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Abstract

In this paper, we apply distributional methods
to Czech data to compare the predictions of
two views of inflectional paradigms, as sys-
tems of orthogonal morphosyntactic feature
oppositions, or as systems of multilateral con-
trasts between pairs of morphologically related
words, not necessarily reducible to orthogonal
features.

We define two predictive tasks that probe what
it means for two pairs of paradigm cells to
contrast in the same features: in the first, we
train a classifier to discriminate between two
paradigm cells; in the second, we train a fam-
ily of models to predict the vector of the word
in one cell from that of the word in another
cell. By varying the choice of training and
test data, we show that (i) a model trained on
data that contrast in a manner orthogonal to its
test data performs on average at chance level,
while (ii) a model trained on data that contrast
in a manner parallel to its test data performs
on average better than chance but still worse
than a model trained on the same pair of cell
used for testing. This is incompatible with the
predictions of a reductive view of paradigms as
systems of feature contrasts.

1 Introduction

The notion of an inflectional paradigm is an invalu-
able tool for linguistic description and has played
an increasing role in linguistic theory in the last
few decades. Explicit reference to paradigm struc-
ture has been claimed to be necessary to account
for phenomena as diverse as patterns of syncretism
(Zwicky, 1985; Stump, 1993; Baerman et al., 2005),
competition between synthetic and periphrastic ex-
pression of morphosyntactic categories (Ackerman
and Stump, 2004; Kiparsky, 2005; Bonami, 2015),

and universal constraints on the shape of inflection
systems (Carstairs-McCarthy, 1994; Ackerman and
Malouf, 2013). While many of these claims have
been met with scepticism by some (see e.g. papers
collected in Bachrach and Nevins 2008), there is
general agreement that some form of paradigmatic
organisation plays a role in morphology, if only
through the existence of collections of pairs of ex-
pressions that differ by contrasting in the same mor-
phosyntactic features. Hence although morpholo-
gists may differ in how they think of paradigms,
they will agree that there is something in common
between the way man relates to men and dog re-
lates to dogs. That something in common is what
we will call a paradigmatic relation.

That being said, there is variation in the liter-
ature regarding the way paradigms are defined,
and differences between these formulations are sel-
dom discussed. A common position, ultimately
grounded in Jakobson (1958) and cogently articu-
lated by Wunderlich and Fabri (1995, p. 266), holds
that “A paradigm is an n-dimensional space whose
dimensions are the attributes (or features) used for
the classification of word forms”. In other words,
paradigms can be reduced to a system of orthogonal
contrasts in morphosyntactic feature values.! This
claim is appealing when we look at some very-well
behaved inflection systems. Consider the paradigm
of an Italian adjective in Table 1. Every cell in
that paradigm can be defined as the combination of
a number and a gender value. If this holds in gen-
eral, it suggests that paradigm structure is entirely

"Note that we follow Matthews (1991) in calling ‘mor-
phosyntactic’ whatever features are relevant to the organi-
sation of inflectional paradigms. Some of these will be se-
mantically relevant, others not. Our usage departs from that

of Corbett (2012), who would call some of the features we
discuss here ‘morphosemantic’.
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MAS FEM
SG buono buona
PL buoni  buone

Table 1: Paradigm of Italian BUONO ‘good’.

IND IMP
PRS PST
1 eat ate —
oSG 2  eat ate eat
= 3 eats ate —
é 1 eat ate —
PL 2 eat ate eat
3 eat ate —
Z  PART eating  eaten
; INF eat

Table 2: Paradigm of English EAT as a system of orthog-
onal oppositions. Periphrastic forms ignored.

derivative of a system of feature oppositions.

This view of paradigms becomes less appeal-
ing as soon as we move away from well-behaved
declension systems. In conjugation systems, it of-
ten is the case that orthogonal feature oppositions
are unhelpful. English conjugation provides an
extreme example of that situation. Table 2 is our
best attempt at presenting the paradigm of an En-
glish verb as a system of orthogonal oppositions.
Multiple problems arise: some feature oppositions
are neutralised (no tense distinction in the imper-
ative or infinitive), and some paradigm cells are
non-existent (no 1st or 3rd person imperatives).
Most importantly, there is a disconnect between
the shape of the paradigm as motivated by feature
oppositions and the inventory of forms filling that
paradigm: with the exception of BE, no lexeme
uses more than 5 distinct forms to fill 17 cells, and
arbitrary collections of cells exhibit systematic syn-
cretism — e.g. all non-3rd present form, imperative
forms, and the bare infinitive.

The observation of such discrepancies naturally
leads one to revise their expectations as to the
paradigmatic organisation. Spencer (2013), Boyé
and Schalchli (2016), and Stump (2016) make
slightly different proposals for distinguishing differ-
ent notions of paradigms. Bonami and Strnadova
(2019), building among others on Stekauer (2015)
and Blevins (2016, chap. 5), take another route
illustrated for English verbs in Figure 1. Under this
view, contrasts in content between sets of pairs
of words, materialised in the figure by vertical
alignments across morphological families, are the

311

PLAIN

PST PRS.35G

PRS.PTCP

PST.!’TCP eat

ate : : : eats
eaien 7 eafing
A / drink : :
drank = = drinks
d”;nk drinking

Figure 1: English verbal paradigms seen as a system of
basic contrasts in content.

primitive notion from which paradigms are defined.
Analysis of such paradigms in terms of orthogonal
features is a further step that may be more or less
useful and insightful depending on the system un-
der examination. Crucially, paradigms (horizontal
planes in Figure 1) and paradigm cells (vertically
aligned collections of words) exist independently
of such a featural analysis.

In this paper, we explore empirically the pre-
dictions of the two basic conceptualisations of
paradigm structure outlined above. Focusing on
cases where a feature-based definition of paradigms
seems warranted as in Table 1, we ask to what ex-
tent the featural composition of the paradigm can
be trusted. For example, is the contrast between
masculine singular and plural really the same as
the contrast between feminine singular and femi-
nine plural? To answer that question, we explore
contrasts between pairs of words (nouns or adjec-
tives) in Czech using distributional vectors familiar
from distributional semantics. Note that distribu-
tional vectors typically capture both syntactic and
semantic contrasts between words. While this is
sometimes an embarrassment when disentangling
the two is important, it is fine for our purposes, as
paradigmatic contrasts may be semantically potent
or not.

Section 2 provides a precise definition of what
it means for two pairs of cells to encode contrasts
that are parallel, orthogonal or neither. We then
use this definition to lay out predictions on the
expected structure of the distributional vector space
under the assumption that paradigms are defined by
features. In Section 3 we present two experiments
testing these predictions: in the first experiment,
we train classifiers to discriminate between vectors
of words from two paradigm cells, while in the
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Figure 2: Illustrative organisation of a paradigm as a sys-
tem of orthogonal featural contrasts. In this example,
we have three features, namely case, number and gender,
represented as three geometric dimensions. Paradigm
cells are represented as points in 3D space combining
a particular value for each feature.

second experiment, we train a model to predict the
vector of a word in one paradigm cell from that of
the word in another paradigm cell. In both cases,
we compare the quality of prediction of models
trained on data from the same pair of cells, from a
parallel pair of cells, or from an orthogonal pair of
cells. Section 4 discusses the implications of our
findings for morphological theory, and Section 5
outlines avenues for future work.

This paper presents a terminological difficulty,
as the term ‘feature’ has different meanings in the
context of descriptive and theoretical morphology
and in the context of computational linguistics and
machine learning. To alleviate that difficulty, we re-
frained from using the term at all when discussing
machine learning, talking of predictors or variables
instead; and we prefixed feature with morphosyn-
tactic wherever there was potential for ambiguity.

2 Predictions

In this section, we define ways of comparing how
inflected forms of the same lexeme differ in mean-
ing and use this to derive predictions of the claim
that paradigms reduce to featural contrasts.

For the sake of exploring the featural organi-
sation of paradigms, we assume that each cell in
a paradigm can meaningfully be mapped to a mor-
phosyntactic description which we formalise as
a functional relation between a set of features F
and a set of values V), where no two features can
map to the same value.> Given two paradigm

2We follow Stump and Finkel (2013) in assuming that the
list of paradigm cells can be a proper subset of the set of all
such functional relations, leaving room for the description of
systems such as that exemplified with English conjugation
above. The requirement that no two feature map to the same

et .

(a) parallel (b) orthogonal (c) neither

Figure 3: Types of relations between pairs of cells.

cells a and b, we note S(a,b) 4 {v|f:ve
a A —f v € b} the set of feature values specific
to a when compared to b. We then say that two
pairs of contrasting cells (a, b) and (a’, V') are par-
allel if S(a,b) = S(a’,V') and S(b,a) = S(V,d’).
We likewise note C'(a,b) & {f|FvIw[f : v €
a f:wé€bAv#w|}the set of features along
which a and b contrast, and then call two pairs of
cells orthogonal if they do not share any contrast,
ie. C(a,b)NC(d,b) = 0.

For purposes of illustration, we will use the ex-
ample laid out in Figure 2 of a system with two bi-
nary features (number and gender) and one ternary
feature (case), and represent visually each feature
as a geometric dimension. The definitions of paral-
lelism and orthogonality are illustrated in Figure 3.
Note that we can find parallel pairs of contrasts
where the contrasting cells have no feature in com-
mon (bottom left). Note also that our notion of
parallelism does not extend to situations where the
two contrasts involve the same features but differ-
ent values (middle right): in that situation, contrasts
are neither parallel nor orthogonal.

Given these definitions, we can now derive our
predictions. Let us assume that we have satisfactory
representations of the content of inflected words
in a language (combining semantic and syntactic
information). Let us also assume that paradigmatic
relations are fully reducible to some correct de-
scription in terms of feature contrasts. Then, given
two pairs of words (v, w) and (v', w’) filling cells
(a,b) and (a’,b") of some paradigm:

o If (a,b) and (a’, ") are parallel, then the con-
tent of v and w should differ in exactly the
same way as the content of v' and w’ differ.
Hence if we define a predictive task which
relies on capturing the relationship between

values is purely motivated by mathematical elegance, and
could easily be dropped.
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cells a and b, it should be immaterial whether
we train our system on data from cells a and b
(what we call intrinsic prediction) or cells a’
and b’ (what we call extrinsic prediction).

If (a,b) and (a’,b') are orthogonal, then the
contrast between the content of v and w is
unrelated to the contrast between the content
content of v" and w’. Hence if we define a pre-
dictive task which relies on capturing the re-
lationship between cells a and b and train our
system on data from cells a’ and ¥’, we should
witness dramatically poor performance, at the
chance level.

In Section 3, we test these predictions on data
from Czech nouns and adjectives. Czech nouns
inflect for 2 numbers (singular, plural) and 7 cases
(nominative, genitive, dative, accusative, vocative,
locative, instrumental), leading to a 2-dimensional
system with 14 cells, while adjectives also inflect
for 4 genders (masculine animate, masculine inani-
mate, feminine, neuter) and 3 grades (positive, com-
parative, superlative), leading to a 4-dimensional
system with 168 cells. In the interest of tractabil-
ity, we restrict attention to the positive grade of
adjectives and the three main structural cases (nom-
inative, genitive, accusative). This leads for nouns
to 6 cells in 2 dimensions, and for adjectives to
24 cells in 3 dimensions — see Tables 3 and 4 for
examples. We also leave out from consideration
orthogonal contrasts forming a corner, as in the
top example of column (b) in Figure 3, as sharing
of a cell between the two pairs is likely to affect
performance.

3 Experiments

3.1 Data

We use distributional representations of Czech
word vectors from the vector spaces provided by
Kyjanek and Bonami (2022). These models were
trained by applying word2vec (Mikolov et al.,
2013) to the SYN v9 corpus (Kfen et al., 2021),
a large corpus of contemporary edited text com-
piled, lemmatised and tagged by the Czech Na-
tional Corpus team (4,719M tokens; 7.3M lem-
mas; 362M sentences). Vectors were trained on
the concatenation of tokens and POS tags, and
hence in effect represent a form filling a partic-
ular paradigm cell. For instance FEM.NOM.SG
and NEU.NOM.PL mald from Table 3 get separate
representations. This is crucial for our purposes:
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POSITIVE GRADE

MA MI FEM NEU

NOM maly maly mald malé
GEN malého malého malé  malého
DAT malému malému malé malému

SG ACC malého maly malou malé

vOoC maly maly mald malé
LOC malém malém malé malém
INS malym malym malou malym

NOM mali malé malé mala

GEN malych malych malych malych
DAT malym malym malym malym
PL ACC malé malé malé mala
voc malf malé malé mald
LOC malych malych malych malych
INS  malymi malymi malymi malymi

COMPARATIVE GRADE

MA MI FEM NEU

mensi
mensiho
mensimu
mensi
mensi
mensim
mensim

NOM mensi mensi mensi
GEN men$tho menstho mensi
DAT men$imu men$imu mensi
SG ACC mensitho mensi mensi
VOC mensi mensi mensi
LOC men$im mensim mensi
INS men$im mens$im mensi

NOM mensi mensi mensi mensi
GEN mens$ich mensich mensich mensich
DAT men$fm men$im mens$im mensim
PL ACC mensi mensi mensi{ mensi
VOC mensi mensi mensi mensi
LOC men$ich mensich mensich mensich

INS men$imi men$imi menSimi mensimi

SUPERLATIVE GRADE

MA MI FEM NEU
NOM nejmensi nejmens{ nejmens{ nejmens{
GEN nejmensiho nejmensitho nejmensi nejmensiho
DAT nejmens$imu nejmensimu nejmensi nejmensimu
SG ACC nejmensitho nejmensi nejmensi nejmensi
VOC  nejmensi nejmensi nejmensi nejmensi
LOC nejmensim nejmensim  nejmensi nejmensim
INS nejmen$im nejmensim  nejmensi nejmensim
NOM nejmensi nejmens{ nejmens{ nejmens{
GEN nejmensich nejmensich nejmensich nejmensich
DAT nejmensim nejmen$sim nejmensim nejmensim
PL ACC nejmensi nejmens{ nejmens{ nejmens{
VOC  nejmensi nejmens{ nejmens{ nejmens{
LOC nejmensich nejmensich nejmensich nejmensich

INS nejmensimi nejmensimi nejmensimi nejmensimi

Table 3: Paradigm of Czech MALY ‘small’. Cells used
in the experiments are highlighted in boldface.

SG PL SG PL
NOM holka holky NOM cil cile
GEN holky holek GEN cile cilu
DAT holce holkdm DAT cili  cilim
ACC holku holky AcCC cil cile
voc holko holky voc cili cile
LOC holce holkich LOC cili  cilech

INS  holkou holkami INS cilem cili

Table 4: Paradigms of two Czech nouns: feminine
HOLKA ‘girl’ and masculine inanimate CIL ‘goal’. Cells
used in the experiments are highlighted in boldface.



since syncretism is rampant in Czech inflection,
distributional representations of raw strings would
be useless to make comparisons across paradigm
cells. We used the tagging distributed with the cor-
pus, which was obtained automatically using the
MorphoDiTa tool (with a reported accuracy over
95%, Strakova et al., 2014). In our experiments,
we use a 100-dimensional vector space trained as
a continuous bag of words (CBOW) model.> We
also used the inflectional morphological dictionary
MorfFlexCZ 2.0 (Hajic¢ et al., 2020), which con-
tains 125.3M triplets of word form and its respec-
tive lemma and tag, to sample vectors of tokens
with relevant morphosyntactic categories. Note
that MorfFlexCZ and the SYN corpus share the
same tagset.

For the first experiment, we sampled 500 random
word vectors for each paradigm cell under investi-
gation, allowing us to have combined datasets for
classification of size 1000. We included only word
vectors for words that occurred at least 50 times
in the SYN v9 corpus. This led to 24 datasets for
adjectives corresponding to the 24 paradigm cells
highlighted in Table 3. For nouns we created sepa-
rate datasets for each of the genders, leading again
to 24 (= 4 genders x 6 paradigm cells) datasets.

For the second experiment, we needed datasets
consisting of ordered pairs of vectors for forms
of the same lexeme for two particular cells in the
paradigm. We used MorfFlexCZ to identify rele-
vant pairs and randomly sampled datasets of 1,000
pairs; again, we included only vectors with a fre-
quency of 50 or more. For adjectives, with 24
paradigm cells under examination, we ended up
with 24 x 23 = 552 datasets. For nouns, we again
created separate datasets for each gender. With
6 paradigm cells under examination, this led to
4 x 6 x 5 = 120 datasets.

3.2 Experiment 1

In our first experiment, we want to assess how
hard it is to discriminate two paradigm cells when
trained on data from the same or other cells. To this
end, we train classifiers to discriminate between
two paradigm cells and apply it to data from the
same pairs of cells, parallel pairs of cells, and or-
thogonal pairs of cells.

More specifically, we design two-step experi-
ments. First, we conduct intrinsic classification,

3We also experimented with models trained by the skip-

gram method or having 400-dimensional vectors, but this led
to no qualitative difference in the results.

meaning that we train a classifier to discriminate
a given contrast realised by a pair of paradigm
cells, and we apply it to words inducing the same
contrast. An example of this would be training to
discriminate FEM.SG.ACC and FEM.PL.ACC forms
of adjectives, and testing the classifier on the forms
of other lexemes in the same two cells. Second, we
investigate the interoperability of the morphosyn-
tactic feature by means of an extrinsic classification
task. An example of this would be training to dis-
criminate FEM.SG.ACC and FEM.PL.ACC forms of
adjectives, and testing the performance of the clas-
sifier on its ability to discriminate words in two
other cells, e.g. FEM.SG.GEN and FEM.PL.GEN.
We hypothesise a classifier trained to discriminate
the contrast between two cells should also be able
to discriminate between two other cells provided
the two pairs of cells are parallel.

Concretely, for each relevant predictor pair of
cells (a, b), we train a classifier to discriminate vec-
tors of words in cell a from vectors of words in cell
b. We used gradient boosting (Friedman, 2001a;
Mason et al., 2000) applied to decision trees as
our classification method. Predictors are the 100
dimensions of the vectors, and boosting trees pa-
rameters are set to 500 estimators, a learning rate of
0.01, a max depth of 2, a random state of 0, and the
deviance loss function. In total, we trained 60 clas-
sifiers for nouns, to be used in 60 and 86 intrinsic
and extrinsic classification tasks respectively; and
276 classifiers for adjectives, used in 276 intrinsic
and 7824 extrinsic classifications tasks. The much
higher number of tasks for adjectives is due to their
larger paradigm size due to gender agreement, cf.
Tables 3 and 4.

For intrinsic classification tasks, we performed
10-fold cross-validation, and report aggregated ac-
curacy across the 10 folds. For extrinsic classifi-
cation, there was no avoidable risk of over-fitting,
as the training and test datasets are inherently dis-
joint.4 Note that, since our samples are balanced,
chance performance is at 0.5. We use this as our
baseline for evaluation. Figure 4 summarises our
results.

Classifiers for both nouns and adjectives achieve
very high performance at intrinsic classification,

*As a reviewer notes, the test data is included in the training
corpus for the vector space, and hence can in principle have
some influence on the results. There is no way of avoiding
that potential problem with the methods used here, as we do
need vectors from the same space for test items for evaluation
purposes.
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Figure 4: Distribution of accuracy of classifications (Experiment 1) for nouns (left) and adjectives (right). The

dashed grey line represents baseline performance at 0.5.

with a median accuracy of 0.98 and 0.99 respec-
tively and a standard deviation of 0.02 and 0.005
respectively. Performances are significantly lower
for extrinsic classification, although the use of clas-
sifiers for parallel contrasts still leads to above-
chance level performance for a vast majority of
models, with a median accuracy of 0.72 for nouns
and 0.71 for adjectives. On the other hand, extrin-
sic classification for orthogonal contrasts barely
achieves chance-level performances. Median ac-
curacy is at 0.46 for nouns and 0.51 for adjec-
tives. There is a lot of variation around this median,
which is not surprising given the high number of
models we trained, but the distribution of accuracy
across orthogonal classifiers is clearly symmetric
and centred on 0.5, suggesting that any structure
that individual classifiers pick out is due to lucky
sampling.

3.3 [Experiment 2

In our second experiment, we predict the vector
of a word in the target paradigm cell (Upredicted)
from that of the word in another paradigm cell
(Upredictor), and evaluate the quality of our predic-
tion by comparing it to the actual vector ¥ scal-
This is represented graphically in Figure 5, where
M denotes the model deriving the prediction.
Multiple ways of constructing the model M are
found in the literature. A simple approach relies
on adding to the predictor vector the offset vector
relating two words standing in the same relation
(Mikolov et al., 2013) or averaging over such offset
vectors (Drozd et al., 2016; Mickus et al., 2019).
Marelli and Baroni (2015) propose instead to use
a linear transformation to predict the target vector

Figure 5: Evaluation of vector prediction. Performance
of model M is assessed by the cosine of the angle
between the actual vector for the target word and the
vector predicted by M for the that based on the predictor
vector of a related word.

— that is, they predict the value of each dimension
of the target vector using a linear combination of
the values of all dimensions in the predictor vec-
tor. They argue that this should allow capturing at
least some aspects of affix polysemy. Bonami and
Naranjo (2023) use a variant of this approach using
principal component analysis to reduce the number
of independent variables in the linear models.

In this paper we follow closely the methodology
of Marelli and Baroni (2015), using Gradient Boost-
ing Tree regression models (Friedman, 2001b) in-
stead of linear models.> For each morphological
contrast, we train 100 models per pairwise com-
bination of paradigm cells as there are 100 vector
dimensions in the input vector space models. In to-

>We also tested linear regression models, but the gradient
boosting tree method achieved better evaluation results.
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Figure 6: Distribution of quality (cosine similarity) of vector predictions (Experiment 2) for nouns (left) and
adjectives (right). Grey lines indicate the average cosine similarity between members of the same lemma.

tal, we trained 100 x (120+552) = 67,200 models
(x 10 because of cross-validation) to predict all vec-
tor dimensions of words from the paradigm cells
under analysis. We then evaluate the performance
of our models in both intrinsic and extrinsic predic-
tions, using the average cosine similarity between
predicted and actual vector (cos( U predicteds U actual))
as our measure of quality. While the evaluation
of the intrinsic predictions assesses discriminating
power for predicting word vectors, i.e., the predic-
tion of the same contrasts as the one on which the
model was trained, the evaluation of the extrinsic
predictions assesses the stability of predicting word
vectors in different contexts, i.e., the prediction of
contrasts different from the one used for training
the model.

Results are presented in Figure 6. We get very
high scores for intrinsic prediction, ranging be-
tween 0.92 and 0.98. Cross-validated models
have barely lower performance (median difference
0.012, max. 0.02), indicating that there is no
over-fitting to speak of. The extrinsic predictions
achieved vastly lower cosine similarities than their
intrinsic counterparts, with a gap of more than 25%
between the best-performing extrinsic prediction
and the worst-performing intrinsic prediction. As
in Experiment 1, results for both orthogonal and
parallel prediction are quite spread out, but there
is a clear central tendency to have higher perfor-
mance for parallel prediction than for orthogonal
prediction.

We contextualise the results of trained models
in two ways. Our first approach is to compute the
average pairwise cosine similarity between vec-
tors of words belonging to the same lemma, for
the paradigm cells of interest, and for each part of

speech. This gives us an indication of what would
be the performance of a model that perfectly cap-
tured the fact that the target vector conveys the right
lexical semantics, but does not capture anything
about the contribution of morphosyntactic features.
These are materialised by grey lines in Figure 6.
It is most relevant to compare that number to the
performance of intrinsic models: here we see very
clearly that these models do capture much more
than just the lexical semantics associated with be-
longing to the same lemma.

For orthogonal and parallel prediction, this com-
parison is hard to interpret, given the high variabil-
ity of the quality of prediction across tasks of the
same type. We suspect that this variability is due
at least in part to the fact that some test sets are
inherently easier or harder to predict due to the
structure of the vector space. We hence develop
a baseline that is directly sensitive to the test set,
and we compare the results of our cross-validated
models to those from the baseline. The simplest
baseline would be to create a predicted vector from
random numbers; however, sampling random num-
bers might lead to vectors that are out of the vec-
tor space model. Therefore, we instead pick ran-
dom word vectors from the vector space model and
use them as predicted word vectors. To mitigate
knowledge that such randomly picked word vectors
might encode, we pick randomly 20 word vectors
for each pair of word vectors and calculate the
average of cosine similarities between the actual
VECLOr U acrual and individual randomly picked word
vectors (7 predicted, s - - - » U predicted,,)- The resulting
cosine similarity for a given contrast is computed as
the average of the averages achieved by individual
pairs of word vectors.

316



1.0 .

0.8+

4
o

Model type

® intrinsic
orthogonal

® parallel

Model performance
o
'S
(1]

°
N

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Baseline

Figure 7: Comparison of our models to the baseline.
The black line stands for equal values on the = and y
axis.

Figure 7 shows pairwise comparisons between
baseline and model performance. The clear con-
clusion is that both intrinsic and parallel prediction
clearly outperform the baseline. A few orthogonal
models perform at the baseline level, but most still
clearly beat the baseline. To put these results in
perspective, it is important to remember that, while
orthogonal models are trained on irrelevant mor-
phosyntactic contrasts, they still see pairs of forms
of the same lexeme. To the extent that the vectors
disentangle lexical semantics from morphosyntac-
tic features, they should still be able to predict
lexical semantics correctly — by not changing the
values of the relevant dimensions. It is hence ex-
pected that performance should be above baseline
on average; the fact that it is not always suggested
that lexical semantics and morphosyntactic features
are not clearly separated by the vectors.

4 Discussion

Our two experiments lead to similar results that we
discuss in the following paragraphs.

First, intrinsic prediction works very well: classi-
fiers learning to discriminate two paradigm cells on
the basis of the corresponding word vectors reach
very high accuracy, even under cross-validation;
and a model learning to deduce the vector in one
cell from the vector in another cell makes predic-
tions that are very close to the actual vectors, and
go well beyond capturing the fact that words be-
longing to the same lemma tend to be similar. To-
gether, these indicate that the word vectors we use
do capture the relevant syntactic and semantic dif-
ferences between paradigm cells with a high degree
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of accuracy.

Second, orthogonal prediction leads to poor per-
formance: training a model on a contrast orthogo-
nal to that found in the test data is, unsurprisingly,
a bad idea. This is most clearly established for the
classification task of Experiment 1, where we see
that most models have a performance close to the
baseline, while a few models got lucky or unlucky,
in a symmetric fashion. In the vector prediction
task of Experiment 2, performance is still on av-
erage much better than the random baseline, due
to the fact that orthogonal models, unlike the base-
line, have the capacity to accurately predict some
aspects of distributions that are due to being forms
of the same lexeme.

The third and most important result is that
found in the situation of parallel prediction, where
amodel is trained on one pair of cells implementing
a feature contrast and tested on a different pair of
cells implementing the same feature contrast. Here
we find that, in both experiments, performance is
measurably higher (on average) than with orthog-
onal models, but markedly lower than in intrinsic
prediction. This last result is in direct contradiction
to the predictions laid out in Section 2. If contrasts
between paradigm cells were fully reducible to con-
trasts in feature values, then parallel pairs of cells
should contrast in exactly the same way, and hence
parallel prediction and intrinsic prediction should
lead to comparable performance.

These results lead to a nuanced view of the role
of morphosyntactic features in the analysis of in-
flectional paradigms. First, paradigm structure is
not fully reducible to a system of orthogonal feature
contrasts, pace Wunderlich and Fabri (1995) and
many others. Paradigm cells have irreducible dis-
tributional properties that cannot be deduced from
their featural analysis. Note that this is compatible
with the view articulated by Bonami and Strnadova
(2019), where each paradigm cell is characterised
by the full set of its contrasts with all other cells.
Second, morphosyntactic features do capture rele-
vant similarities between pairs of cells: if they did
not, parallel predictions should fare no better than
orthogonal predictions.

Of course, one may dispute the extent to which
these results are relevant to the featural analysis of
paradigms. Our results are compatible with a sit-
uation where distributional vectors are influenced
by morphosyntactic features, which are nicely or-
ganised in orthogonal dimensions, plus some other



factors, which are not. We see no empirical way of
dismissing such an analysis. However, we submit
that it does not affect our conclusion: whatever the
relevant factors are, it remains that paradigm cells
have properties that are not reducible to orthogonal
features.

Let us finish by noting that the nuanced conclu-
sion (features capture some but not all paradigm
structure) is most congruent with what Blevins
(2006) calls an abstractive model of morphology.
Under this view, surface words and the surface re-
lations they entertain are the basic primitive, and
objects such as stems and affixes are abstractions
that may (but need not) be defined out of words and
their relations. Arguably, morphosyntactic features
can also be seen as such useful abstractions, that
do not define paradigmatic relations but highlight
some of their properties.

5 Outlook

We end by discussing areas of future research based
on the results presented in this paper.

First, this paper did not explore what it is ex-
actly that makes contrasts across parallel pairs of
paradigm cells different; for instance, we did not
look into whether some feature contrasts are easier
or harder to predict, or more or less parallel across
pairs of cells. We leave such questions for future
research. We also leave for the future detailed anal-
ysis of particular parallel contrasts: we could e.g.
examine distributional similarities and differences
for a set of nouns in the NOM.SG, ACC.SG, NOM.PL
and ACC.PL, and see whether these explain the per-
formance models on this particular set of contrast.

Second, we focused in this paper on cases where
the assumption of orthogonality of features was
maximally convincing. A different use of the same
methodology would be to explore situations where
the literature is disputed as to what the feature
contrasts actually are and attempt to settle the dis-
pute by assessing how fruitful a feature analysis is
in terms of capturing distributional parallelism or
orthogonality. Obvious targets include Jakobson
(1958)’s three-dimensional analysis of the Russian
case systems, as well as many later proposals in-
spired by it; or the vexed question of the indepen-
dence of person and number (see e.g. Siewierska
2004).

Third and finally, we have not explored whether
and how different morphosyntactic features differ
in their degree of parallelism across contrasts. We

have reasons to believe that they could. Much re-
cent literature has highlighted the multidimensional
and gradient nature of the distinction between in-
flection and derivation (Booij, 1996; Bauer, 2004;
Corbett, 2010; Spencer, 2013); in particular, seman-
tically potent inherent morphosyntactic features,
such as the number of nouns, are more derivation-
like that purely morphosyntactic and contextual
features, such as grammatical case. Previous re-
search has shown that inflectional and derivational
morphological relations as a whole difference in the
predictability of their distributional consequences
(Bonami and Paperno, 2018), and found some dis-
tributional reflexes for the existence of a gradient
(Copot et al., 2022). Degree of parallelism might
be another relevant distributional property: we may
expect, for instance, there to be less parallelism
of the number feature across cases than of cases
across the number feature.
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