the lexicon, how-
ever, there will be 4 instances of [-lAr] and 4 of
[-ler], making it no longer sustainable to keep a
concrete underlying form. The difference between

these two scenarios and, more generally, the deci-
sion of when to create an abstract underlying form,
is made by the Tolerance Principle (Yang, 2016),
as described next.

2.4 When is Abstraction Needed?
In order to detect when the amount of surface al-
ternation that prohibits generalization from con-
crete representations, the model uses the Tolerance
Principle (TP), proposed by Yang (2016). The TP
is a cognitively-grounded tipping point, which hy-
pothesizes that children form productive general-
izations when the number of exceptions to a pro-
posed generalization results in a real-time process-
ing cost lower than that without the generalization.
The exact derivation of the TP is provided by Yang
(2016, ch. 3), but rests critically upon the empirical
observation of linguistic sparsity. The TP has had
much prior success in computational modeling,
lexical, and experimental studies (Schuler et al.,
2016; Yang, 2016; Richter, 2018; Koulaguina and
Shi, 2019; Emond and Shi, 2021; Richter, 2021;
Belth et al., 2021; Payne, 2022; Belth, 2023).

Our model’s default treatment of underlying
forms as concrete can be stated as a morpheme-
specific rule. In the example above, where only the
first 2 words of Tab. 1 have entered the lexicon, the
rule for the PL form would be (3), which predicts
that the PL morpheme is realized as [-lAr].

(3) If PL then [-lAr]

The TP threshold, which evaluates a linguistic
rule (generalization), is stated in (4), where 𝑛 is the
number of items the rule applies to and 𝑒 is the
number of exceptions to the rule.

(4)
𝑒 ≤ 𝑛

ln 𝑛
Thus, our model tracks—for each morpheme—

the number of observed words in which the mor-
pheme appears (n) and the number of those where
surface alternation leads the morpheme to be real-
ized as something other than its hypothesized con-
crete form (e).

If the (4) threshold is met, then the UR remains
concrete and the word forms where the suffix is re-
alized as something else are lexicalized⁴ as excep-
tions. For example, when the 3rd item in Tab. 1

⁴By lexicalization, we mean that the word form is stored
in the lexicon verbatim instead of being decomposed into the
underlying morphemes. See Tab. 2 for an example.
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Morphemes Word Forms

Meaning UR PL Form GEN From PL, GEN Form

PL /lAr/ N/A N/A N/A
GEN /in/ N/A N/A N/A

‘ice’ /buz/
Stem-PL

?? ??
‘girl’ /kWz/ ?? ??
‘stalk’ /sAp/ ?? ??

‘hand’ /el/ /el-ler/ ?? ??
‘word’ /søz/ /søz-ler/ ?? ??
‘face’ /jyz/ ?? /jyz-yn/ ??
‘place’ /jer/ ?? ?? /jer-ler-in/
‘branch’ /dAl/ ?? ?? /dAl-lAr-Wn/
‘rope’ /ip/ ?? ?? /ip-ler-in/

Table 3: The left two columns contain morphemes—meaning and form (UR); the right three columns contain word
forms. Boldface denotes word forms that can be predictably decomposed into concrete underlying forms, while
‘/-/’ notation denotes word forms that must be lexicalized. The ‘??’ denotes word forms that are unknown. Once
all nine words from Tab. 1 enter the lexicon, most forms (6 of 9) cannot be predictably decomposed into concrete
underlying forms, so the model constructs abstract URs, as described in § 2.5.

enters the lexicon, the realization of PL as [-ler]
violates (3). However, with only three word forms
containing PL this one exception can be lexical-
ized, since 1 ≤ 3/ln 3.

On the other hand, if the (4) threshold is
violated—i.e., 𝑛 > 𝑛

ln 𝑛—then themodel constructs
an abstract underlying form. For example, when
the 9th item of Tab. 1 enters the lexicon, the real-
ization of PL as [-ler] becomes the 4th of 8 forms in
which PL is realized as [-ler] instead of the [-lAr]
predicted by (3). Because 4 > 8/ln 8, the model
will construct an abstract UR for the PLmorpheme.

This is shown in Tab. 3, where the plural is real-
ized as [-lAr] in 3 plural forms and 1 plural, geni-
tive form, but there are 4 forms that must be lexi-
calized because they instead have the [-ler] form.⁵

Constructing abstract URs introduces discrepan-
cies between URs and SRs for any word forms con-
taining the morpheme, so our model then passes
the (UR, SR) pairs implicit in its lexicon⁶ to a
model that learns phonological alternations to ac-
count for the newly-introduced discrepancies. The
process of constructing abstract URs is described
in § 2.5 and the process of learningwhat conditions
the alternations is described in § 2.6.

⁵Note that the PL, GEN of ‘branch’ is lexicalized because
the GEN affix is realized in a form other than [in], not because
of the PL affix, which is why that form does not get counted
as an exception in the TP calculation for the PL affix.

⁶See § 2.6 for a description of how the set of (UR, SR)
pairs is computed.

2.5 Constructing Abstract URs

The model’s first step in constructing an abstract
UR for a morpheme is to create the set of forms
that the morpheme is realized as. For example, the
forms of the GEN affix attested in Tab. 1 are [-in] /
[-Wn] / [-yn], and of the PL affix are [-lAr] / [-ler].

Next, the model aligns each of the forms. This
is trivial for fixed-length affixes (e.g., the case of
the PL affix). If the length of the forms are not
all the same, then the model counts the lengths of
the morpheme’s realizations. For example, the da-
tive affix can be realized as [-A] or [-e], but may
contain an affix-initial [j] when attaching to a mor-
pheme that ends in a vowel. The model thus counts
the number of words in which [-A] or [-e] (length
1) is the realization, and the number in which [-jA]
or [-je] is the realization (length 2), and chooses
the most frequent length as the length of the UR.
If a shorter length is chosen, the extra segment(s)
are treated as epenthesized; if the longer is chosen,
they are treated as deleted. For simplicity, we as-
sume that these segments epenthesize or delete on
the left, which is a simplification. This process is
not guaranteed to generalize to other languages, so
future work will develop a more robust alignment
process by more tightly combining the problems of
abstract UR construction and rule construction.

Once the forms are aligned, the UR is con-
structed one segment at a time. Each segment is
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set to match in features where all realizations of
the affixmatch; features that alternate across forms
are unspecified underlyingly. For example, [-lAr] /
[-ler] will lead to /-lAr/, where A is the low, un-
round vowel with backness unspecified, because
both forms agree in the initial and final segments,
but the vowel alternates on backness. Similarly, [-
in] / [-Wn] / [-yn] will result in /-Hn/, where H
is the high vowel with backness and roundness un-
specified, since [i] and [y] differ in backness from
[W] while [i] and [W] differ from [y] in roundness.

2.6 Learning Alternations

When the number of words where the morpheme’s
surface alternation requires the word be lexical-
ized becomes too great, the model constructs an
abstract UR for the morpheme. This abstract UR
introduces a discrepancy between the abstract UR
and its surface realization. The model thus con-
structs a set of (UR, SR) pairs from the lexicon,
which it passes to a model that learns a phonologi-
cal process to derive the various surface forms.

For example, when the 9th item from Tab. 1
causes /lAr/ to no-longer be sustainable as the PL
affix UR, the lexicon is as described in Tab. 3.
The surface form for the PL forms of the roots
‘ice’, ‘girl’, and ‘stalk’ are computed by con-
catenating /lAr/ to the stem (i.e., Stem-PL), and
the remaining six known surface forms, which
were lexicalized, are extracted directly from the
lexicon. Since the PL is being collapsed into
/lAr/, each word’s UR is computed by replac-
ing the surface realization of the PL affix with
this new UR. Thus, the (UR, SR) pairs at this
point would be {(/buzlAr/, [buzlAr]), (/kWzlAr/,
[kWzlAr]), (/sAplAr/, [sAplAr]), (/ellAr/, [eller]),
(/søzlAr/, [søzler]), (/jyzyn/, [jyzyn]), (/jerlArin/,
[jerlerin]), (/dAllArWn/, [dAllArWn]), (/iplArin/,
[iplerin])}.

Learning phonological processes from UR-SR
pairs is an active area of study, and many mod-
els have been proposed (see Jarosz 2019 for an
overview). In this work we chose Belth (2023)’s
model, which is a cognitively-grounded model that
provides a unified ability to learn local and non-
local alternations, which is important, given Turk-
ish’s non-local vowel harmony combined with lo-
cal processes like voicing assimilation (see § 3.1).

Belth (2023)’s model is grounded in humans’
strong tendency to track adjacent dependencies.
For example, artificial language experiments have

repeatedly demonstrated that learners more easily
learn local phonological processes than non-local
ones (Baer-Henney and van de Vijver, 2012) and,
when multiple possible phonological generaliza-
tions are consistent with exposure data, learners
systematically construct the most local generaliza-
tion (Finley, 2011; White et al., 2018; McMullin
and Hansson, 2019).

The Belth (2023) model learns rules to predict
the surface form of alternating segments—in this
case those that are underlyingly abstract. To do
so, the model tracks only dependencies between
alternating segments and the segments adjacent to
them. If these adjacent segments fail to allow the
surface form to be accurately predicted, the model
deletes any adjacent segments that prevent the sur-
face form from being predicted, and repeats. The
iteratively deleted segments accumulate into a dele-
tion set, the complement of which is interpreted as
a tier. The learned rules are applied locally over
the tier projection. Because segments are deleted
only when adjacent dependencies fail to make the
surface form predictable, local processes are a spe-
cial case, and thus local and non-local processes
are learnable by a unified model.

3 Evaluation

This section provides a case study of our proposed
model on the highly agglutinative language, Turk-
ish. In § 3.1 we describe some relevant details of
Turkish. We then describe the setup of our evalua-
tion in § 3.2. Finally, we present qualitative results
in § 3.3 and quantitative results in § 3.4.

3.1 Turkish

Turkish phonology receives attention often be-
cause of its apparently complex vowel harmony
system. It exhibits both primary front/back har-
mony and secondary rounding harmony, which
is parasitic on height: only [+high] vowels har-
monize for roundness. Moreover, Turkish has
a number of exceptional suffixes whose vowels
do not participate in harmony, and even half-
harmonizing suffixes, which have multiple vow-
els, some of which harmonize and some of which
do not. These harmony processes occur alongside
other processes, such as local voicing assimilation.
The Turkish vowel inventory is shown in (5).
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(5)

front back
unround round unround round

high i y W u

low e ø A o

The primary harmony process is observed in af-
fix vowels that alternate between [+back] when the
preceding vowel is [+back] and [−back] when it
is [−back], as in (6) (examples from Nevins 2010,
p. 28; Kabak 2011, p. 3).

(6) [dAl-lAr-Wn]
[jer-ler-in]
[ip-ler-in]

branch-PL-GEN
place-PL-GEN
rope-PL-GEN

The secondary rounding harmony involves suf-
fixal [+high] vowels matching in roundness to the
vowel to the left, as in (7) (examples from Nevins
2010, p. 29; Kabak 2011, p. 3). This harmony oc-
curs regardless of whether the vowel to the left is
[+high] (7a) or [−high] (7b).

(7) a. [ip-in]
[jyz-yn]
[kWz-Wn]
[buz-un]

b. [el-in]
[søz-yn]
[sAp-Wn]
[jol-un]

rope-GEN
face-GEN
girl-GEN
ice-GEN
hand-GEN
word-GEN
stalk-GEN
road-GEN

Some suffixes have vowels that do not partici-
pate in harmony. For example, the suffix [-ki] can
attach to a temporal or spatial nominal root to yield
adjectival forms as in (8), where the suffix surfaces
with the vowel [i] regardless of the final vowel of
the stem (examples from Oflazer 1994, p. 144).
The PL suffix, which alternated in (6), here har-
monizes with the [i] vowel (8b), thus surfacing as
[e].

(8) a. [ønÃe-ki] ‘(the one) before’
[jArWn-ki] ‘(the one) tomorrow’

b. [ønÃe-ki-ler] ‘(the ones) before’
[jArWn-ki-ler] ‘(the ones) tomorrow’

The situation gets more complex, as some suf-
fixes are half harmonizing, meaning they have two
vowels with one harmonizing and one not.⁷ An

⁷The term half harmonizing is from Nevins (2010), but
one reviewer pointed out that, in principle, other fractions of
vowels (1 of 3) could harmonize.

example is shown in (9a), where the first vowel
of the abilitative (ABIL) suffix harmonizes with
the vowel to the left, but the second vowel is
always [−back] [i] even when the first vowel is
[+back] (Kornfilt, 2013). The aorist (AOR) suffix
vowel then harmonizes with the abilitative’s non-
harmonizing second vowel [i] in (9a). The exam-
ple (9b) demonstrates that the AOR suffixal vowel
surfacing as [i] in (9a) is indeed due to harmony,
as it harmonizes in (9b) with [o].

(9) a. [jAz-Abil-ir] ‘write’-ABIL-AOR
[jyz-ebil-ir] ‘swim’-ABIL-AOR

b. [ol-ur] ‘become’-AOR

Vowel harmony often goes in hand with other
phonological processes, such as voicing assimila-
tion. This can be seen, for example, in the locative
(LOC) suffix, which exhibits vowel harmony, but
begins with an alveolar stop, which assimilates in
voicing to the segment to its left, as in (10) (exam-
ples from Dobrovolsky 1982; Çöltekin 2010; Ko-
rnfilt 2013).

(10) [byro-dA] ‘office’-LOC
[ev-de] ‘house’-LOC
[Ãep-te] ‘pocket’-LOC

In the remaining subsections, we demonstrate
how our proposed model elegantly accounts for
these complexities in Turkish (§ 3.3), and how this
allows for novel surface forms to be accurately pre-
dicted (§ 3.4). First, though, we introduce the setup
and data we used for our experiments (§ 3.2).

3.2 Setup and Data
To simulate learning in Turkish, we constructed
two Turkish datasets consisting of frequency-
annotated and morphologically-analyzed surface
forms (see below). To simulate one learning tra-
jectory, we sampled words with replacement from
the corpus, weighted by frequency. Each time a
new word form is sampled, the learner adds it to
its lexicon. We then investigate the underlying
forms of each morpheme, seeing which are con-
crete and which are abstract (§ 3.3). We then eval-
uate how accurately the model, combined with a
model for learning alternation rules, allows novel
surface forms to be predicted (§ 3.4).

We constructed two datasets, called Mor-
phoChallenge and CHILDES. The first used data
from MorphoChallenge (Kurimo et al., 2010),
which contains a large Turkish corpus annotated
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with word frequencies. To generate morpholog-
ical analyses of words, we used Çöltekin (2010,
2014)’s finite state morphological analyzer, which
is designed for Turkish. This is similar to the
process used in the MorphoChallenge, but is pub-
licly available.⁸ We dropped any word in Mor-
phoChallenge that had fewer than 25 occurrences
or for which the morphological analyzer failed
to provide an analysis. We also removed forms
with affixes that are analyzed by Çöltekin (2010,
2014) as having multiple underlying forms. For
example, the highly irregular aorist suffix is some-
times described as having four underlying forms:
/-Ar/, /-Hr, /-z/, /-null/. Future work will con-
sider scenarios where multiple URs are necessary.
This resulted in 22,315 frequency-annotated and
morphologically-analyzed surface forms, which
we transcribed into IPA.

The second dataset is derived from the child-
directed speech in the Aksu (Slobin, 1982) and
Altinkamis corpuses of the CHILDES database
(MacWhinney, 2000). We computed the frequency
of each word in the corpuses and used the same
process as above to morphologically analyze each
word. This dataset is much smaller, so we did not
exclude words with low corpus counts from this
dataset. The resulted in 1,727 frequency-annotated
and morphologically-analyzed surface forms, tran-
scribed into IPA.

Note that some Turkish suffixes exhibit dele-
tion/epenthesis to avoid CC or VV clusters. These
additional processes are at present ignored, be-
cause the implementation provided by Belth
(2023) was designed for harmony and disharmony.
Future work will extend the implementation to
epenthesis and deletion by incorporating Belth (In
Press)’s model, which handles such processes.

3.3 Suffixes: Abstract and Concrete
Remarkably, the apparent complexity of Turkish
vowel harmony, discussed in § 3.1, vanishes when
we investigate the output of our model.⁹ As be-
fore, we will let A denote the Turkish low, un-
round vowel with backness unspecified (extension-
ally, {e, A}) and H be the Turkish high vowel with
both backness and height unspecified (extension-
ally, {i, y, W, u}). Moreover, we will use D to
denote the alveolar stop with voicing unspecified
(extensionally, {d, t}).

⁸https://github.com/coltekin/TRmorph
⁹This analysis is performed on a random, frequency-

weighted 80% sample of the MorphoChallenge dataset.

We will walk through the complexities exempli-
fied by (6)-(10) one-by-one. First, the PL suffix in
(6), which has a low unrounded vowel, participates
in front/back harmony, but not rounding harmony
because it is not a [+high] vowel. Our model con-
structed the underlying form /-lAr/ for this suffix,
capturing the fact that it only harmonizes for back-
ness.

The GEN suffix in (6)-(7) has a [+high] vowel
and participates in both primary and secondary har-
mony. Our model constructed the underlying form
/-Hn/ for this suffix, which captures the surface al-
ternation of this morpheme.

Next, the [-ki] suffix in (8) does not participate
in harmony, and our model consistently represents
it with a concrete form /-ki/.

For the abilitative suffix in (9), our model ab-
stracts the first, harmonizing vowel, but keeps the
second, non-harmonizing vowel concrete -/Abil/.

Lastly, the UR for the locative suffix in (10)
is constructed with both segments abstract /-DA/,
capturing both the voicing assimilation of the ini-
tial alveolar stop and the vowel harmony of the sec-
ond segment.

These underlying forms allow Belth (2023)’s
model to learn two rules, which allow for the accu-
rate prediction of novel surface forms. On the re-
sulting (UR, SR) pairs, Belth (2023) learns a vowel
harmony rule, which targets both /A/ and /H/ vow-
els, and enforces harmony with respect to their un-
specified values: [back] for /A/ and both [back]
and [round] for /H/. The model automatically con-
structs a vowel tier and enforces harmony locally
over that tier (see Belth 2023 for details). Belth
(2023)’s model also learns a local voice assimila-
tion rule, which causes /D/ to take its [voice] value
from the segment to its left.

It is worth noting that others—in particular
Nevins (2010)—have similarly argued that Turk-
ish vowel harmony can be elegantly accounted for
with an underspecification approach. Our model
builds on Nevins (2010)’s observations by provid-
ing an explicit computational model that constructs
underlying forms, which turn out to be consistent
with this analysis.

As a further analysis, we show the 10 most fre-
quent affixes in a 1Kword sample of the CHILDES
corpus in Tab. 4, along with the UR that our model
constructed for each. Of the 10 affixes, 7 have been
collapsed into abstract forms. However, there are
3 forms (P1S, lH, P2S) that were quite frequent,
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Affix UR Abstract

PL /-lAr/ Y
P3S /-H/ Y
P1S /-m/ N
GEN /-Hn/ Y
DAT /-A/ Y
ACC /-H/ Y
LOC /-DA/ Y
VN:INF /-mA/ Y
lH /-lW/ N
P2S /-n/ N

Table 4: Top 10 most frequent affixes in a ran-
dom, frequency-weighted sample of 1K words from
the CHILDES dataset, and the URs that our model
learned. See http://coltekin.net/cagri/trmorph/trmorph-
manual.pdf for a description of affix names.

but are still able to be stored concretely. The P1S
and P2S affixes do not have alternating segments in
Turkish, so it is expected that these would be con-
crete. The “lH” affix, as captured by its name, can
surface with any high vowel. However, in the train-
ing data, the [-lW] form occurs 25 out of 32 times,
so the 7 words where it surfaces as something else
are lexicalized (7 <= 32/ln 32).

3.4 Quantitative Evaluation
We also evaluated how the model enables gener-
alization, when paired with a model for learning
phonological alternations. We used our model in
tandem with Belth (2023)’s model to learn to map
a stem and morphological analysis of a surface
form to an actual surface form. For example, given
the stem [dAl] and morphological analysis Stem-
PL-GEN, our model’s underlying forms for -PL
and -GEN are concatenated to the stem to form a
UR, to which the generalizations learned by Belth
(2023) can then be applied to predict a surface
form, such as [dAllArWn].

We ran the model on both datasets, simulating
incremental learning by sampling words with re-
placement and weighted by frequency, and adding
them to the lexicon when sampled. As this pro-
cess incrementally adds words to the lexicon, our
model operates as described in (2). In 250-word
increments (i.e., every time the lexicon grows by
250 unique words), we evaluated the model by us-
ing the rules learned by Belth (2022)’s model—on
our learned underlying forms—to predict the sur-
face form of all the words not in the lexicon. We

carried out 5 simulations on each dataset, using dif-
ferent random seeds for sampling on each.

The results are shown in Fig. 1, where the 𝑥-axis
shows the incremental growth of the learner’s lex-
icon (i.e., the training size), and the 𝑦-axis shows
the accuracy at predicting novel surface forms at
that point during training. The accuracy is com-
puted over all surface forms not currently in the
training data. Each subfigure is for one of the two
datasets. The MorphoChallenge results (Fig. 1a)
are reported up to a size of 3K words, so the test
results are on 10s of thousands of novel words.

The model’s performance appears to be consis-
tent with acquisition studies. Altan (2009) found
that Turkish-speaking children as young as 2;0
extend vowel harmony to nonce words. Studies
across languages reveal that a child’s vocabulary
is quite modest at this age, with an upper bound
around 1K words (Fenson et al., 1994; Hart and
Risley, 1995; Szagun et al., 2006; Bornstein et al.,
2004). The model’s performance on both datasets
is above 90% accuracy when its vocabulary con-
tains 1K words.

3.4.1 Error Analysis
Of the errors, around 52% result from the model
having a concrete form of an affix, which it then
errantly predicts for a novel word that exhibits al-
ternation in that affix. For example, there are in-
sufficient forms in the training data to make /Wp/
as the concrete CV:IP affix prohibitive (𝑒 = 5 <=
𝑛 = 13/ln 13), even though vowel harmony leads it
to sometimes surfaces with other high vowels. As
a result, novel words like [gel-ip], which take the
[ip] form of the affix are mispredicted.

About 47% of the errors are the result of
vowel harmony or consonant assimilation being
predicted for a novel form that exceptionally does
not involve harmony. For example, the word
[sAAt-ler] ‘watch-PL’ is predicted by our model to
be [sAAt-lAr] because the UR for the plural suffix is
/lAr/, as it systematically harmonizes. According
to a Wiktionary search,¹⁰ the root [sAAt] is of Ara-
bic origins. Because Arabic has a different vowel
system, vowels in Arabic loan words may conform
to the Turkish vowel system when entering Turk-
ish, and thus sometimes behave oddly. Indeed, Al-
tan (2009) observed that children may overextend
vowel harmony to such words.

The remaining 1% of errors result from very low

¹⁰https://en.wiktionary.org/wiki/saat#Turkish
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(a) MorphChallenge (b) CHILDES

Figure 1: Our proposed model’s accuracy (averaged over 5 simulations) at predicting novel surface forms. The
𝑥-axis shows the growth of the learner’s lexicon (i.e., the training size).

frequency affixes which are simply unattested in
the training data.

4 Prior Work

Tesar (2014) and Hua et al. (2020) focus on the-
oretical analyses of the nature of the problem of
learning URs. O’Hara (2017); Rasin et al. (2018);
Ellis et al. (2022) proposed computational mod-
els, but evaluate on small, phonology-textbook-like
data, not large, natural-language corpora.

Cotterell et al. (2015) also predominately mod-
els textbook-like problems, but presents some lim-
ited analysis on more realistic corpora. However,
these corpora only involve very simple morpho-
logical paradigms involving a single suffix, and
present to the model a fairly curated subset of the
corpus that isolates the relevant morphophonolog-
ical process.

Richter (2021) studies the question of when al-
lophonic surface segments are collapsed into an
abstract underlying segment, focusing on the En-
glish flap [R] allophone of /T/. While Richter
(2021) focuses on allophones, our proposed model
is inspired by it and can be viewed as extending
the same principles to morphophonological alter-
nations.

Of these prior models, we were only able to get
access to code for Cotterell et al. (2015) and Rasin
et al. (2018), which we were unable to get to run
on our large datasets. In future versions of this
work, we intend to implement some of these exist-
ing models in order to compare their performance
and behavior to that of our proposed model.

5 Conclusion

This work proposed a learning-based account of
underlying forms, taking the highly agglutinating
language of Turkish as a case study. The proposed
model starts with concrete underlying representa-
tions and constructs abstract URs only in cases
where doing so helps to form generalizations that
deal with the sparsity of morphological forms in
the learner’s input.

The model constructs abstract underlying forms
when they are critical for generalization, but allows
for concrete forms when abstraction is unecessary.
This flexibility is at the core of the model’s suc-
cess, as evidenced by the fact that the represen-
tations of Turkish suffixes in § 3.3 are minimally
abstract. For example, the half-harmonizing suf-
fixes consist of concrete segments except for the
single, harmonizing vowel. Similarly, exceptional,
non-harmonizing suffixes remain fully concrete.

When combined with a model for learning lo-
cal and non-local alternations, the proposed model
achieves >95% accuracy predicting the surface
form of held-out test words.

This work presents a preliminary case study in
Turkish. Future work will evaluate the model on
other languages. Moreover, the algorithm takes
as inputmorphologically-segmented surface forms.
As discussed in § 2.1, there is experimental evi-
dence that children are able to perform morpholog-
ical segmentation. In future work, we will attempt
to bring the problems together, jointly segmenting
surface forms, learning underlying forms, and mor-
phophonological grammars.
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