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Abstract
A candidate surface phonological realiza-
tion is called a peak of a probabilistic
constraint-based phonological grammar pro-
vided it achieves the largest probability mass
over its candidate set. Obviously, the set of
peaks of a maximum entropy grammar is the
categorical harmonic grammar corresponding
to the same weights. This paper shows that
the set of peaks of a stochastic harmonic gram-
mar instead can be different from the categor-
ical harmonic grammar corresponding to any
weights. Thus in particular, maximum entropy
and stochastic harmonic grammars can peak
on different candidates.

Maximum Entropy grammars (ME; Goldwater
and Johnson, 2003; Hayes and Wilson, 2008) and
Noisy or Stochastic Harmonic Grammars (SHG;
Boersma and Pater, 2016) are both probabilistic ex-
tensions of categorical Harmonic Grammars (HG;
Legendre et al., 1990b,a; Pater, 2009). A growing
body of literature tries to pull apart these two proba-
bilistic frameworks. One line of research compares
ME and SHG in terms of their ability to fit specific
patterns of data given specific choices of candidates
and constraints (Zuraw and Hayes, 2017; Smith and
Pater, 2020; Breiss and Albright, 2022). Another
line of research compares their typological predic-
tions independently of the choice of the constraints,
by characterizing the uniform probability inequali-
ties they predict (Anttila and Magri, 2018; Anttila
et al., 2019; Magri and Anttila, 2023).

This paper compares ME and SHG in terms of
their probability peaks, namely the candidates to
which they assign largest probability masses, as for-
malized in section 1. Obviously, the peaks of the
ME grammar corresponding to some non-negative
weights are the winners singled out by the cate-
gorical HG grammar corresponding to the same
weights, no matter what the constraint set looks
like, as illustrated in section 2. In other words,
ME grammars peak on HG winners. Crucially, this

property does not extend from ME to SHG, as dis-
cussed in section 3. Indeed, section 4 constructs
an example of SHG grammar whose peaks cannot
be described as the HG winners corresponding to
any non-negative weights. In other words, SHG
grammars do not necessarily peak on HG winners.
It follows in particular that ME and SHG grammars
can peak on different candidates.

The proposed counterexample is somewhat con-
trived and no simpler counterexamples seem read-
ily available. It is therefore improbable that we
would ever “stumble” into one such counterexam-
ple by simply “playing” with SHG phonology. This
result about SHG peaks thus shows that only math-
ematical analysis can reveal subtle properties of
probabilistic phonological models—which is one
of the main goals of linguistic theory.

1 Peaks of probabilistic grammars

A phonological mapping is a pair (x, y) consisting
of an underlying form x and a corresponding sur-
face realization y. Gen denotes the set of mappings
relevant for the description of the phonological sys-
tem of interest (Prince and Smolensky, 1993/2004).
Gen(x) denotes the set of candidate surface real-
izations y such that the mapping (x, y) belongs to
Gen. We allow Gen to list countably infinitely
many underlying forms. But we require a candi-
date set Gen(x) to be finite to avoid the technicali-
ties needed to define probability mass functions on
infinite sets.

A categorical grammar G assigns to an under-
lying form x a unique “winner” surface realization
y from the candidate set Gen(x). Thus, we require
categorical grammars to be strict: they specify a
unique surface realization per underlying form. On
the other hand, we allow categorical grammars to
be partial: they might fail to specify any surface
realization for a given underlying form. HG gram-
mars recalled below are indeed usually defined as
strict and partial.
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A probabilistic grammar G assigns to each
mapping (x, y) listed by Gen a number G(y | x)
that is interpreted as the probability that the under-
lying form x is realized as the surface candidate y.
This probabilistic interpretation requires these num-
bers G(y | x) to be non-negative and normalized
across the candidate setGen(x) of each underlying
form x, namely

∑
y∈Gen(x)G(y | x) = 1.

We say that a mapping (x, y) is a peak of a prob-
abilistic grammar G provided y is assigned a larger
probability mass than any other candidate z of the
underlying form x, as stated in (1).

G(y | x) > max
z∈Gen(x)

z6=y

G(z | x) (1)

The set of candidates with peak probabilities
can be interpreted as a categorical grammar. This
categorical grammar is strict, because condition (1)
features a strict inequality, whereby at most one
candidate per underlying form qualifies as a peak.
Furthermore, this categorical grammar is partial,
because multiple candidates can tie for the largest
probability, whereby none qualifies as a peak.

Intuitively, these candidates that are assigned the
largest probability masses are those that are deemed
most important by a probabilistic grammar. The
set of these most important candidates with peak
probabilities thus ought to capture some important
information about the probabilistic grammar. As
a first stub at analyzing a complex probabilistic
grammar, it thus makes sense to analyze the corre-
sponding categorical grammar of peaks.

2 ME peaks are HG winners

To illustrate the definitions in the preceding section,
we consider a set C consisting of a finite number
n of constraints Ck. We denote by Ck(x, y) the
number of violations assigned by constraint Ck to
a mapping (x, y) from Gen. We assign to each con-
straint Ck a non-negative weight wk. A candidate
y is the winner surface realization of an underlying
form x provided it satisfies condition (2). It says
that the candidate y violates the constraints less
than any other candidate z because the weighted
sum of the constraint violations of y is strictly
smaller. The categorical grammar G that singles
out such winner candidates is the HG grammar cor-
responding to the weight vector w = (w1, . . . , wn).
It is strict, because (2) features a strict inequality. It
can be partial, in case two or more candidates tie for

the smallest weighted sum of constraint violations.

n∑

k=1

wkCk(x, y) < min
z∈Gen(x)

z 6=y

n∑

k=1

wkCk(x, z) (2)

We can also use the constraint set C and the
weight vector w to define a probabilistic grammar
though condition (3). It says that the probability
G(y | x) that an underlying form x is realized as a
candidate y is the exponential of the opposite of
the weighted sum of constraint violations of the
mapping (x, y), divided by a quantity Z(x) that en-
sures normalization over the candidate set Gen(x).
The resulting probabilistic grammar G is the ME
grammar corresponding to the weight vector w.

G(y | x) = 1

Z(x)
exp

{
−

n∑

k=1

wkCk(x, y)

}
(3)

The normalization constant Z(x) depends on the
underlying form x but not on the candidate y. Fur-
thermore, the definition (1) of probability peaks
only compares probabilities within the same candi-
date set. It follows that a mapping (x, y) qualifies
as a peak of the ME grammar (3) corresponding
to the weight vector w if and only if (x, y) belongs
to the HG grammar (2) corresponding to the same
weight vector w. In other words, HG grammars
single out the peaks of ME grammars.

3 SHG peaks are not HG winners

Let pw be a uni-dimensional probability density
function that starts at a point w, in the sense that it
is equal to zero at the left of w. Here are some nat-
ural examples of such a density (IS is the indicator
function of the set S):

• the uniform density
punif
w (v) = I[w,w+1](v);

• the exponential density
p

exp
w (v) = exp(w − v)I[w,+∞](v);

• the half-gaussian density

p
gauss
w (v) =

2 exp[−(v−w)2/2]√
2π

I[w,+∞](v)

Given a constraint set C and a non-negative weight
vector w = (w1, . . . , wn), the corresponding SHG
grammar assigns to a mapping (x, y) the probability
of sampling a weight vector v according to pw =
pw1 · . . . ·pwn such that y qualifies as an HG winner
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Figure 1

corresponding to this weight vector v in the sense
of condition (2) above. The assumption that the
weights wk are non-negative and that pwk starts at
wk ensures that the probability of sampling vectors
v with negative components is zero.1

To understand intuitively why SHG peaks are
not necessarily HG winners, let us consider the
following simplest case. Gen lists only two can-
didate surface realizations y and z for an under-
lying form x. The constraint set consists of only
n = 2 constraints. The setW(x, y) of weight vec-
tors v = (v1, v2) such that the weighted sum of
constraint violations of y is smaller than that of z
is the dashed red cone in figure 1 described by the
inequality v2 > αv1, for some α > 0. The SHG
grammar corresponding to a weight vector w is
implemented with the uniform density that concen-
trates the probability mass on the square that starts
at the weight vector w. This square is split into two
halves by the red dashed coneW(x, y). The area of

1 The implementation of probabilistic constraint-based
phonology that I call here “stochastic” HG is slightly differ-
ent from what Boersma and Pater (2016) call “noisy” HG,
because the two implementations differ for the strategy they
adopt to avoid sampling zero weights. In SHG, zero weights
are avoided by sampling according to a density pw that starts
at a positive value w. In NHG, zero weights are avoided by
clipping at zero or by re-sampling (Hayes and Kaplan 2023).
Furthermore, the term “stochastic” HG makes it explicit that
the resulting framework is a probabilistic extension of cat-
egorical HG in exactly the same way that Stochastic OT is
a probabilistic extension of categorical OT (Boersma 1997,
1998). Finally, the term “noisy” is traditionally used to qual-
ify the training data, while “stochastic” is used to single out
algorithms (and thus grammars) that are non-deterministic.

the solid red half of the square that sits within the
coneW(x, y) is the probability mass assigned by
our SHG grammar to the mapping (x, y). The area
of the remaining solid blue half that sits outside of
W(x, y) is the probability mass assigned to (x, z).

The weight vector w in figure 1A sits outside of
the cone W(x, y). Thus, the HG grammar corre-
sponding to w does not contain the mapping (x, y).
Yet, w sits so close to the border of the coneW(x, y)
that the red solid area is larger than the blue solid
area. Thus, our mapping (x, y) is a peak of the
SHG grammar corresponding to the weight vec-
tor w, because (x, y) receives a larger probability
mass than (x, z). In conclusion, a peak of an SHG
grammar might not belong to the HG grammar
corresponding to the same weight vector.

Figure 1B illustrates the reverse scenario. The
HG grammar contains the mapping (x, y) because
the weight vector w sits inside the cone W(x, y).
Yet, w sits so close to the border of the cone that
the mapping (x, y) does not count as a peak of the
SHG grammar because the red solid area is smaller
than the blue solid area. In conclusion, a mapping
of an HG grammar might not be a peak of the SHG
grammar corresponding to the same weight vector.

These mismatches between SHG peaks and HG
mappings are only possible when the border of
the cone W(x, y) is less tilted than the diagonal
because α < 1 as in figure 1A; or it is more titled
than the diagonal because α > 1 as in figure 1B.
These mismatches are not possible when instead
the border of the coneW(x, y) coincides with the
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diagonal because α = 1. In this case, the red solid
area is larger (smaller) than the blue solid area if
and only if the weight vector w sits inside (outside)
of the coneW(x, y), no matter how close w is to
the diagonal border of the cone. As a result, (x, y)
is an SHG peak if and only if it belongs to the HG
grammar corresponding to the same weights. We
will use this observation in subsection 4.1 below.

The considerations developed so far for the uni-
form density based on elementary geometric con-
siderations extend to other densities. To illustrate,
let us consider the exponential density. We start
with the case where the border of the coneW(x, y)
is less tilted than the diagonal as in figure 1A, say
because α = 1/2. We focus on weight vectors
w = (w1, w2) that sit outside of this cone because
they have a negative “distance” ξ = w2−αw1 < 0
from the border of the cone. The SHG probability
mass of our mapping (x, y) is easily computed in
closed form by integrating the exponential func-
tion. Figure 2A plots this SHG probability mass
(on the vertical axis) as a function of the “distance”
ξ < 0 (on the horizontal axis). When ξ is between
log(3/4) ' −0.2877 and zero, the weight vector w
sits outside of the coneW(x, y), whereby the map-
ping (x, y) does not belong to the corresponding
HG grammar. Yet (x, y) is a peak of the correspond-
ing SHG grammar, because the SHG probability
mass of y is larger than 0.5, and therefore larger
than the SHG probability mass of z.

Analogously, let us consider the case where the
border of the coneW(x, y) is more tilted than the
diagonal as in figure 1B, say because α = 2. We
focus on weight vectors w = (w1, w2) that sit in-
side this cone because they have a positive “dis-
tance” ξ = w2 − αw1 > 0 from the border of
the cone. Figure 2B plots the SHG probability
mass of our mapping (x, y) as a function of the
“distance” ξ > 0. When ξ is between zero and
log(16/9) ' 0.5754, the weight vector w sits in-
side the coneW(x, y), whereby the mapping (x, y)
does belong to the corresponding HG grammar.
Yet (x, y) is not a peak of the corresponding SHG
grammar, because the SHG probability mass of y
is smaller than 0.5, and therefore smaller than the
SHG probability mass of z.

These considerations show that the mappings
singled out by the HG grammar corresponding to
some weight vector w are not necessarily the peaks
of the SHG grammar corresponding to the same
weight vector w. Yet, it can be shown (through a

different line of analysis that falls outside of the
scope of this paper), that the mappings singled out
by the HG grammar corresponding to some weight
vector w are always the peaks of the SHG gram-
mar corresponding to a possibly different weight
vector w′. What about the reverse? Despite the mis-
matches between SHG peaks and HG mappings
documented above, is it the case that the peaks of
the SHG grammar corresponding to some weight
vector w are always the mappings singled out by
the HG grammar corresponding to a possibly dif-
ferent weight vector w′? The next section provides
a negative answer to this question by constructing
an SHG grammar whose set of peaks is not an HG
grammar, no matter the choice of the weights.

4 Counterexample

To construct the simplest possible counterexample,
we assume that Gen lists only three underlying
forms x1, x2, and x3 and endows each of them with
only two candidates yi and zi, as in (4)

Gen =

{
(x1, y1) (x2, y2) (x3, y3)
(x1, z1) (x2, z2) (x3, z3)

}
(4)

The constraint set C consists of n = 3 constraints
C1, C2, and C3 that yield the violation profiles in
(5). Actual numbers of constraint violations do
not matter. What does matter for the counterex-
ample are the ratios of the differences between
the numbers of violations of two candidates, as
shown in appendix E. To illustrate, it does not mat-
ter that C1 and C3 assign 33 and 0 violations to
y3 and 0 and 200 violations to z3. What does
matter is that the ratio between the differences
C1(x3, y3)−C1(x3, z3) andC3(x3, z3)−C3(x3, y3)
is equal to 33/200 = 0.165. These large numbers
33 and 200 are needed to express a small value
0.165 as the ratio 33/200 between two integers.

C1 C2 C3

(x1, y1) 0 5 0

(x1, z1) 2 0 0

(x2, y2) 0 0 5

(x2, z2) 0 2 0

(x3, y3) 33 0 0

(x3, z3) 0 0 200

(5)

Finally, the vector w = (w1, w2, w3) of non-
negative weights is chosen carefully as in (6).

w1 = 4.21734890439
w2 = 1.3195643695
w3 = 0.160450555542

(6)
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We implement the SHG grammar with the expo-
nential density. When this SHG grammar is called
for 100,000 times on each of the three underlying
forms x1, x2, and x3, it returns the surface forms y1,
y2, and y3 with the frequencies in (7).

GSHG
w (y1 | x1) = 0.50566

GSHG
w (y2 | x2) = 0.50637

GSHG
w (y3 | x3) = 0.50126

(7)

Since these frequencies are (close to but strictly)
larger than 0.5, the categorical grammar of peaks
of the SHG grammar considered is the grammar G
in (8). Crucially, we will see that this grammar G
is not an HG grammar corresponding to any choice
of non-negative constraint weights.

G =
{
(x1, y1), (x2, y2), (x3, y3)

}
(8)

In conclusion, we have constructed an SHG
grammars whose set of peaks cannot be construed
as any HG grammar. The rest of this section ex-
plains in detail how the counterexample has been
constructed, by motivating the choice of the viola-
tion profiles in (5) and of the weights in (6).

4.1 First step
We need to define the n = 3 constraints in such
a way that the grammar G in (8) is not an HG
grammar. As above, let us denote by W(xi, yi)
the cone of those non-negative weight vectors
v = (v1, v2, v3) that declare yi the winner sur-
face realization of the underlying form xi. A sim-
ple strategy to achieve our goal is to define the
constraints so that these three cones are as in (9).
In fact, the grammar G in (8) qualifies as an HG
grammar only if some non-negative weight vector
v = (v1, v2, v3) belongs simultaneously to all three
cones. And that is impossible. Because a weight
vector that belongs to both cones W(x1, y1) and
W(x2, y2) must satisfy both inequalities v1 > v2
and v2 > v3. By transitivity, it must also satisfy

the inequality v1 > v3. Hence, our weight vector
cannot belong to the coneW(x3, y3).

W(x1, y1) =
{

v
∣∣ v1 > v2

}

W(x2, y2) =
{

v
∣∣ v2 > v3

}

W(x3, y3) =
{

v
∣∣ v1 < v3

} (9)

Unfortunately, the borders of the cones in (9) are
all diagonal. As discussed in section 3 above, we
get no mismatches between SHG peaks and HG
mappings in this case. Thus, I make the borders
non-diagonal by replacing the cones in (9) with
those in (10), where the steepness of the borders is
controlled by the positive coefficients a and α. I use
the same coefficient a for both conesW(x1, y1) and
W(x2, y2), as this choice simplifies the analysis
without compromising the counterexample.

W(x1, y1) =
{

v
∣∣ v1 > a v2

}

W(x2, y2) =
{

v
∣∣ v2 > a v3

}

W(x3, y3) =
{

v
∣∣ v3 > α v1

} (10)

As for the HG-hood of the grammar G in (8),
the replacement of our initial guess (9) with the
refined guess (10) changes nothing because of the
following lemma, verified in appendix A.

Lemma 1 Suppose that the positive coefficients
a, α > 0 satisfy condition (11).

a2α ≥ 1 (11)

No weight vector v = (v1, v2, v3) belongs simul-
taneously to the three cones in (10), whereby the
grammar G in (8) is not an HG grammar.

4.2 Second step
We now want to construct a non-negative weight
vector w = (w1, w2, w3) such that the peaks of the
corresponding SHG grammar are indeed the three
mappings singled out by the grammar G in (8). As
discussed in the preceding subsection, this weight
vector w cannot belong simultaneously to all three
cones in (10). For concreteness, we assume that the
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weight vector w = (w1, w2, w3) does not belong
to the coneW(x3, y3) while it does belong to the
other two conesW(x1, y1) andW(x2, y2).

The assumption that the weight vector w sits out-
side of the cone W(x3, y3) despite the mapping
(x3, y3) being a peak of the corresponding SHG
grammar has two consequences. The first conse-
quence is that the border of the cone W(x3, y3)
must be less tilted than the diagonal, as in figure 1A.
In other words, the coefficient α that controls its tilt-
edness must be small in the sense that α < 1. The
second consequence is that, although the weight
vector w sits outside of the coneW(x3, y3), it can-
not be too far away from it. Equivalently, although
w3 is smaller than αw1 (so that w sits outside of
W(x3, y3)), it cannot be too much smaller (so that
w sits close to W(x3, y3)). Not much smaller in
the sense that the weights w1 and w3 satisfy the
inequality w3 > αw1 −A for some carefully cho-
sen positive constant A > 0. The following lemma
says that we need to choose this constant A equal
to log 2

1+α , as verified in appendix B. Since α < 1,
this position A = log 2

1+α is positive as desired.

Lemma 2 Consider a weight vector w =
(w1, w2, w3) that does not belong to the cone
W(x3, y3) because w3 < αw1. The mapping
(x3, y3) is a peak of the SHG grammar correspond-
ing to this weight vector w provided w satisfies (12).

w3 > αw1 − log
2

1 + α︸ ︷︷ ︸
A

(12)

Condition (11) together with the assumption
α < 1 made above entails that the coefficient a
that controls the tiltedness of the border of the cone
W(x1, y1) is large in the sense that a > 1. Equiva-
lently, the border of the coneW(x1, y1) is steeper
than the diagonal. As a result, the assumption that
the weight vector w sits inside the coneW(x1, y1)
by itself does not suffice to ensure that (x1, y1) is a
peak, as shown in figure 1B. We need to make sure
that the weight vector w sits well inside this cone
W(x1, y1), far away from the border. Equivalently,
w1 is not just larger than aw2 (so that w sits inside
W(x1y1)) but actually quite larger (so that w sits
well inside W(x1, y1)). Quite larger in the sense
that the weights w1 and w2 satisfy the inequality
w1 > aw2 + B for some carefully chosen posi-
tive constant B > 0. The following lemma says
that we need to choose this constant B equal to
a log 2a

1+a , as verified in appendix C. Since a > 1,

this position B = a log 2a
1+a is positive as desired.

Lemma 3 Consider a weight vector w =
(w1, w2, w3) that does belong to the cone
W(x1, y1) because w1 > aw2. The mapping
(x1, y1) is a peak of the SHG grammar correspond-
ing to this weight vector w provided w satisfies (13).

w1 > aw2 + a log
2a

1 + a︸ ︷︷ ︸
B

(13)

A completely analogous reasoning shows that
condition (14) ensures that the mapping (x2, y2) is
a peak of the SHG grammar corresponding to the
weight vector w = (w1, w2, w3).

w2 > aw3 + a log
2a

1 + a
(14)

4.3 Third step

Do the three inequalities (12), (13), and (14) just ob-
tained admit non-negative solutions w1, w2, w3 ≥
0? To answer this question, we use of the following
straightforward fact, verified in appendix D.

Lemma 4 Suppose that a2α > 1, as in (11). The
following three strict inequalities

w3 > αw1 −A
w1 > aw2 +B
w2 > aw3 +B

(15)

admit non-negative solutions w1, w2, w3 ≥ 0 when
their coefficients a, α > 0 and A,B ≥ 0 satisfy
the following condition (16).

1 <
A

α(1 + a)B
(16)

Indeed, the inequalities (12), (13), and (14) have
the shape in (15) with the positions (17).

A = log
2

1 + α
, B = a log

2a

1 + a
(17)

Condition (16) that ensures that the three inequali-
ties (15) admit non-negative solutions boils down
to condition (18) with these positions (17). We
conclude that the inequalities (12), (13), (14) admit
non-negative solutions w1, w2, w3 ≥ 0 when the
coefficients a, α satisfy condition (18).

1

α
log

2

1 + α
− a(1 + a) log

2a

1 + a
> 0 (18)
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4.4 Fourth step
In conclusion, in order for our counterexample
to work, we need to find coefficients a > 1 and
0 < α < 1 that satisfy both conditions (11) and
(18). To this end, figure 3 plots in red (blue) the
pairs of values (a, α) that satisfy (do not satisfy)
condition (18). Furthermore, the black line in fig-
ure 3 describes the equation α = 1/a2. The pairs
of values (a, α) that satisfy condition (11) thus sit
above and at the right of this black line. This fig-
ure thus says that a pair of values (a, α) satisfies
both conditions (11) and (18) as desired provided
it belongs to the narrow band between the black
line and the boundary between the red and blue
regions. The pair (a, α) in (19) belongs indeed to
this narrow band and thus satisfies both conditions
(11) and (18).

a = 2.5, α = 0.165 (19)

When the constraint violation vectors are de-
fined as in (5), the cones W(x1, y1), W(x2, y2),
and W(x3, y3) are precisely the cones described
by the inequalities in (10) with the coefficients a
and α as in (19), because 5/2 = 2.5 = a and
33/200 = 0.165 = α, as verified in appendix E.
Finally, the three inequalities (12), (13), and (14)
corresponding to the coefficients a and α in (19)
admit non-negative solutions w1, w2, w3 such as
those in (6), as shown in appendix F, completing
the explanation of the counterexample.

5 Conclusions

Categorical grammars can usually be analyzed by
exhaustive enumeration and direct inspection of
the mappings they contain. Probabilistic grammars
instead require more sophisticated analytical tools.
A natural idea is to analyze some of the linguistic
information captured by a complex probabilistic
grammars by analyzing it peaks, namely the can-
didates that are deemed most important by that
probabilistic grammar because assigned the largest
probability mass. For a ME grammar, this is easily
done: its peaks are the HG winners corresponding
to the same weight vector. This paper has shown
that the situation is different in SHG: although any
HG grammar can be construed as the set of peaks of
some SHG grammar, the set of peaks of some SHG
grammars cannot be construed as an HG grammar,
no matter the choice of the weights. It follows that
ME and SHG grammars corresponding to the same
weights can peak on different candidates.

Appendix

A Proof of lemma 1
A weight vector v = (v1, v2, v3) that belongs to
both conesW(x1, y1) andW(x2, y2) satisfies both
inequalities v1 > av2 and v2 > av3. Thus in
particular, v satisfies the inequality v1 > a2v3. On
the other hand, a weight vector v that belongs to the
coneW(x3, y3) satisfies the inequality v1 < v3/α.
These two inequalities yield a2v3 < v3/α. Since
this inequality is strict, v3 must be strictly positive
and can therefore be simplified, yielding a2 < 1

α .
This conclusion contradicts the assumption (11).

B Proof of lemma 2
We start by establishing the chain of identities in
(20). Step (20a) below holds because of the defi-
nition of the exponential density. Step (20b) holds
because W(x3, y3) is the cone consisting of the
non-negative vectors v = (v1, v2, v3) such that
v3 ≥ αv1. Step (20c) holds because of the hy-
pothesis w3 ≤ αw1 that w = (w1, w2, w3) sits out-
side of the coneW(x3, y3). Thus, v1 ≥ w1 entails
αv1 ≥ αw1 ≥ w3, whereby max{w3, αv1} =
αv1. The remaining steps only use the identity∫
e−λxdx = − 1

ae
−λx.

∫

W(x3,y3)
pexp
w1

(v1) p
exp
w3

(v3) dv1 dv3 =

(a)
= ew1+w3

∫

v1≥w1,v3≥w3

e−v1−v3IW(x,y)(v1, v3)dv1dv3

(b)
= ew1ew3

∫

v1≥w1

e−v1
∫

v3≥max{w3,αv1}
e−v3dv1dv3

(c)
= ew1+w3

∫

v1≥w1

e−v1
∫

v3≥αv1
e−v3dv3dv1

= ew1+w3

∫

v1≥w1

e−v1
∣∣−e−v3

∣∣∞
αv1

dv1

= ew1+w3

∫

v1≥w1

e−(1+α)v1dv1

= ew1+w3

∣∣∣∣−
1

(1 + α)
e−(1+α)v1

∣∣∣∣
∞

w1

= ew1+w3
1

1 + α
e−(1+α)w1

=
1

1 + α
e−αw1+w3 (20)

The proof of lemma 2 now consists of the chain
of equivalences in (21). Step (21a) holds because
the underlying form x3 has only two candidates
y3 and z3, whereby the probability mass of z3 is
equal to 1 minus the probability mass of y3. Step
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Figure 3

(21b) holds because the probability mass of the
mapping (y3 | x3) according to the SHG grammar
corresponding to the weight vector w is the volume
of the cone W(x3, y3) relative to the product of
three exponential densities that start at the weights
w1, w2, and w3. Step (21c) holds because the def-
inition (10) of the cone W(x3, y3) only looks at
the first and third components. Step (21d) holds
because of the computation in (20) above.

GSHG
w (y3 | x3) > GSHG

w (z3 | x3) ⇐⇒
(a)⇐⇒ GSHG

w (y3 | x3) > 1−GSHG
w (y3 | x3)

⇐⇒ 2GSHG
w (y3 | x3) > 1

(b)⇐⇒ 2

∫

W(x3,y3)
pexp

w (v) dv > 1

(c)⇐⇒ 2

∫

W(x3,y3)
pexp
w1

(v1) p
exp
w3

(v3) dv1 dv3 > 1

(d)⇐⇒ 2
1

1 + α
exp(w3 − αw1) > 1

⇐⇒ w3 > αw1 + log
1 + α

2
(21)

C Proof of lemma 3
Step (22a) holds as steps (21a-c) above. Step (21b)
can be established by reasoning as in (20).

GSHG
w (y1 | x1) > GSHG

w (z1 | x1)
(a)⇐⇒ 2

∫

W(x1,y1)
pexp
w1

(v1) p
exp
w2

(v2) dv1 dv2

(b)⇐⇒ 2

(
1− a

1 + a
exp−w1 − aw2

a

)
> 1

⇐⇒ w1 > aw2 + a log
2a

1 + a
(22)

D Proof of lemma 4
The positions w1 = aw2+εB and w2 = aw3+εB
satisfy the second and third inequalities in (15) as
long as ε > 1. Plugging the latter into the former
yields w1 = a2w3+ εB(a+1). Plugging the latter
into the first inequality in (15) yields (23).

(
αa2 − 1

)
w3 < A− αεB(1 + a) (23)

The assumption a2α > 1 means that the coefficient
of w3 on the left-hand side of (23) is strictly pos-
itive. Hence, (23) admits a non-negative solution
w3 ≥ 0 provided A − αε(a + 1)B > 0. Equiva-
lently, provided ε satisfies (24). And the latter in
turn requires (16), because ε > 1.

1 < ε <
A

α(1 + a)B
(24)

In conclusion, non-negative solutions
w1, w2, w3 ≥ 0 of the inequalities (15) can
be constructed as follows. First, I choose a value
ε that satisfies (24), which exists because of (16).
Then, I construct w1, w2, w3 ≥ 0 backward as
in (25). As desired, w3 is non-negative because
the numerator is non-negative by (24) and the
denominator is positive because a2α > 1 by (11).

w3 =
1

2

A− εα(a+ 1)B

αa2 − 1
w2 = aw3 + εB

w1 = aw2 + εB

(25)

E Computing the cones
The following reasoning shows that, when the con-
straints are defined as in (5), the cone W(x1, y1)
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can be described through the inequality v1 > av2
in (10) with a = 2.5.

v ∈ W(x1, y1)

⇐⇒
3∑

k=1

Ck(x1, y1)vk <
3∑

k=1

Ck(x1, z1)vk

⇐⇒ v1 > 2.5v2

An analogous reasoning holds forW(x2, y2) and
W(x3, y3).

F Computing the weights
When a and α are chosen as in (19), the coeffi-
cients A and B defined as in (17) become A =
0.540426093542 and B = 0.891687359847. And
condition (24) on ε becomes (1).

(1) 1 < ε <
A

α(1 + a)B
= 1.04947406627

Thus, I can choose for instance ε = 1.03. The
weights in (6) are obtained from (25) with a = 2.5,
α = 0.165, and ε = 1.03. These weights thus
satisfy the three inequalities (12), (13), and (14).

References
Arto Anttila, Scott Borgeson, and Giorgio Magri.

2019. Equiprobable mappings in weighted con-
straint grammars. In Proceedings of the 16th SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages
125–134. Association for Computational Linguis-
tics.

Arto Anttila and Giorgio Magri. 2018. Does MaxEnt
overgenerate? Implicational universals in Maximum
Entropy grammar. In AMP 2017: Proceedings of
the 2017 Annual Meeting on Phonology, Washing-
ton, DC. Linguistic Society of America.

Paul Boersma. 1997. How we learn variation, optional-
ity and probability. In Proceedings of the Institute of
Phonetic Sciences (IFA) 21, pages 43–58, University
of Amsterdam. Institute of Phonetic Sciences.

Paul Boersma. 1998. Functional Phonology. Ph.D.
thesis, University of Amsterdam, The Netherlands.
The Hague: Holland Academic Graphics.

Paul Boersma and Joe Pater. 2016. Convergence prop-
erties of a gradual learning algorithm for Harmonic
Grammar. In John McCarthy and Joe Pater, edi-
tors, Harmonic Grammar and Harmonic Serialism.
Equinox Press, London.

Canaan Breiss and Adam Albright. 2022. Cumulative
markedness effects and (non-)linearity in phonotac-
tics. Glossa: a journal of general linguistics, 7:1–
32.

Sharon Goldwater and Mark Johnson. 2003. Learning
OT constraint rankings using a Maximum Entropy
model. In Proceedings of the Stockholm Workshop
on Variation Within Optimality Theory, pages 111–
120, Stockholm University.

Bruce Hayes and Aaron Kaplan. 2023. Zero-weighted
constraints in Noisy Harmonic Grammar. Linguistic
Inquiry, pages 1–14.

Bruce Hayes and Colin Wilson. 2008. A Maximum En-
tropy model of phonotactics and phonotactic learn-
ing. Linguistic Inquiry, 39:379–440.

Géraldine Legendre, Yoshiro Miyata, and Paul Smolen-
sky. 1990a. Harmonic Grammar – a formal
multi-level connectionist theory of linguistic well-
formedness: an application. In Proceedings of the
12th annual conference of the Cognitive Science So-
ciety, pages 884–891, Hillsdale, NJ. Lawrence Erl-
baum Associates.

Géraldine Legendre, Yoshiro Miyata, and Paul Smolen-
sky. 1990b. Harmonic Grammar – a formal
multi-level connectionist theory of linguistic well-
formedness: theoretical foundations. In Proceed-
ings of the 12th annual conference of the Cogni-
tive Science Society, pages 388–395, Hillsdale, NJ.
Lawrence Erlbaum.

Giorgio Magri and Arto Anttila. 2023. Paradoxes of
MaxEnt markedness. In AMP 2022: Supplemental
Proceedings of the 2022 Annual Meeting on Phonol-
ogy. Linguistic Society of America.

Joe Pater. 2009. Weighted constraints in generative lin-
guistics. Cognitive Science, 33:999–1035.

Alan Prince and Paul Smolensky. 1993/2004. Opti-
mality Theory: constraint interaction in generative
grammar. Blackwell, Oxford.

Brian W. Smith and Joe Pater. 2020. French schwa and
gradient cumulativity. Glossa: a journal of general
linguistics, 5:1–33.

Kie Zuraw and Bruce Hayes. 2017. Intersecting con-
straint families: an argument for Harmonic Gram-
mar. Language, 93.3:497–546.

277


