

Abstract

Segmentation of texts into discourse and

prosodic units is a ubiquitous problem in

corpus linguistics and psycholinguistics,

yet best practices for its evaluation –

whether evaluating consistency between

human segmenters or humanlikeness of

machine segmenters – remain

understudied. Building on segmentation

edit distance (Fournier & Inkpen 2012,

Fournier 2013), this paper introduces a

new measure for evaluating similarity

between two segmentations of the same

text with multiple, mutually exclusive

boundary types, accounting for varying

identifiability and confusability between

these types. We implement a dynamic

programming algorithm for calculation

specifically geared towards this type of

segmentation problem, apply it to a case

study of intonation unit segmentation

measuring inter-annotator agreement, and

make suggestions for interpreting results.

1 Introduction

In computational corpus linguistics and

psycholinguistics, many types of annotation and

experimental tasks can be seen as segmentation

problems, where a text is broken up into segments.

These segments can be morphemes, tokens (i.e.

tokenisation), prosodic, syntactic and interactional

units (such as intonation units, sentences,

utterances and turns), as well as larger segments

of discourse like topics.

When multiple annotators, whether human or

machine, have annotated the same text, the

question arises as to how to measure the degree of

divergence. There are multiple motivations for

this question. Methodologically, we often want to

evaluate annotation schemes and annotator

training་ (e.g. Lin 2009), as well as humanlikeness

of computational segmentation models.

Theoretically, comparing the consistency of

different types of segmentation sheds light on

human perception of boundaries, such as how

boundaries are perceived (e.g. Troiani et al. 2023).

This paper focuses on one type of problem:

segmentation using a set of mutually exclusive

boundary types. Punctuation prediction (Lu & Ng

2010), for example, can be seen as this task: a text

is divided using a set of mutually exclusive

punctuation marks. Consider, as an example, the

following unpunctuated, 5-word text:

London Bridge is falling down

We assume that each word is potentially followed

by a punctuation mark, so there are 5 possible

spots to place boundaries. Under this situation,

there cannot be more than one punctuation mark

between two words (unlike an application where,

for example, one segments a text into both

sentences and paragraphs, and hence a space may

be both a sentence boundary and a paragraph

boundary). Assuming there are three candidate

punctuations, comma, period and question mark,

the sets of choices are thus (∅ represents no

boundary):

Figure 1: Schematic illustration of the type of

segmentation problem explored in this paper, where

each potential boundary can be one of a fixed set of

mutually exclusive boundary types.

In the computational literature, various metrics

for evaluating segmentation differences have been

proposed and examined (e.g. Beeferman et al.

Text segmentation similarity revisited: A flexible

distance-based approach for multiple boundary types

Ryan Ka Yau Lai, Yujie Li

Shujie Zhang

 University of California, Santa Barbara University of California, Berkeley
 {kayaulai, yujie_li}@ucsb.edu z4362687@berkeley.edu

300
Proceedings of the Society for Computation in Linguistics (SCiL) 2023, pages 300-309.

Amherst, Massachusetts, June 15-17, 2023

1999, Pevzner & Hearst 2002, Lamprier et al.

2007, Franz et al. 2007, Peshkov et al. 2013,

Peshkov & Prévot 2014). To our knowledge,

however, none are specifically geared towards this

type of problem. An additional complication of

this paper is that our method must work for both

monologic and dialogic texts, which none of the

previous methods have focused on.

In this paper, building on Fournier & Inkpen

(2012) and Fournier (2013), we propose a new

metric, flexible segmentation similarity (𝑆𝑓),

allowing not just for gradient similarities between

boundary types, as discussed also by Fournier

(2013), but also for differentiating insertion and

deletion of different boundary types. We also

discuss a simulation-based approach to calculate

Cohen’s 𝜅 inter-annotator agreement for this

measure. We apply the method to a case study of

intonation unit (IU) segmentation, where part of

the NCCU Taiwan Mandarin Corpus (Chui & Lai

2008) was manually segmented into IUs, and each

IU boundary was classified according to boundary

intonation preceding it.

2 Previous work

Many evaluation metrics have been applied to

segmentation, including match percentage (Lin

2009), conventional measures of classification

performance like precision, recall, F1 value and

accuracy, windows-based approaches like 𝑃𝑘

(Beeferman et al. 1999) and WindowDiff

(Pevzner & Hearst 2002), and edit distance-based

methods (Fournier & Inkpen 2012, Fournier 2013).

Our measure builds on the last approach due to

significant disadvantages of the rest.

2.1 Problems with non-edit distance-based

metrics

The pros and cons of these methods are widely

discussed in the literature (e.g. Beeferman et al.

1999, Pevzner & Hearst 2002, Lamprier et al.

2007, Franz et al. 2007, Fournier & Inkpen 2012,

Peshkov et al. 2013, Peshkov & Prévot 2014), but

several problems stand out. Firstly, conventional

classification performance measures and match

percentage fail to account for ‘near-misses’

(Pevzner & Hearst 2002), where two annotators

place the ‘same’ boundary in different but close

locations. This is often the case in intonation unit

boundary identification: different boundary-

marking acoustic cues can be spread across

multiple words, creating fuzzy boundaries (Barth-

Weingarten 2016: 6-7). Treating the problem as

simple classification unduly penalises such cases.

For example, Troiani et al. (2023) find that

English speakers have very poor performance on

segmenting Kazakh texts into intonational

boundaries when the many near-misses are

ignored; this was likely due to uncertainty about

which part of the recording corresponded to which

part of the transcript.

Secondly, conventional classification

performance measures and windows-based

metrics are asymmetric (Fournier 2013): We

evaluate one annotation set against another;

switching the places of the two annotations results

in different numbers. So these measures can only

compare one annotation against a gold standard,

but not when there is no ground truth (e.g.

between two equally-trained human annotators).

Thirdly, all non-edit-distance-based measures

do not account for multiple boundary types, which

often arise in corpus linguistics, and treat all

mistakes as ‘equal’, ignoring differences in

difficulty between boundary types (cf. Qian et al

2016 in the tokenisation context).

2.2 Edit distance-based metrics

The edit distance-based approaches Segmentation

Similarity (S) (Fournier & Inkpen 2012;

henceforth F&I) and Boundary Similarity (B)

(Fournier 2013) are the closest to our proposed

measure, as they account for near-misses, are

symmetric, and allow multiple boundary types.

They are briefly reviewed here with our simplified

notation, which will be used throughout this paper.

In the following, we will refer to the elements

between which boundaries can be added as tokens.

This may be roughly words in tasks like

intonation unit segmentation, or a larger unit like

turn-constructional units in turn segmentation,

sentences in topic segmentation, and so on. For S

and B, the number of potential boundaries 𝑁 is the

number of tokens minus 1. The potential

boundaries in a text will be denoted

𝑏1, 𝑏2, … , 𝑏𝑁−1 ; for example, in the Figure 1

example, 𝑏1 is between London and Bridge, 𝑏2

between Bridge and is, and so on. The actual

boundaries from annotator i will be denoted

𝑏𝑖,1, 𝑏𝑖,2, … , 𝑏𝑖,𝑁−1 . Since these measures deal

with non-mutually exclusive boundary types, each

of 𝑏𝑖,1, 𝑏𝑖,2, … , 𝑏𝑖,𝑁−1 is a set of boundaries. For

example, when simultaneously annotating turn

301

and sentence boundaries, one potential boundary

could be both a turn boundary and a sentence

boundary.

For calculating S, one set of annotations is

transformed into another, minimising the number

of operations taken. There are three possible

operations: a) adding boundaries, b) deleting

boundaries, and c) transposing boundaries, i.e.

moving a boundary to a different position, in order

to align it with a boundary placed by another

annotator. Thus, if one annotator put a boundary

in 𝑏1,1 but not in 𝑏1,2, and another put a boundary

of the same type in 𝑏2,2 but not in 𝑏2,1, then we

can transpose the boundary from 𝑏1,1 to 𝑏1,2 to

match the second annotator. This only takes one

operation, as opposed to deleting in 𝑏1,1 and

adding it to 𝑏1,2, which takes two, thus preventing

the problem of overpenalising near-misses.

The similarity is then calculated thus:

𝑆 =
𝑁 − #(edits)

𝑁
= 1 −

#(edits)

𝑁

S is thus a ratio in [0, 1]: the larger S is, the closer

the annotations. F&I also mention the possibility

of scaling the number of boundaries ‘moved’ in

transposition so that e.g. 2 transpositions might

count for fewer than two edits.

B differs from S in two ways. Firstly, the

normalisation is different. The score is normalised

by the number of edits plus the number of correct

boundaries. This in essence means the number of

total boundaries perceived by the two annotators,

assuming that transposed boundaries are the ‘same’

boundary across annotators. This prevents biasing

annotators towards a smaller number of

boundaries, i.e. longer segments. This is useful for

tasks like intonation unit segmentation: in

languages like English and Mandarin, intonation

unit boundaries in spoken language are typically

denser than punctuation boundaries in written

language. Annotators may be influenced more by

orthography if biased towards fewer boundaries.

Secondly, instead of the number of edits, the

distance between the two annotations is calculated

more flexibly by assigning different costs to

different edit operations. Although addition and

deletion retain the cost of 1, B allows for

substitutions between boundary types. For B,

boundary types are organised on an ordinal scale,

and the cost of substituting one boundary for

another is their distance on their ordinal scale

normalised by the total number of boundary types.

The formula for B is as follows:

𝐵 = 1 −
𝐶𝑡𝑜𝑡𝑎𝑙

#(edits) + #(correct boundaries)

where 𝐶𝑡𝑜𝑡𝑎𝑙 is the total cost of operations.

Although S and B are excellent measures of

similarity between different annotations, they still

have disadvantages. Firstly, although B allows for

different similarity between different boundary

types, recognising that some boundaries may be

more confusable than others, it makes the strong

assumption that these differences are gradable on

an ordinal scale, which is problematic for

intonation unit segmentation (see Section 4).

Secondly, by setting addition and deletion cost

by default to 1, it ignores the fact that some

boundaries may be easier to identify than others.

Deleting an easy boundary should cost more than

deleting a difficult one.

Finally, S and B are excellent for written and

monologic texts, but are unsuited for multi-party

conversations where tokens are not organised in a

single linear sequence, since two people’s speech

can overlap. Our proposed method addresses all

three of these weaknesses.

3 Proposed method

3.1 Definition of 𝑺𝒇

Like Segmentation Similarity (S) and Boundary

Similarity (B), we evaluate similarity first by

transforming one annotation to the other and

calculating the cost, normalising this, and then

subtracting the similarity from 1 to get a distance.

We present two options for normalising: following

𝑆 in using the number of potential boundaries (𝑆𝑓)

and following B in using the number of edits plus

correct boundaries (𝑆𝑓
𝐵) (pace Fournier (2013), we

argue (Section 4) that both normalisation

approaches can be useful in different situations):

𝑆𝑓 = 1 −
𝐶𝑡𝑜𝑡𝑎𝑙

𝑁

𝑆𝑓
𝐵 = 1 −

𝐶𝑡𝑜𝑡𝑎𝑙

#(edits) + #(correct boundaries)

The calculation of 𝐶𝑡𝑜𝑡𝑎𝑙 departs substantially

from S and B. We allow for user-defined addition,

deletion and substitution costs using the similarity

matrix 𝑀𝑇 . The values in the matrix are the

similarity (on the interval [0, 1]) between the two

different boundary types. One minus the value is

the cost of substitution between these two

boundary types. The final row and column are for

the lack of a boundary. Here is a sample matrix

with two boundary types 𝑇 = {𝑝, 𝑞}:

302

𝑀𝑇 = (

1 𝑠𝑝𝑞 𝑠𝑝∅

𝑠𝑞𝑝 1 𝑠𝑞∅

𝑠∅𝑝 𝑠∅𝑞 1
)

Here, 𝑠𝑎𝑏 is one minus the cost of substituting a

for b, and ∅ refers to the lack of a boundary. Thus,

1 − 𝑠∅𝑞 is the addition cost of 𝑞, and 1 − 𝑠𝑝∅ is

the deletion cost of 𝑝. When a symmetric score is

desired, e.g. comparing two human annotators, the

matrix must be symmetric as well, i.e. 𝑠𝑥𝑦 =

𝑠𝑦𝑥 ∀𝑥, 𝑦 ∈ 𝑇 ∪ {∅} . This means substituting x

for y has the same cost as substituting y for x, and

insertion and deletion have identical costs. By

default, this matrix is the identity matrix 𝐼, i.e. all

substitutions, additions and deletions have a cost

of 1. An example of user-defined 𝑀𝑇 will be given

in Section 4; in cases where existing annotations

by expert annotators are available, confusion

matrices from those raters can be used instead to

determine 𝑀𝑇 in evaluating similarity between

novice annotators’ work. In the rest of this paper,

addition and deletion will be treated as special

cases of substitution involving ∅.

Transposition cost can also be set flexibly for

different boundary types, represented by 𝑐𝑡 , a

vector with as many entries as there are boundary

types. In this paper, we will set transposition cost

at half of insertion/deletion cost, i.e., 𝑐𝑡 =
1

2
(𝟏 −

[𝑠𝑝∅ 𝑠𝑞∅]
𝑇

). A glossary of notation is in Table 1.

𝑆𝑓 , 𝑆𝑓
𝐵 Flexible segmentation distance

normalised respectively with N and

#(𝑒𝑑𝑖𝑡𝑠) + #(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠)

𝐶𝑡𝑜𝑡𝑎𝑙 Total cost of transforming between

annotations

∅ No boundary

N Number of potential boundaries

𝑏𝑖 ith potential boundary

𝑏𝑖,𝑗 Annotator j’s annotation of 𝑏𝑖

𝑇 Set of boundary types

𝑀𝑇 Similarity matrix for 𝑇

𝑠𝑝𝑞 Similarity between p and q

𝑡1[𝑥] xth element of boundary list 𝑡1

𝑡1[−𝑥] 𝑡1 without the xth element

𝑡1[𝑥: 𝑦] xth to yth elements of 𝑡1

𝑐𝑡 Vector of transposition costs

tr(𝑡1, 𝑥, 𝑦) boundary list 𝑡1 with the xth and yth

elements swapped

𝜅 Cohen’s kappa

𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 Chance-level similarity

Table 1: Glossary of notation used in this paper.

3.2 Algorithm for calculating 𝑺𝒇

Our algorithm first separates the text by

conversational participants, since tokens from the

same participant cannot overlap, and thus can be

taken as one whole running text. We calculate the

cost for each participant separately, then take the

sum. Also, in our use cases, the end of the text

also has a boundary type, so number of potential

boundaries N is equal to the number of tokens.

For each participant, we first identify all the

potential boundaries where both annotators put a

boundary, regardless of whether their types match.

Our boundary types are mutually exclusive, so

when two people put different boundaries in the

same place, they can be safely assumed to have

identified the ‘same’ boundary, and just classified

it differently. We treat these as substitutions and

store the total cost of these operations.

We then further split the text into smaller lists

of boundaries at those points where both

annotators have a boundary. Consider the

following situation:

 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6

Annotator 1 𝑝 𝑝 𝑞

Annotator 2 𝑞 𝑝 𝑝 𝑝

We will split the text at the points 𝑏1, 𝑏3 and 𝑏6,

leaving two boundary lists: [𝑏2] and [𝑏4 𝑏5].1 We

discard the boundary lists where both annotators

have no boundaries since such lists are necessarily

identical. In this case, we discard [𝑏2], retaining

only the single list [𝑏4 𝑏5] . For the remaining

boundary lists, we trim all the common leading

and trailing ∅s in both lists, since it is pointless to

move boundaries to those locations; this leaves

only [𝑏4] in the example.

We then calculate the similarity between the

two annotators for each of these segments. For

each segment, we run a recursive algorithm,

called parDist, to find the minimum cost of

transforming one annotation to the next. At each

step, we first trim any common leading and

trailing ∅s again. We then choose the next step

depending on properties of the two boundary lists:

• If the two boundary lists have size 1,

then we simply return the substitution

cost (which is 0 if they are the same

boundary, and >0 otherwise).

1 We assume that annotators will not place a single

boundary of indeterminate location in more than one spot;

thus, Annotator 2 is committing to there being two distinct

boundaries at 𝑏4 and 𝑏5.

303

• If the length is >1, we look for positions

where both boundary lists have a

boundary. If one such position exists, we

perform a substitution at it, then perform

parDist on the remaining contiguous

portion(s) of the boundary list. For

example, if the lists have five elements

and this substitution happens at the

fourth element, then we run parDist

again on two boundary sub-lists: the first

three elements and fifth element. If the

substitution on this list happens at the

first element, then we run parDist on the

segment from the second to fifth item.

• If there are no positions where both

boundary lists have a boundary, but both

lists have at least one non-∅ boundary,

then we attempt both transposition and

substitution and take the minimum. For

transposition, we attempt to move the

first non- ∅ boundary in the second

boundary list so that it matches up with

an element in the first boundary list, then

run parDist on the resultant boundary

lists. For substitution, we simply replace

the first element of the second boundary

list with the first element of the first

boundary list, then run parDist on the

remaining boundaries. We take the

transposition cost if it is smaller, and

vice versa.

• Finally, if one of the boundaries consists

of all 0s, then we perform substitution

until all the differences are eliminated.

A rough presentation of parDist in pseudocode

is presented in Algorithm 1, where 𝑡1 and 𝑡2 are

the two annotations, 𝑡1[1] refers to the first

element of the boundary list, 𝑡1[−1] refers to the

boundary list without the first element, 𝑡1[𝑥: 𝑦]
refers to the xth to yth elements of 𝑡1 , and

tr(𝑡1, 𝑥, 𝑦) refers to 𝑡1 with the xth and yth

elements swapped. Figure 2 illustrates the

algorithm with a concrete example.

function parDist(𝒕𝟏, 𝒕𝟐):

remove all common leading and trailing ∅s from 𝑡1

and 𝑡2

if length(𝑡1) ≤ 1:

 return 1 − 𝑠𝑡1[1],𝑡2[1]

else:

 if 𝑡1[1] = 𝑡2[1]:
 return parDist (𝑡1[−1], 𝑡2[−1])

 else if(𝑡1[1] ≠ ∅ & 𝑡2[1] ≠ ∅):

 return 1 − 𝑠𝑡1[1],𝑡2[1]

 + parDist (𝑡1[−1], 𝑡2[−1])

 else if ∃ 𝑖 such that 𝑡1[𝑖] ≠ ∅ & 𝑡2[𝑖] ≠ ∅:

 take the smallest 𝑖
 return 1 − 𝑠𝑡1[𝑖],𝑡2[𝑖]

 + parDist (𝑡1[1: 𝑖 − 1], 𝑡2[1: 𝑖 − 1])
 + parDist (𝑡1[𝑖 + 1: length(𝑡1)],

 𝑡2[𝑖 + 1: length(𝑡1)])
 else if 𝑡1[1] = ∅ & ∃ 𝑖 such that 𝑡1[𝑖] ≠ ∅:

 take the smallest 𝑖
 return min(1 − 𝑠𝑡1[1],𝑡2[1]

 + parDist(𝑡1[−1], 𝑡2[−1]),

 𝑐𝑡[𝑡2[1]] ⋅ (𝑖 − 1)

 + parDist(𝑡1, tr(𝑡2, 1, 𝑖)))
 else if 𝑡2[1] = ∅ & ∃ 𝑖 such that 𝑡2[𝑖] ≠ ∅:

 take the smallest 𝑖
 return min(1 − 𝑠𝑡1[1],𝑡2[1]

 + parDist(𝑡1[−1], 𝑡2[−1]),

 𝑐𝑡[𝑡2[𝑖]] ⋅ (𝑖 − 1)

 + parDist(𝑡1, tr(𝑡2, 1, 𝑖)))
 else:

 return 1 − 𝑠𝑡1[1],𝑡2[1]

+ parDist(𝑡1[−1], 𝑡2[−1])
Algorithm 1: Pseudocode for parDist

Figure 2: An illustration of parDist, assuming 𝑀𝑇 =
𝐼 (i.e. substitutions including insertion and deletion

cost 1), transpositions cost 0.5, and 𝑇 = {𝑝, 𝑞, 𝑟} .

Firstly, all positions with a boundary in both

annotations are considered substitutions. There are

then two options: Either move the r of the second

annotation to the right, or delete it. In the first case,

the p must then be deleted, resulting in a cost of 3.5.

In the second case, one can then either bring the p to

the left then substitute it for an r (cost = 4.5), or add

an r and delete the p (cost = 5). The minimum cost

of all these possibilities is then 3.5.

The actual implementation of the algorithm

involves several components omitted from the

pseudocode for a cleaner presentation. Two of

these components aim at storing information

about the process. Firstly, the number of actions

hitherto performed is stored and accumulated

across iterations of parDist to calculate the

304

denominator of 𝑆𝑓
𝐵 . Secondly, information about

each operation – including the operation type, old

and new boundary type, and old and new

location – can be stored for later access so they

can be used for analysing machine segmentation

errors or points of inter-annotator disagreement

(Section 4 has an example).

Two other components aim at speeding up

computation. Firstly, the function stores the

minimum cost so far among the total costs that

have been calculated. When the cumulative cost in

the branch of possibilities currently being

explored has exceeded the stored minimum, the

function returns NA, thereby aborting the branch,

instead of continuing the calculation. Secondly,

every time parDist is calculated, the resulting cost

and number of operations are stored in a two-

dimensional dictionary with 𝑡1 and 𝑡2 (stored as

strings) for keys. Before each instance of parDist,

the algorithm looks up the dictionary and simply

takes the result from there if the operation has

been done before. These result in significant speed

gains, especially when calculating similarity

between simulated annotations for inter-annotator

agreement (see Section 3.3).

A property of this algorithm is that a boundary

may be both transposed and substituted if the cost

of doing so is lower than insertion plus deletion.

For the calculation of #(𝑒𝑑𝑖𝑡𝑠) in the 𝑆𝑓
𝐵 formula,

such edits will only be counted once, in the spirit

of normalising by the total number of boundaries.

A consequence of this property is that the

algorithm differs from one which decomposes the

process of similarity calculation into a two-step

process, where boundaries are first aligned

ignoring boundary type, and then substitution

costs are calculated. This is because substitution

cost can affect whether a boundary in 𝑡1 which

corresponds to ∅ in 𝑡2 is simply deleted, or

transposed to match with a nearby boundary by

the other annotator.

Our algorithm was implemented in R (R Core

Team 2022). It takes input data formatted as an R

data.frame, and outputs 𝑆𝑓 and 𝑆𝑓
𝐵, along with

a record of each operation that took place. We

additionally wrote a function to convert files in

the .rez format imported from Rezonator (DuBois

et al. 2020) into the required format for the

function. The algorithm is available as an R

package (https://github.com/rezonators/

segsimflex).

3.3 Inter-annotator agreement

The similarity score measures how similar two

annotations are, but how similar counts as ‘good’?

Converting the similarity to inter-annotator

agreement (IAA) (Passonneau & Litman 1993,

Hearst 1997) allows us to directly measure

agreement among annotations. We use Cohen’s 𝜅,

which compares the actual similarity between the

annotations against chance-level similarity.
Following the definition of Cohen’s 𝜅 , we

calculate chance-level similarity based on the

assumption that each boundary is a categorical

random variable where each category is a

boundary type or no boundary. The annotations

are independent and identical within annotators

and independent but non-identical across

annotators. For example, with two boundary types

p and q, the categories are {p, q, ∅}, and each

annotator has their own 𝑃(𝑝) , 𝑃(𝑞) and 𝑃(∅)

values. Category probabilities are estimated with

the maximum likelihood estimator, i.e. the

proportion of that category within the annotation.

Based on these estimated null distributions, we

then estimate chance-level similarity 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒

using the expected value of the similarity score.

We use a simulation approach since it is difficult

to find a closed form for it. At each simulation

step, we draw a boundary type for each annotator

at each boundary, then calculate the similarity

score. The average similarity over k simulation

steps is the estimated expected value of the

similarity score. Cohen’s 𝜅 is then calculated thus:

𝜅 =
𝑆𝑓 − 𝑆𝑓

𝑐ℎ𝑎𝑛𝑐𝑒

1 − 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒

Hence, a negative score means below-chance

performance, a positive score is above-chance,

and perfect performance results in 𝜅 = 1.

Both 𝑆𝑓 and 𝑆𝑓
𝐵 can be used for 𝜅. If 𝑆𝑓 is used,

then the form of 𝜅 used here resembles the

standard form of 𝜅 in classification tasks, except

with gradient similarity between categories and an

added possibility of transposition. Nevertheless,

𝑆𝑓 may still be advisable at least in some

situations (see Section 4.4 for discussion).

A common criticism of 𝜅 in classification

contexts (Byrt, Bishop & Carlin 2010) is that large

differences in raters’ individual category

distributions will deflate chance-level agreement

and push 𝜅 up. In cases where this is expected to

be a substantial problem, 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 can instead be

305

calculated using an overall estimation of category

probabilities that pools together both raters’

annotations, turning the IAA into Scott’s 𝜋.

Another common criticism is that a situation

with unbalanced categories will lead to drastically

higher expected proportion of agreement and thus

lower 𝜅 values than one with balanced categories.

This phenomenon is likely to occur with 𝑆𝑓-based

𝜅, since non-boundaries are much more common

than boundaries, but it is not necessarily

problematic: A text with many non-zero

boundaries is ‘harder’ to get right than a text with

few non-zero boundaries, so if the aim is

measuring rater performance (rather than the

quality of the annotation itself), texts with more

non-zero boundaries should have higher IAA than

those with fewer non-zero boundaries but a

comparable level of similarity. If the phenomenon

is problematic, 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 can instead be calculated

based on the assumption that all boundary types

(including no boundary) have equal probability,

turning the IAA measure into Bennett’s S. 𝑆𝑓
𝐵 -

based 𝜅 ignores non-boundaries in normalising

agreement, and thus is less likely to be subject to

this phenomenon; if unevenness among boundary

types is an issue, one may modify Bennett’s S

such that 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 is calculated by getting a pooled

estimate of the probability having no boundary

from the two raters, then assuming the distribution

of boundary types is uniform.

4 Case study: intonation unit

segmentation

To illustrate the proposed measure, we apply

our proposed measure to exploring inter-annoator

agreement in a prosodic segmentation task.

4.1 Data and problem

We are manually segmenting the NCCU

Taiwan Mandarin Corpus (Chui & Lai 2008) into

intonational units (IUs), a unit of prosody

corresponding to short bursts of speech (roughly

corresponding to intonation phrases or breath

groups in other prosodic frameworks). So far, we

have annotated texts TM001, 004, 009, 016, 025,

036, 049. Before IU segmentation, we tokenised

the texts to obtain potential boundary locations,

following principles in Huang et al. (1997, 2017).

Two independent coders perform IU

segmentation using four main boundary types,

called endnotes, representing broad classes of

prosodic contours near the end of the IU, each of

which signals a type of transitional continuity

(DuBois et al. 1993, DuBois 2020): Rising

intonation indicating appeal, as in questions and

uptalk (denoted by ?), continuing intonation

indicating continuation of the prosodic sentence (a

comma ,), falling intonation indicating finality (a

period .), and a boundary marker for truncated IUs,

i.e. IUs that ended before completion (a dash --).

Some boundaries were uncategorised, usually

because the IU consisted solely of elements with

no discernable prosody, e.g. laughter or tsk-tsk;

these are denoted as semicolon (;). Earlier on in

the process, texts were segmented by manually

editing text files; later, we performed

segmentation using the Rezonator program

(DuBois et al. 2020). Figure 3 shows the same

tokens from one of the texts, TM001, as

segmented differently by the two annotators who

worked on this text. We calculate similarity scores

and IAA on these texts to evaluate the quality of

our annotation training and workflow and identify

avenues for improvement.

(a)

(b)

Figure 3: Example annotations in TM001. (a) and (b)

are from two different annotators. The first boundary

was deemed final by the first annotator, and

continuing by the second. The word 但 dàn ‘but’ was

put in a separate IU by the first annotator, but not the

second.

4.2 Parameter values

For each pair of annotators, we calculated four

values: 𝑆𝑓 and 𝑆𝑓
𝐵 with an identity distance matrix,

and the same values with the following custom

similarity matrix:

Rising and falling intonation have the most

dissimilar pitch contour of the four, hence a

similarity of .25. Truncated intonation differs from

306

all others in not following a complete prosodic

gestalt, and resembles continuing in having no

rise/fall; hence the similarity with continuing is.5,

and the similarity with the rest is .25. Rising and

falling endnotes are substantially different

intonationally from an IU-medial word, so their

similarity with no boundary is 0; continuing and

truncated IUs have less clear pitch cues and hence

are harder to detect consistently, and receive .25

similarity. For simplicity, unclassified boundaries

are ignored by treating them as identical to all

other boundaries. Transposition costs are set at

half the insertion/deletion cost for each endnote.

One may ask why we use these hand-crafted

‘theoretical’ values, instead of deriving values

from empirical confusion matrices. This is

because we want these values to reflect only

difficulty in prosodic perception. However, actual

boundary perception can be affected by

grammatical structures derived from lexical

content (Kuang et al. 2022). For example, in

Hegemonic American English, statements often

end with rises, and questions with falls (e.g.

Bolinger 1999), and this is attested in our

Mandarin data too. Though we tell annotators to

consider only prosody, not content, they may still

be affected by syntax and lexis, e.g. putting a

question mark (?) after a syntactic/pragmatic

question even though it has falling intonation.

Such errors, even if common, need to be counted

more heavily than errors caused by acoustic

similarity. A possible alternative is to use

confusion matrices from expert annotations

assumed to not contain the syntax-based errors,

which we do not pursue in this study because we

do not yet have such datasets.

4.3 Results

Similarity scores are shown in Figure 4. As

expected, I-based scores are lower than 𝑀′𝑇-based

ones, and 𝑆𝑓 > 𝑆𝑓
𝐵 regardless of the similarity

matrix, with 𝑆𝑓 values nearing 1. The variation

between texts is small within each measure,

especially for 𝑆𝑓; there is greater variation in 𝑆𝑓
𝐵.

The 𝜅 values are shown in Figure 5, where it is

clear that 𝑆𝑓
𝐵-based 𝜅’s remain substantially lower

than 𝑆𝑓 -based ones and I-based than 𝑀′𝑇 -based

ones. Overall, IAA scores are substantially lower

than raw similarity scores, which is expected since

they take into account the fact that chance-level

similarity can be quite high. There is also less

divergence between different measures for IAAs

than raw similarities, suggesting that there is less

difference as to how much each measure diverges

from the chance-level value of that measure.

Figure 4: Various similarity metrics applied to texts

Figure 5: 𝜅 values for various similarity metrics.

Figure 6: Distribution of operations performed on

endnotes. ‘Match’ means full match, ‘del’ means

deletion, ‘tr’ means transposition; the rest are

substitutions between boundary types. Transposition

plus substitution operations are not attested, and thus

not shown.

Figure 6 shows the distribution of operations

performed on each type of endnote in the

annotations. The rate of full matches (i.e. both

position and boundary type match) is quite low;

falls are matched less than 50% of the time, the

rest even less. Yet deletions and especially

transpositions are rare, indicating high consistency

for boundary positions: continuations have the

most deletions, and even there the rate is less than

20%. Most of the errors are inconsistencies

between boundary types. Truncations often

correspond to continuations and sometimes to

falls by other annotators. Falls and continuations

are often confused for each other, while appeals

correspond to falls around 70% of the time.

307

4.4 Discussion

The distributions of operations explain many of

the patterns seen in the similarity score measures.

Because most of the operations are substitutions

between boundary types, once 𝑀′𝑇 is used and

correspondences between easily confusable

boundary types are thereby downweighed, the

similarity score rises drastically compared to 𝐼 -

based similarities. The dramatic disagreement

with respect to boundary types may be attributable

to a) lexical tone, which complicates perception as

listeners must calibrate their perception of final

pitch trajectories to the individual lexical tones;

and b) the fact that words near IU boundaries,

especially final particles, are often spoken very

rapidly. Additionally, many appeal endnotes (?)

were marked as falling (.) by the other annotator;

manual inspection reveals some situations where

the pitch contour is clear, but the one of the

annotators decided between . vs ? based on syntax

or pragmatics instead. Future annotator training

will emphasise the importance of ignoring non-

prosodic factors and calibrating intonational

judgements according to lexical tones.

Notably, even when we consider Cohen’s 𝜅, a

marked divergence between 𝑆𝑓 and 𝑆𝑓
𝐵 remains.

This is likely partially due to inherent weaknesses

with using 𝑆𝑓
𝐵 for 𝜅 . In calculating chance-level

similarity, the simulated annotations will have a

comparable number of boundaries to the original

annotations, because of how the distribution we

simulate from is defined. But random placement

of boundaries results in many mismatched

boundaries, and hence a larger number of

boundaries than actual annotations, which will

have much more matches. This artificially inflates

𝑆𝑓
𝐵,𝑐ℎ𝑎𝑛𝑐𝑒

 compared to 𝑆 𝑓
𝐵 , deflating 𝑆 𝑓

𝐵-based 𝜅.

Thus 𝑆𝑓 may be the more suitable choice in 𝜅

calculation, and the moderate agreement indicated

by 𝑆𝑓 -based 𝜅 is a better indication of our

annotation performance. This matches intuitively

with the fact that boundary locations are mostly

matched, while agreement on continuations and

falls (the most common contours) are fair. The

property of 𝑆 𝑓
𝐵 discussed here may not have been

noticed by Fournier (2013), who argued for B

over S, because he focused on cases with full

misses (insertion/deletion) and near-misses

(captured by transpositions). He did not explore

datasets like ours where substitutions between

boundaries with largely matched positions are the

primary operation.

Although we believe the B-based denominator

is not optimal in this case, we do not claim that N

is preferable in every scenario. For example, when

one’s main goal is to compare across texts to

evaluate the difficulty of computationally

detecting boundaries in each one, normalising

with N unduly favours texts with sparser

boundaries (longer segments). In ongoing work,

we applied the measure to a case of evaluating a

machine segmenter against different texts to

determine the difficulty of segmenting different

text types, and preliminary results show that 𝑆𝑓

can give misleading results where 𝑆𝑓
𝐵 does not.

We believe it is best to choose the denominator

according to the specific dataset and problem.

5 Conclusion

In this paper, we introduced flexible segmentation

similarity 𝑆𝑓 , a new edit distance-based measure

of segmentation similarity involving multiple

mutually exclusive boundaries with fully flexible

transposition, substitution, and addition/deletion

costs. We justified its properties, presented an

algorithm for computation, and extended it to

inter-annotator agreement. We applied it to a case

of intonation unit segmentation, where we

evaluated consistency between manual

segmentations and found ways to improve

annotator training. We argued that, contrary to

Fournier (2013), the number of boundaries is not

always the best choice of denominator in

calculating segmentation similarity for inter-

annotator agreement when there is high agreement

on boundary location but low agreement on

boundary type. We hope our measure will find

other use cases, especially where gradient

differences between boundary types are needed.

Acknowledgements

Thanks to Lu Liu, Jack Sun, Sabrina Sun, Danni

Wang, Sirui Wang, Haoran Yan and Sunny Zhong

for their annotation work, John W Du Bois for

valuable guidance throughout the project, Haoran

Yan, Olivia Jonokuchi, Laurel Brehm, Simon

Todd and UCSB’s CEILing group for comments

on an earlier draft, Sherry Chien for her

involvement early in the project, and Tianrui Gu

and Giselle Ramirez for their current work

extending the package.

308

References

Barth-Weingarten, Dagmar. 2016. Intonation units

revisited: cesuras in talk-in-interaction (Studies in

Language and Social Interaction 29). Amsterdam ;

Philadelphia: John Benjamins Publishing Company.

Beeferman, Doug, Adam Berger & John D. Lafferty.

1999. Statistical models for text segmentation.

Machine Learning 34(1–3). 177–210.

Byrt, Ted, Janet Bishop & John B. Carlin. 1993. Bias,

prevalence and kappa. Journal of Clinical

Epidemiology 46(5). 423–429.

https://doi.org/10.1016/0895-4356(93)90018-V.

Chui, Kawai & Huei-ling Lai. 2008. The NCCU

corpus of spoken Chinese: Mandarin, Hakka, and

Southern Min. Taiwan Journal of Linguistics 6(2).

DuBois, John W., Schuetze-Coburn, Susanna

Cumming & Danae Paolino. 1993. Outline of

discourse transcription. (Ed.) Jane A. Edwards &

Martin D. Lampert. Talking data: Transcription

and coding in discourse research. Lawrence

Erlbaum Associate, Inc. Publishers.

DuBois, John W. 2020. Discourse Functional

Transcription: Conventions. Unpublished

manuscript.

DuBois, John W., Terry DuBois, Georgio Klironomos

& Brady Moore. 2020. From answer to question:

Coherence analysis with Rezonator. In Proceedings

of the 24th Workshop on the Semantics and

Pragmatics of Dialogue.

Fournier, Chris. 2013. Evaluating text segmentation

using boundary edit distance. In Proceedings of the

51st Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers), 1702–1712.

Fournier, Chris & Diana Inkpen. 2012. Segmentation

Similarity and Agreement. In Proceedings of the

2012 Conference of the North American Chapter of

the Association for Computational Linguistics.

Franz, Martin, J. Scott McCarley & Jian-Ming Xu.

2007. User-oriented text segmentation evaluation

measure. In Proceedings of the 30th annual

international ACM SIGIR conference on Research

and development in information retrieval, 701–702.

Huang, Chu-Ren, Keh-Jiann Chen, Li-Li Chang &

Feng-Yi Chen. 1997. Segmentation standard for

Chinese natural language processing. In

International Journal of Computational Linguistics

& Chinese Language Processing, Volume 2,

Number 2, August 1997, 47–62.

Huang, Chu-Ren, Shu-Kai Hsieh & Keh-Jiann Chen.

2017. Mandarin Chinese words and parts of

speech: A corpus-based study. Routledge.

Kuang, Jianjing, May Pik Yu Chan & Nari Rhee. 2022.

The effects of syntactic and acoustic cues on the

perception of prosodic boundaries. Proc. Speech

Prosody 2022 699–703.

Lin, You-Jing. 2009. Units in Zhuokeji rGyalrong

discourse: Prosody and grammar. University of

California, Santa Barbara.

Lu, Wei & Hwee Tou Ng. 2010. Better punctuation

prediction with dynamic conditional random fields.

In Proceedings of the 2010 conference on

empirical methods in natural language processing,

177–186.

Passonneau, Rebecca J. & Diane J. Litman. 1993.

Intention-based segmentation: Human reliability

and correlation with linguistic cues. Proceedings of

ACL-93.

Peshkov, Klim & Laurent Prévot. 2014. Segmentation

evaluation metrics, a comparison grounded on

prosodic and discourse units. In Proceedings of the

Ninth International Conference on Language

Resources and Evaluation (LREC’14).

Peshkov, Klim, Laurent Prévot & Roxane Bertrand.

2013. Evaluation of automatic prosodic

segmentations. In Interface Conference 2013 (IDP-

2013), 95.

Pevzner, Lev & Marti A. Hearst. 2002. A critique and

improvement of an evaluation metric for text

segmentation. Computational Linguistics 28(1).

19–36.

Qian, Peng, Xipeng Qiu & Xuan-Jing Huang. 2016. A

new psychometric-inspired evaluation metric for

Chinese word segmentation. In Proceedings of the

54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers), 2185–2194.

R Core Team. 2022. R: A Language and Environment

for Statistical Computing. Vienna, Austria: R

Foundation for Statistical Computing.

https://www.R-project.org/.

Troiani, Giorgia, DuBois, John W. & Gries, Stefan Th.

(2023). Testing the perception of Intonation Unit

boundaries in naturally occurring conversation. XV

International Conference on General Linguistics,

University of Madrid Complutense.

309

