
 
 

Abstract 

Segmentation of texts into discourse and 

prosodic units is a ubiquitous problem in 

corpus linguistics and psycholinguistics, 

yet best practices for its evaluation – 

whether evaluating consistency between 

human segmenters or humanlikeness of 

machine segmenters – remain  

understudied.  Building on segmentation 

edit distance (Fournier & Inkpen 2012, 

Fournier 2013), this paper introduces a 

new measure for evaluating similarity 

between two segmentations of the same 

text with multiple, mutually exclusive 

boundary types, accounting for varying 

identifiability and confusability between 

these types. We implement a dynamic 

programming algorithm for calculation 

specifically geared towards this type of 

segmentation problem, apply it to a case 

study of intonation unit segmentation 

measuring inter-annotator agreement, and 

make suggestions for interpreting results. 

1 Introduction 

In computational corpus linguistics and 

psycholinguistics, many types of annotation and 

experimental tasks can be seen as segmentation 

problems, where a text is broken up into segments. 

These segments can be morphemes, tokens (i.e. 

tokenisation), prosodic, syntactic and interactional 

units (such as intonation units, sentences, 

utterances and turns), as well as larger segments 

of discourse like topics. 

When multiple annotators, whether human or 

machine, have annotated the same text, the 

question arises as to how to measure the degree of 

divergence. There are multiple motivations for 

this question. Methodologically, we often want to 

evaluate annotation schemes and annotator 

training་ (e.g. Lin 2009), as well as humanlikeness 

of computational segmentation models. 

Theoretically, comparing the consistency of 

different types of segmentation sheds light on 

human perception of boundaries, such as how 

boundaries are perceived (e.g. Troiani et al. 2023). 

This paper focuses on one type of problem: 

segmentation using a set of mutually exclusive 

boundary types. Punctuation prediction (Lu & Ng 

2010), for example, can be seen as this task: a text 

is divided using a set of mutually exclusive 

punctuation marks. Consider, as an example, the 

following unpunctuated, 5-word text: 

London Bridge is falling down  

We assume that each word is potentially followed 

by a punctuation mark, so there are 5 possible 

spots to place boundaries. Under this situation, 

there cannot be more than one punctuation mark 

between two words (unlike an application where, 

for example, one segments a text into both 

sentences and paragraphs, and hence a space may 

be both a sentence boundary and a paragraph 

boundary). Assuming there are three candidate 

punctuations, comma, period and question mark, 

the sets of choices are thus (∅ represents no 

boundary): 

 
Figure 1: Schematic illustration of the type of 

segmentation problem explored in this paper, where 

each potential boundary can be one of a fixed set of 

mutually exclusive boundary types. 

In the computational literature, various metrics 

for evaluating segmentation differences have been 

proposed and examined (e.g. Beeferman et al. 
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1999, Pevzner & Hearst 2002, Lamprier et al. 

2007, Franz et al. 2007, Peshkov et al. 2013, 

Peshkov & Prévot 2014). To our knowledge, 

however, none are specifically geared towards this 

type of problem. An additional complication of 

this paper is that our method must work for both 

monologic and dialogic texts, which none of the 

previous methods have focused on. 

In this paper, building on Fournier & Inkpen 

(2012) and Fournier (2013), we propose a new 

metric, flexible segmentation similarity ( 𝑆𝑓 ), 

allowing not just for gradient similarities between 

boundary types, as discussed also by Fournier 

(2013), but also for differentiating insertion and 

deletion of different boundary types. We also 

discuss a simulation-based approach to calculate 

Cohen’s 𝜅  inter-annotator agreement for this 

measure. We apply the method to a case study of 

intonation unit (IU) segmentation, where part of 

the NCCU Taiwan Mandarin Corpus (Chui & Lai 

2008) was manually segmented into IUs, and each 

IU boundary was classified according to boundary 

intonation preceding it. 

2 Previous work 

Many evaluation metrics have been applied to 

segmentation, including match percentage (Lin 

2009), conventional measures of classification 

performance like precision, recall, F1 value and 

accuracy, windows-based approaches like 𝑃𝑘 

(Beeferman et al.  1999) and WindowDiff 

(Pevzner & Hearst 2002), and edit distance-based 

methods (Fournier & Inkpen 2012, Fournier 2013). 

Our measure builds on the last approach due to 

significant disadvantages of the rest. 

2.1 Problems with non-edit distance-based 

metrics 

The pros and cons of these methods are widely 

discussed in the literature (e.g. Beeferman et al. 

1999, Pevzner & Hearst 2002, Lamprier et al. 

2007, Franz et al. 2007, Fournier & Inkpen 2012, 

Peshkov et al. 2013, Peshkov & Prévot 2014), but 

several problems stand out. Firstly, conventional 

classification performance measures and match 

percentage fail to account for ‘near-misses’ 

(Pevzner & Hearst 2002), where two annotators 

place the ‘same’ boundary in different but close 

locations. This is often the case in intonation unit 

boundary identification: different boundary-

marking acoustic cues can be spread across 

multiple words, creating fuzzy boundaries (Barth-

Weingarten 2016: 6-7).  Treating the problem as 

simple classification unduly penalises such cases. 

For example, Troiani et al. (2023) find that 

English speakers have very poor performance on 

segmenting Kazakh texts into intonational 

boundaries when the many near-misses are 

ignored; this was likely due to uncertainty about 

which part of the recording corresponded to which 

part of the transcript. 

Secondly, conventional classification 

performance measures and windows-based 

metrics are asymmetric (Fournier 2013): We 

evaluate one annotation set against another; 

switching the places of the two annotations results 

in different numbers. So these measures can only 

compare one annotation against a gold standard, 

but not when there is no ground truth (e.g. 

between two equally-trained human annotators). 

Thirdly, all non-edit-distance-based measures 

do not account for multiple boundary types, which 

often arise in corpus linguistics, and treat all 

mistakes as ‘equal’, ignoring differences in 

difficulty between boundary types (cf. Qian et al 

2016 in the tokenisation context). 

2.2 Edit distance-based metrics 

The edit distance-based approaches Segmentation 

Similarity (S) (Fournier & Inkpen 2012; 

henceforth F&I) and Boundary Similarity (B) 

(Fournier 2013) are the closest to our proposed 

measure, as they account for near-misses, are 

symmetric, and allow multiple boundary types. 

They are briefly reviewed here with our simplified 

notation, which will be used throughout this paper. 

In the following, we will refer to the elements 

between which boundaries can be added as tokens. 

This may be roughly words in tasks like 

intonation unit segmentation, or a larger unit like 

turn-constructional units in turn segmentation, 

sentences in topic segmentation, and so on. For S 

and B, the number of potential boundaries 𝑁 is the 

number of tokens minus 1. The potential 

boundaries in a text will be denoted 

𝑏1, 𝑏2, … , 𝑏𝑁−1 ; for example, in the Figure 1 

example, 𝑏1 is between London and Bridge, 𝑏2 

between Bridge and is, and so on. The actual 

boundaries from annotator i will be denoted 

𝑏𝑖,1, 𝑏𝑖,2, … , 𝑏𝑖,𝑁−1 . Since these measures deal 

with non-mutually exclusive boundary types, each 

of 𝑏𝑖,1, 𝑏𝑖,2, … , 𝑏𝑖,𝑁−1  is a set of boundaries. For 

example, when simultaneously annotating turn 
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and sentence boundaries, one potential boundary 

could be both a turn boundary and a sentence 

boundary. 

For calculating S, one set of annotations is 

transformed into another, minimising the number 

of operations taken. There are three possible 

operations: a) adding boundaries, b) deleting 

boundaries, and c) transposing boundaries, i.e. 

moving a boundary to a different position, in order 

to align it with a boundary placed by another 

annotator. Thus, if one annotator put a boundary 

in 𝑏1,1 but not in  𝑏1,2, and another put a boundary 

of the same type in  𝑏2,2 but not in  𝑏2,1, then we 

can transpose the boundary from 𝑏1,1  to 𝑏1,2  to 

match the second annotator. This only takes one 

operation, as opposed to deleting in 𝑏1,1  and 

adding it to 𝑏1,2, which takes two, thus preventing 

the problem of overpenalising near-misses. 

The similarity is then calculated thus: 

𝑆 =
𝑁 − #(edits)

𝑁
= 1 − 

#(edits)

𝑁
  

S is thus a ratio in [0, 1]: the larger S is, the closer 

the annotations. F&I also mention the possibility 

of scaling the number of boundaries ‘moved’ in 

transposition so that e.g. 2 transpositions might 

count for fewer than two edits. 

B differs from S in two ways. Firstly, the 

normalisation is different. The score is normalised 

by the number of edits plus the number of correct 

boundaries. This in essence means the number of 

total boundaries perceived by the two annotators, 

assuming that transposed boundaries are the ‘same’ 

boundary across annotators. This prevents biasing 

annotators towards a smaller number of 

boundaries, i.e. longer segments. This is useful for 

tasks like intonation unit segmentation: in 

languages like English and Mandarin, intonation 

unit boundaries in spoken language are typically 

denser than punctuation boundaries in written 

language. Annotators may be influenced more by 

orthography if biased towards fewer boundaries. 

Secondly, instead of the number of edits, the 

distance between the two annotations is calculated 

more flexibly by assigning different costs to 

different edit operations. Although addition and 

deletion retain the cost of 1, B allows for 

substitutions between boundary types. For B, 

boundary types are organised on an ordinal scale, 

and the cost of substituting one boundary for 

another is their distance on their ordinal scale 

normalised by the total number of boundary types. 

The formula for B is as follows: 

𝐵 = 1 −  
𝐶𝑡𝑜𝑡𝑎𝑙

#(edits) + #(correct boundaries)
  

where 𝐶𝑡𝑜𝑡𝑎𝑙 is the total cost of operations. 

Although S and B are excellent measures of 

similarity between different annotations, they still 

have disadvantages. Firstly, although B allows for 

different similarity between different boundary 

types, recognising that some boundaries may be 

more confusable than others, it makes the strong 

assumption that these differences are gradable on 

an ordinal scale, which is problematic for 

intonation unit segmentation (see Section 4). 

Secondly, by setting addition and deletion cost 

by default to 1, it ignores the fact that some 

boundaries may be easier to identify than others. 

Deleting an easy boundary should cost more than 

deleting a difficult one. 

Finally, S and B are excellent for written and 

monologic texts, but are unsuited for multi-party 

conversations where tokens are not organised in a 

single linear sequence, since two people’s speech 

can overlap. Our proposed method addresses all 

three of these weaknesses. 

3 Proposed method 

3.1 Definition of 𝑺𝒇 

Like Segmentation Similarity (S) and Boundary 

Similarity (B), we evaluate similarity first by 

transforming one annotation to the other and 

calculating the cost, normalising this, and then 

subtracting the similarity from 1 to get a distance. 

We present two options for normalising: following 

𝑆 in using the number of potential boundaries (𝑆𝑓) 

and following B in using the number of edits plus 

correct boundaries (𝑆𝑓
𝐵) (pace Fournier (2013), we 

argue (Section 4) that both normalisation 

approaches can be useful in different situations): 

𝑆𝑓 = 1 −
𝐶𝑡𝑜𝑡𝑎𝑙

𝑁
 

𝑆𝑓
𝐵 = 1 −

𝐶𝑡𝑜𝑡𝑎𝑙

#(edits) + #(correct boundaries)
 

The calculation of 𝐶𝑡𝑜𝑡𝑎𝑙  departs substantially 

from S and B. We allow for user-defined addition, 

deletion and substitution costs using the similarity 

matrix 𝑀𝑇 . The values in the matrix are the 

similarity (on the interval [0, 1]) between the two 

different boundary types. One minus the value is 

the cost of substitution between these two 

boundary types. The final row and column are for 

the lack of a boundary. Here is a sample matrix 

with two boundary types 𝑇 = {𝑝, 𝑞}: 
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𝑀𝑇 = (

1 𝑠𝑝𝑞 𝑠𝑝∅

𝑠𝑞𝑝 1 𝑠𝑞∅

𝑠∅𝑝 𝑠∅𝑞 1
) 

Here, 𝑠𝑎𝑏 is one minus the cost of substituting a 

for b, and ∅ refers to the lack of a boundary. Thus, 

1 − 𝑠∅𝑞  is the addition cost of 𝑞, and 1 − 𝑠𝑝∅  is 

the deletion cost of 𝑝. When a symmetric score is 

desired, e.g. comparing two human annotators, the 

matrix must be symmetric as well, i.e. 𝑠𝑥𝑦 =

𝑠𝑦𝑥  ∀𝑥, 𝑦 ∈ 𝑇 ∪ {∅} . This means substituting x 

for y has the same cost as substituting y for x, and 

insertion and deletion have identical costs. By 

default, this matrix is the identity matrix 𝐼, i.e. all 

substitutions, additions and deletions have a cost 

of 1. An example of user-defined 𝑀𝑇 will be given 

in Section 4; in cases where existing annotations 

by expert annotators are available, confusion 

matrices from those raters can be used instead to 

determine 𝑀𝑇  in evaluating similarity between 

novice annotators’ work. In the rest of this paper, 

addition and deletion will be treated as special 

cases of substitution involving ∅. 

Transposition cost can also be set flexibly for 

different boundary types, represented by 𝑐𝑡 , a 

vector with as many entries as there are boundary 

types. In this paper, we will set transposition cost 

at half of insertion/deletion cost, i.e., 𝑐𝑡 =
1

2
(𝟏 −

[𝑠𝑝∅  𝑠𝑞∅]
𝑇

). A glossary of notation is in Table 1. 

𝑆𝑓 , 𝑆𝑓
𝐵 Flexible segmentation distance 

normalised respectively with N and 

#(𝑒𝑑𝑖𝑡𝑠) + #(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠) 

𝐶𝑡𝑜𝑡𝑎𝑙 Total cost of transforming between 

annotations 

∅ No boundary 

N Number of potential boundaries 

𝑏𝑖 ith potential boundary 

𝑏𝑖,𝑗 Annotator j’s annotation of 𝑏𝑖 

𝑇 Set of boundary types 

𝑀𝑇 Similarity matrix for 𝑇 

𝑠𝑝𝑞  Similarity between p and q 

𝑡1[𝑥] xth element of boundary list 𝑡1 

𝑡1[−𝑥] 𝑡1 without the xth element 

𝑡1[𝑥: 𝑦] xth to yth elements of 𝑡1 

𝑐𝑡 Vector of transposition costs 

tr(𝑡1, 𝑥, 𝑦) boundary list 𝑡1 with the xth and yth 

elements swapped 

𝜅 Cohen’s kappa 

𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 Chance-level similarity 

Table 1: Glossary of notation used in this paper. 

3.2 Algorithm for calculating 𝑺𝒇 

Our algorithm first separates the text by 

conversational participants, since tokens from the 

same participant cannot overlap, and thus can be 

taken as one whole running text. We calculate the 

cost for each participant separately, then take the 

sum. Also, in our use cases, the end of the text 

also has a boundary type, so number of potential 

boundaries N is equal to the number of tokens. 

For each participant, we first identify all the 

potential boundaries where both annotators put a 

boundary, regardless of whether their types match. 

Our boundary types are mutually exclusive, so 

when two people put different boundaries in the 

same place, they can be safely assumed to have 

identified the ‘same’ boundary, and just classified 

it differently. We treat these as substitutions and 

store the total cost of these operations. 

We then further split the text into smaller lists 

of boundaries at those points where both 

annotators have a boundary. Consider the 

following situation: 

 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 

Annotator 1 𝑝  𝑝   𝑞 

Annotator 2 𝑞  𝑝 𝑝  𝑝 

We will split the text at the points 𝑏1,  𝑏3 and  𝑏6, 

leaving two boundary lists: [𝑏2] and [𝑏4 𝑏5].1 We 

discard the boundary lists where both annotators 

have no boundaries since such lists are necessarily 

identical. In this case, we discard  [𝑏2], retaining 

only the single list [𝑏4 𝑏5] . For the remaining 

boundary lists, we trim all the common leading 

and trailing ∅s in both lists, since it is pointless to 

move boundaries to those locations; this leaves 

only [𝑏4] in the example. 

We then calculate the similarity between the 

two annotators for each of these segments. For 

each segment, we run a recursive algorithm, 

called parDist, to find the minimum cost of 

transforming one annotation to the next. At each 

step, we first trim any common leading and 

trailing ∅s again. We then choose the next step 

depending on properties of the two boundary lists: 

• If the two boundary lists have size 1, 

then we simply return the substitution 

cost (which is 0 if they are the same 

boundary, and >0 otherwise). 

 
1 We assume that annotators will not place a single 

boundary of indeterminate location in more than one spot; 

thus, Annotator 2 is committing to there being two distinct 

boundaries at 𝑏4  and 𝑏5. 
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• If the length is >1, we look for positions 

where both boundary lists have a 

boundary. If one such position exists, we 

perform a substitution at it, then perform 

parDist on the remaining contiguous 

portion(s) of the boundary list. For 

example, if the lists have five elements 

and this substitution happens at the 

fourth element, then we run parDist 

again on two boundary sub-lists: the first 

three elements and fifth element. If the 

substitution on this list happens at the 

first element, then we run parDist on the 

segment from the second to fifth item. 

• If there are no positions where both 

boundary lists have a boundary, but both 

lists have at least one non-∅ boundary, 

then we attempt both transposition and 

substitution and take the minimum. For 

transposition, we attempt to move the 

first non- ∅  boundary in the second 

boundary list so that it matches up with 

an element in the first boundary list, then 

run parDist on the resultant boundary 

lists. For substitution, we simply replace 

the first element of the second boundary 

list with the first element of the first 

boundary list, then run parDist on the 

remaining boundaries. We take the 

transposition cost if it is smaller, and 

vice versa. 

• Finally, if one of the boundaries consists 

of all 0s, then we perform substitution 

until all the differences are eliminated. 

A rough presentation of parDist in pseudocode  

is presented in Algorithm 1, where 𝑡1 and  𝑡2 are 

the two annotations, 𝑡1[1]  refers to the first 

element of the boundary list, 𝑡1[−1] refers to the 

boundary list without the first element, 𝑡1[𝑥: 𝑦] 
refers to the xth to yth elements of 𝑡1 , and 

tr(𝑡1, 𝑥, 𝑦) refers to 𝑡1  with the xth and yth 

elements swapped. Figure 2 illustrates the 

algorithm  with a concrete example. 

function parDist(𝒕𝟏, 𝒕𝟐): 

remove all common leading and trailing ∅s from 𝑡1 

and 𝑡2 

if length(𝑡1) ≤ 1: 

    return 1 − 𝑠𝑡1[1],𝑡2[1]  

else: 

   if 𝑡1[1] = 𝑡2[1]: 
      return parDist (𝑡1[−1], 𝑡2[−1]) 

   else if(𝑡1[1] ≠ ∅ & 𝑡2[1] ≠ ∅): 

     return 1 − 𝑠𝑡1[1],𝑡2[1]  

 + parDist (𝑡1[−1],  𝑡2[−1]) 

   else if ∃ 𝑖 such that 𝑡1[𝑖] ≠ ∅ & 𝑡2[𝑖] ≠ ∅: 

      take the smallest 𝑖 
      return 1 − 𝑠𝑡1[𝑖],𝑡2[𝑖]  

         + parDist (𝑡1[1: 𝑖 − 1],  𝑡2[1: 𝑖 − 1]) 
        + parDist (𝑡1[𝑖 + 1: length(𝑡1)], 

 𝑡2[𝑖 + 1: length(𝑡1)]) 
   else if 𝑡1[1] = ∅ & ∃ 𝑖 such that 𝑡1[𝑖] ≠ ∅: 

     take the smallest 𝑖 
     return min(1 − 𝑠𝑡1[1],𝑡2[1]    

        + parDist(𝑡1[−1], 𝑡2[−1]), 

       𝑐𝑡[𝑡2[1]] ⋅ (𝑖 − 1)  

        + parDist(𝑡1,  tr(𝑡2, 1, 𝑖))) 
   else if 𝑡2[1] = ∅ & ∃ 𝑖 such that  𝑡2[𝑖] ≠ ∅: 

      take the smallest 𝑖 
      return min(1 − 𝑠𝑡1[1],𝑡2[1]   

        + parDist(𝑡1[−1], 𝑡2[−1]), 

       𝑐𝑡[𝑡2[𝑖]] ⋅ (𝑖 − 1) 

         + parDist(𝑡1, tr(𝑡2, 1, 𝑖))) 
   else: 

       return 1 − 𝑠𝑡1[1],𝑡2[1]   

+ parDist(𝑡1[−1],  𝑡2[−1]) 
Algorithm 1: Pseudocode for parDist  

 
Figure 2: An illustration of parDist, assuming 𝑀𝑇 =
𝐼 (i.e. substitutions including insertion and deletion 

cost 1), transpositions cost 0.5, and 𝑇 = {𝑝, 𝑞, 𝑟} . 

Firstly, all positions with a boundary in both 

annotations are considered substitutions. There are 

then two options: Either move the r of the second 

annotation to the right, or delete it. In the first case, 

the p must then be deleted, resulting in a cost of 3.5. 

In the second case, one can then either bring the p to 

the left then substitute it for an r (cost = 4.5), or add 

an r and delete the p (cost = 5). The minimum cost 

of all these possibilities is then 3.5. 

The actual implementation of the algorithm 

involves several components omitted from the 

pseudocode for a cleaner presentation. Two of 

these components aim at storing information 

about the process. Firstly, the number of actions 

hitherto performed is stored and accumulated 

across iterations of parDist to calculate the 
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denominator of 𝑆𝑓
𝐵 . Secondly, information about 

each operation – including the operation type, old 

and new boundary type, and old and new 

location – can be stored for later access so they 

can be used for analysing machine segmentation 

errors or points of inter-annotator disagreement 

(Section 4 has an example). 

Two other components aim at speeding up 

computation. Firstly, the function stores the 

minimum cost so far among the total costs that 

have been calculated. When the cumulative cost in 

the branch of possibilities currently being 

explored has exceeded the stored minimum, the 

function returns NA, thereby aborting the branch, 

instead of continuing the calculation. Secondly, 

every time parDist is calculated, the resulting cost 

and number of operations are stored in a two-

dimensional dictionary with 𝑡1  and 𝑡2  (stored as 

strings) for keys. Before each instance of parDist, 

the algorithm looks up the dictionary and simply 

takes the result from there if the operation has 

been done before. These result in significant speed 

gains, especially when calculating similarity 

between simulated annotations for inter-annotator 

agreement (see Section 3.3). 

A property of this algorithm is that a boundary 

may be both transposed and substituted if the cost 

of doing so is lower than insertion plus deletion. 

For the calculation of #(𝑒𝑑𝑖𝑡𝑠) in the 𝑆𝑓
𝐵 formula, 

such edits will only be counted once, in the spirit 

of normalising by the total number of boundaries. 

A consequence of this property is that the 

algorithm differs from one which decomposes the 

process of similarity calculation into a two-step 

process, where boundaries are first aligned 

ignoring boundary type, and then substitution 

costs are calculated. This is because substitution 

cost can affect whether a boundary in 𝑡1  which 

corresponds to ∅  in 𝑡2  is simply deleted, or 

transposed to match with a nearby boundary by 

the other annotator. 

Our algorithm was implemented in R (R Core 

Team 2022). It takes input data formatted as an R 

data.frame, and outputs 𝑆𝑓 and 𝑆𝑓
𝐵, along with 

a record of each operation that took place. We 

additionally wrote a function to convert files in 

the .rez format imported from Rezonator (DuBois 

et al. 2020) into the required format for the 

function. The algorithm is available as an R 

package (https://github.com/rezonators/ 

segsimflex). 

3.3 Inter-annotator agreement 

The similarity score measures how similar two 

annotations are, but how similar counts as ‘good’? 

Converting the similarity to inter-annotator 

agreement (IAA)  (Passonneau & Litman 1993, 

Hearst 1997) allows us to directly measure 

agreement among annotations. We use Cohen’s 𝜅, 

which compares the actual similarity between the 

annotations against chance-level similarity. 
Following the definition of Cohen’s 𝜅 , we 

calculate chance-level similarity based on the 

assumption that each boundary is a categorical 

random variable where each category is a 

boundary type or no boundary. The annotations 

are independent and identical within annotators 

and independent but non-identical across 

annotators. For example, with two boundary types 

p and q, the categories are {p, q, ∅}, and each 

annotator has their own 𝑃(𝑝) , 𝑃(𝑞)  and 𝑃(∅) 

values. Category probabilities are estimated with 

the maximum likelihood estimator, i.e. the 

proportion of that category within the annotation. 

Based on these estimated null distributions, we 

then estimate chance-level similarity 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 

using the expected value of the similarity score. 

We use a simulation approach since it is difficult 

to find a closed form for it. At each simulation 

step, we draw a boundary type for each annotator 

at each boundary, then calculate the similarity 

score. The average similarity over k simulation 

steps is the estimated expected value of the 

similarity score. Cohen’s 𝜅 is then calculated thus: 

𝜅 =
𝑆𝑓 − 𝑆𝑓

𝑐ℎ𝑎𝑛𝑐𝑒

1 − 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒

  

Hence, a negative score means below-chance 

performance, a positive score is above-chance, 

and perfect performance results in 𝜅 = 1. 

Both 𝑆𝑓 and 𝑆𝑓
𝐵 can be used for 𝜅. If 𝑆𝑓 is used, 

then the form of 𝜅  used here resembles the 

standard form of 𝜅 in classification tasks, except 

with gradient similarity between categories and an 

added possibility of transposition. Nevertheless, 

𝑆𝑓  may still be advisable at least in some 

situations (see Section 4.4 for discussion). 

A common criticism of 𝜅  in classification 

contexts (Byrt, Bishop & Carlin 2010) is that large 

differences in raters’ individual category 

distributions will deflate chance-level agreement 

and push 𝜅 up. In cases where this is expected to 

be a substantial problem, 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 can instead be 
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calculated using an overall estimation of category 

probabilities that pools together both raters’ 

annotations, turning the IAA into Scott’s 𝜋. 

Another common criticism is that a situation 

with unbalanced categories will lead to drastically 

higher expected proportion of agreement and thus 

lower 𝜅 values than one with balanced categories. 

This phenomenon is likely to occur with 𝑆𝑓-based 

𝜅, since non-boundaries are much more common 

than boundaries, but it is not necessarily 

problematic: A text with many non-zero 

boundaries is ‘harder’ to get right than a text with 

few non-zero boundaries, so if the aim is 

measuring rater performance (rather than the 

quality of the annotation itself), texts with more 

non-zero boundaries should have higher IAA than 

those with fewer non-zero boundaries but a 

comparable level of similarity. If the phenomenon 

is problematic, 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 can instead be calculated 

based on the assumption that all boundary types 

(including no boundary) have equal probability, 

turning the IAA measure into Bennett’s S. 𝑆𝑓
𝐵 -

based 𝜅  ignores non-boundaries in normalising 

agreement, and thus is less likely to be subject to 

this phenomenon; if unevenness among boundary 

types is an issue, one may modify Bennett’s S 

such that 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 is calculated by getting a pooled 

estimate of the probability having no boundary 

from the two raters, then assuming the distribution 

of boundary types is uniform. 

4 Case study: intonation unit 

segmentation 

To illustrate the proposed measure, we apply 

our proposed measure to exploring inter-annoator 

agreement in a prosodic segmentation task. 

4.1 Data and problem 

We are manually segmenting the NCCU 

Taiwan Mandarin Corpus (Chui & Lai 2008) into 

intonational units (IUs), a unit of prosody 

corresponding to short bursts of speech (roughly 

corresponding to intonation phrases or breath 

groups in other prosodic frameworks). So far, we 

have annotated texts TM001, 004, 009, 016, 025, 

036, 049. Before IU segmentation, we tokenised 

the texts to obtain potential boundary locations, 

following principles in Huang et al. (1997, 2017). 

Two independent coders perform IU 

segmentation using four main boundary types, 

called endnotes, representing broad classes of 

prosodic contours near the end of the IU, each of 

which signals a type of transitional continuity 

(DuBois et al. 1993, DuBois 2020): Rising 

intonation indicating appeal, as in questions and 

uptalk (denoted by ?), continuing intonation 

indicating continuation of the prosodic sentence (a 

comma ,), falling intonation indicating finality (a 

period .), and a boundary marker for truncated IUs, 

i.e. IUs that ended before completion (a dash --). 

Some boundaries were uncategorised, usually 

because the IU consisted solely of elements with 

no discernable prosody, e.g. laughter or tsk-tsk; 

these are denoted as semicolon (;). Earlier on in 

the process, texts were segmented by manually 

editing text files; later, we performed 

segmentation using the Rezonator program 

(DuBois et al. 2020). Figure 3 shows the same 

tokens from one of the texts, TM001, as 

segmented differently by the two annotators who 

worked on this text. We calculate similarity scores 

and IAA on these texts to evaluate the quality of 

our annotation training and workflow and identify 

avenues for improvement. 

(a)  

(b)  

Figure 3: Example annotations in TM001. (a) and (b)  

are from two different annotators. The first boundary 

was deemed final by the first annotator, and 

continuing by the second. The word 但 dàn ‘but’ was 

put in a separate IU by the first annotator, but not the 

second. 

4.2 Parameter values 

For each pair of annotators, we calculated four 

values: 𝑆𝑓 and 𝑆𝑓
𝐵 with an identity distance matrix, 

and the same values with the following custom 

similarity matrix: 

 
Rising and falling intonation have the most 

dissimilar pitch contour of the four, hence a 

similarity of .25. Truncated intonation differs from 
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all others in not following a complete prosodic 

gestalt, and resembles continuing in having no 

rise/fall; hence the similarity with continuing is.5, 

and the similarity with the rest is .25. Rising and 

falling endnotes are substantially different 

intonationally from an IU-medial word, so their 

similarity with no boundary is 0; continuing and 

truncated IUs have less clear pitch cues and hence 

are harder to detect consistently, and receive .25 

similarity. For simplicity, unclassified boundaries 

are ignored by treating them as identical to all 

other boundaries. Transposition costs are set at 

half the insertion/deletion cost for each endnote. 

One may ask why we use these hand-crafted 

‘theoretical’ values, instead of deriving values 

from empirical confusion matrices. This is 

because we want these values to reflect only 

difficulty in prosodic perception. However, actual 

boundary perception can be affected by 

grammatical structures derived from lexical 

content (Kuang et al. 2022). For example, in 

Hegemonic American English, statements often 

end with rises, and questions with falls (e.g. 

Bolinger 1999), and this is attested in our 

Mandarin data too. Though we tell annotators to 

consider only prosody, not content, they may still 

be affected by syntax and lexis, e.g. putting a 

question mark (?) after a syntactic/pragmatic 

question even though it has falling intonation. 

Such errors, even if common, need to be counted 

more heavily than errors caused by acoustic 

similarity. A possible alternative is to use 

confusion matrices from expert annotations 

assumed to not contain the syntax-based errors, 

which we do not pursue in this study because we 

do not yet have such datasets. 

4.3 Results 

Similarity scores are shown in Figure 4. As 

expected, I-based scores are lower than 𝑀′𝑇-based 

ones, and 𝑆𝑓  > 𝑆𝑓
𝐵  regardless of the similarity 

matrix, with 𝑆𝑓  values nearing 1. The variation 

between texts is small within each measure, 

especially for 𝑆𝑓; there is greater variation in 𝑆𝑓
𝐵. 

The 𝜅 values are shown in Figure 5, where it is 

clear that 𝑆𝑓
𝐵-based 𝜅’s remain substantially lower 

than 𝑆𝑓 -based ones and I-based than 𝑀′𝑇 -based 

ones. Overall, IAA scores are substantially lower 

than raw similarity scores, which is expected since 

they take into account the fact that chance-level 

similarity can be quite high. There is also less 

divergence between different measures for IAAs 

than raw similarities, suggesting that there is less 

difference as to how much each measure diverges 

from the chance-level value of that measure. 

  
Figure 4: Various similarity metrics applied to texts 

 
Figure 5: 𝜅 values for various similarity metrics. 

 
Figure 6: Distribution of operations performed on 

endnotes. ‘Match’ means full match, ‘del’ means 

deletion, ‘tr’ means transposition; the rest are 

substitutions between boundary types. Transposition 

plus substitution operations are not attested, and thus 

not shown. 

Figure 6 shows the distribution of operations 

performed on each type of endnote in the 

annotations. The rate of full matches (i.e. both 

position and boundary type match) is quite low; 

falls are matched less than 50% of the time, the 

rest even less. Yet deletions and especially 

transpositions are rare, indicating high consistency 

for boundary positions: continuations have the 

most deletions, and even there the rate is less than 

20%. Most of the errors are inconsistencies 

between boundary types. Truncations often 

correspond to continuations and sometimes to 

falls by other annotators. Falls and continuations 

are often confused for each other, while appeals 

correspond to falls around 70% of the time. 
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4.4 Discussion 

The distributions of operations explain many of 

the patterns seen in the similarity score measures. 

Because most of the operations are substitutions 

between boundary types, once 𝑀′𝑇  is used and 

correspondences between easily confusable 

boundary types are thereby downweighed, the 

similarity score rises drastically compared to 𝐼 -

based similarities. The dramatic disagreement 

with respect to boundary types may be attributable 

to a) lexical tone, which complicates perception as 

listeners must calibrate their perception of final 

pitch trajectories to the individual lexical tones; 

and b) the fact that words near IU boundaries, 

especially final particles, are often spoken very 

rapidly. Additionally, many appeal endnotes (?) 

were marked as falling (.) by the other annotator; 

manual inspection reveals some situations where 

the pitch contour is clear, but the one of the 

annotators decided between . vs ? based on syntax 

or pragmatics instead. Future annotator training 

will emphasise the importance of ignoring non-

prosodic factors and calibrating intonational 

judgements according to lexical tones. 

Notably, even when we consider Cohen’s 𝜅, a 

marked divergence between 𝑆𝑓  and 𝑆𝑓
𝐵  remains. 

This is likely partially due to inherent weaknesses 

with using 𝑆𝑓
𝐵  for 𝜅 . In calculating chance-level 

similarity, the simulated annotations will have a 

comparable number of boundaries to the original 

annotations, because of how the distribution we 

simulate from is defined. But random placement 

of boundaries results in many mismatched 

boundaries, and hence a larger number of 

boundaries than actual annotations, which will 

have much more matches. This artificially inflates 

𝑆𝑓
𝐵,𝑐ℎ𝑎𝑛𝑐𝑒

 compared to 𝑆 𝑓
𝐵 , deflating 𝑆 𝑓

𝐵-based 𝜅. 

Thus 𝑆𝑓  may be the more suitable choice in 𝜅 

calculation, and the moderate agreement indicated 

by 𝑆𝑓 -based 𝜅  is a better indication of our 

annotation performance. This matches intuitively 

with the fact that boundary locations are mostly 

matched, while agreement on continuations and 

falls (the most common contours) are fair. The 

property of 𝑆 𝑓
𝐵 discussed here may not have been 

noticed by Fournier (2013), who argued for B 

over S, because he focused on cases with full 

misses (insertion/deletion) and near-misses  

(captured by transpositions). He did not explore 

datasets like ours where substitutions between 

boundaries with largely matched positions are the 

primary operation. 

Although we believe the B-based denominator 

is not optimal in this case, we do not claim that N 

is preferable in every scenario. For example, when 

one’s main goal is to compare across texts to 

evaluate the difficulty of computationally 

detecting boundaries in each one, normalising 

with N unduly favours texts with sparser 

boundaries (longer segments). In ongoing work, 

we applied the measure to a case of evaluating a 

machine segmenter against different texts to 

determine the difficulty of segmenting different 

text types, and preliminary results show that 𝑆𝑓 

can give misleading results where 𝑆𝑓
𝐵  does not. 

We believe it is best to choose the denominator 

according to the specific dataset and problem. 

5 Conclusion 

In this paper, we introduced flexible segmentation 

similarity 𝑆𝑓 , a new edit distance-based measure 

of segmentation similarity involving multiple 

mutually exclusive boundaries with fully flexible 

transposition, substitution, and addition/deletion 

costs. We justified its properties, presented an 

algorithm for computation, and extended it to 

inter-annotator agreement. We applied it to a case 

of intonation unit segmentation, where we 

evaluated consistency between manual 

segmentations and found ways to improve 

annotator training. We argued that, contrary to 

Fournier (2013), the number of boundaries is not 

always the best choice of denominator in 

calculating segmentation similarity for inter-

annotator agreement when there is high agreement 

on boundary location but low agreement on 

boundary type. We hope our measure will find 

other use cases, especially where gradient 

differences between boundary types are needed. 
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