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Abstract

This work addresses the question of how to
evaluate a state-of-the-art parser on Early Eng-
lish Books Online (EEBO), a 1.5-billion-word
collection of unannotated text, for utility in
linguistic research. Earlier work has trained
and evaluated a parser on the 1.7-million-word
Penn-Helsinki Parsed Corpus of Early Modern
English (PPCEME) and defined a query-based
evaluation to score the retrieval of 6 specific
sentence types of interest. However, significant
differences between EEBO and the manually-
annotated PPCEME make it inappropriate to as-
sume that these results will generalize to EEBO.
Fortunately, an overlap of source material in
PPCEME and EEBO allows us to establish a
token alignment between them and to score the
POS-tagging on EEBO. We use this alignment
together with a more principled version of the
query-based evaluation to score the recovery of
sentence types on this subset of EEBO, thus al-
lowing us to estimate the increase in error rate
on EEBO compared to PPCEME. The increase
is largely due to differences in sentence seg-
mentation between the two corpora, pointing
the way to further improvements.

1 Introduction

The Penn-Helsinki Parsed Corpus of Early Modern
English (PPCEME) (Kroch et al., 2004) consists of
over 1.7 million tokens of text from 1500 to 1712,
manually annotated for phrase structure. It belongs
to a family of treebanks of historical English (Tay-
lor et al., 2003, 2006; Kroch, 2020) and other lan-
guages (Wallenberg et al., 2011; Galves et al., 2017;
Martineau et al., 2021; Kroch and Santorini, 2021)
with a shared annotation philosophy and similar
guidelines across languages, which form the basis
for reproducible studies of syntactic change (Kroch
et al., 2000; Ecay, 2015; Wallenberg, 2016; Galves,
2020; Wallenberg et al., 2021).

While all of these corpora are large for manually
annotated corpora, even relatively common phe-
nomena still occur too rarely to support reliable
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statistical models of how they change over time.
We therefore wish to parse and search the much
larger corpora that are becoming publicly available,
such as the Early English Books Online (EEBO)
corpus (Text Creation Partnership, 2019) with its
1.5 billion words of text from 1475 to 1700. How-
ever, EEBO’s potential as a resource for linguistic
research remains unrealized because it is not lin-
guistically annotated and its size renders manual
annotation infeasible. Our goal is therefore to parse
EEBO automatically.

Kulick et al. (2022a) took first steps in this di-
rection by training and evaluating a constituency
parser using the gold trees from PPCEME. This
parser achieved a cross-validated evalb score
(Sekine and Collins, 2008) of 90.53%, suggest-
ing the feasibility of the larger project of parsing
EEBO. In a follow-up paper, Kulick et al. (2022b)
directly evaluated the utility of the recovered parse
trees for the retrieval of sentence types necessary
to study a particular linguistic change in the his-
tory of English. Utilizing a novel alternative to
evalb, termed “query-based evaluation”, the parser
was evaluated by specifically scoring the retrieval
of these sentence types. The resulting precision
scores were promising, warranting further work.

However, Kulick et al. (2022a,b) obtained their
results for PPCEME, not EEBO. While both cor-
pora consist of Early Modern English texts, they
harbor significant differences, making it inappro-
priate to assume that results obtained for PPCEME
generalize to EEBO.

In this work, we therefore extend the parser
evaluation to EEBO itself. An apparently in-
tractable difficulty is the absence of gold parse
trees for EEBO. Fortunately, there is some overlap
between PPCEME and EEBO; specifically, about
42% of PPCEME consists of source texts also
present in EEBO, though possibly based on variant
editions that differ in spelling and punctuation. Us-
ing an improved language model, we train a parser
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Missing words or punctuation:
haue alway resysted hym , and

haue resisted and
Tokenization differences:
In whom , nat withstandyng ,

In whom not with standynge ,

Bullet (illegible) character in EEBO:
I will not let , openlie to
I will not 1.« , openlie to

Figure 1: Examples of mismatches in PPCEME (top)
and EEBO (bottom) source texts.

on the non-overlap section of PPCEME and then
parse both the PPCEME and EEBO versions of the
overlap. We create a token alignment between the
two overlap versions, which allows us to evaluate
the parsed EEBO overlap for part-of-speech (POS)
accuracy. We also improve the mechanics of the
query-based evaluation from Kulick et al. (2022b)
and use that, together with the alignment, to evalu-
ate the parser’s performance on the EEBO overlap
text.

The rest of the paper is structured as follows.
Section 2 discusses some important features of the
overlap and the alignment between the two ver-
sions. Section 3 presents the parser model, along
with results on PPCEME based on evalb, which
we include to show improvements due to the new
language model. Section 4 discusses the parsing
of the EEBO overlap and the POS evaluation. Sec-
tion 5 describes the queries and the new alignment-
mediated scoring method, and Section 6 presents
the results. Section 7 summarizes with lessons
learned and suggestions for future work.

2 PPCEME-EEBO Overlap

2.1 Overview

PPCEME consists of material from 232 source
texts, 42 of which have EEBO counterparts (see
Appendix A for details). It might be thought that
PPCEME should form a proper subset of EEBO,
but this is not the case as while EEBO consists of
all English-language material printed before 1700,
many texts in PPCEME - notably private letters
and editions of minor plays - did not appear in print
until after 1700.

Figure 1 illustrates the main differences between
the PPCEME and EEBO versions of the overlap.
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source #sents #tokens tokens/sent

PPCEME 39,400 805,475 20.44

EEBO 28,378 813,947 28.68
Table 1: Sentence counts and token counts for the

PPCEME and EEBO versions of the overlap material.

The first example shows how one version may have
tokens that are entirely missing from the other (“al-
way”, “hym”, “,”). The second shows a typical case
of a whitespace tokenization difference - “withstan-
dyng” vs. “with standynge”. Both examples also
show differences in spelling and punctuation. The
third example is a very specific type of spelling
difference. Illegible characters in the source mate-
rial are represented in EEBO by a bullet character.
Here, “l**” has two illegible characters, correspond-
ing to “let” in PPCEME.!

A further significant difference concerns sen-
tence segmentation. Sentence segmentation in
PPCEME was performed manually in accordance
with annotation guidelines based on linguistic con-
siderations. This is not the case for EEBO. The lack
of standardized punctuation conventions for Early
Modern English makes it non-trivial to segment
sentences according to modern punctuation conven-
tions, let alone according to PPCEME’s guidelines.

Figure 2 gives two examples, each of which il-
lustrates a string of text divided into separate sen-
tences (and therefore trees) in PPCEME. The cor-
responding nearly identical text in EEBO is not
so divided. As is evident, PPCEME sometimes
splits on commas (e.g., the comma after resf) and
colons (e.g., the colon after Gold). In contrast, af-
ter word tokenization, we split sentences in EEBO
automatically on question mark, exclamation mark,
and period.> (The reason that EEBO has no sen-
tence break after quills in the first example is that
it has a comma for PPCEME’s period.) We refrain
from splitting on commas because doing so would
massively overgenerate sentence fragments.

As aresult, sentences in EEBO tend to be longer
than in PPCEME. Table 1 shows the number of to-
kens, sentences, and mean sentence length for the
overlap material. The number of tokens is roughly
the same, but EEBO has fewer sentences and so
higher mean sentence length. Appendix A breaks

"PPCEME contains no bullet characters because any illegi-
ble characters were manually resolved in the process of either
data entry or annotation.

2We do not split on periods in common abbreviations,
Roman numerals of the era, and the like.



|| His Dame comming home and hearing that her man was gone to bed , tooke that night

but small rest ,
singing , shee by and by arose , ||
came into the worke-shop ,
Good morow Dame , || how do you to day ?

|| No , Nan Winchcombe ,

woman , when she was sir-reuerence a paltry girle ,

and Chaine of Gold :

|| and sat her downe to make quills .

I will call her name , plaine Nan :

|| and early in the morning hearing him vp at his worke merrily

and in seemely sort attyring her selfe , she

|| Quoth Iohn ,

|| what , I was a

though now shée goes in her Hood

|| what care I for her ? |

Figure 2: Sentence segmentation in PPCEME (indicated by vertical bars). Each of the two corresponding examples

in EEBO is treated as a single long sentence.

source #aligned # unaligned %
PPCEME 8,771 989
EEBO 796,704 17,243 979

Table 2: Number of aligned and unaligned tokens, and
percentage of aligned, in PPCEME and EEBO.

down Table 1 by source text, revealing significant
differences for some files, and also compares the
sentence lengths of the PPCEME and EEBO ver-
sion of the overlap to that of PPCEME and EEBO
as a whole.

2.2 Alignment

The rest of the work relies on having a token-to-
token (words and punctuation) alignment between
the PPCEME and EEBO versions of the overlap.
Both versions required some preparatory work be-
fore running our token-alignment algorithm.

For EEBO, we followed the same procedure as
detailed in Kulick et al. (2022a,b) in connection
with using EEBO for language model training, with
sentence segmentation as just described.

In PPCEME, the 42 source texts are generally
represented by non-exhaustive samples. Moreover,
because of how the corpus was constructed over
time, these samples do not always appear in the
order in which they appear in the edition (for in-
stance, parts of a play’s fourth act might be inter-
leaved with the first act). We therefore prepared
a normalized version of the material with the sen-
tences in order, which was then processed further as
described for PPCEME in Kulick et al. (2022a,b).

We then aligned each of the 42 texts at the to-
ken level with our implementation of the Smith-
Waterman algorithm (Smith et al., 1981), using a
similarity measure based on Levenshtein distance
(Levenshtein et al., 1966). To help anchor the align-
ment, we lowered the substitution costs for the
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bullet character (to 0.1) and the relatively common
u/v alternation (to 0.2). We also forced the simi-
larity to equal 1 for consistent cases of alternation
between PPCEME and EEBO (e.g. &c/etc., &land,
and thelye).

Table 2 summarizes the completeness of the
alignment, showing number of aligned and un-
aligned tokens in PPCEME and EEBO. For exam-
ple, alway, hym and the comma in the first example
in Figure 1 are unaligned PPCEME tokens. In the
second example, withstandyng and standynge are
aligned, so with is an unaligned token in EEBO.
For additional alignment details, including per-text
statistics, consult Appendix B.

3 Model and Evaluation

3.1 Parser Architecture

We use the same parser architecture as Kulick et al.
(2022a,b), but with an improved language model.
The parser model is based on Kitaev et al. (2019),
which represents a constituency tree 1" as a set of
labeled spans (¢, j, 1), where ¢ and j are a span’s be-
ginning and ending positions and [ is its label. Each
tree is assigned a score s(7"), which is decomposed
as a sum of per-span scores:

> 8,40 )

(6:5,1)€T

s(T) =

The per-span scores s(i, j, 1) themselves are as-
signed using a neural network that takes a sequence
of embeddings as input, processes these embed-
dings using a transformer-based encoder (Vaswani
et al., 2017), and produces a span score from an
MLP classifier (Stern et al., 2017). The highest-
scoring valid tree is then found using a variant of
the CKY algorithm. POS tags are recovered using
a separate classifier operating on top of the encoder
output, which is jointly optimized with the span



section parser POS
dev 92.08 (1.6) 98.23 (0.7)
test 91.77 (0.6) 98.37(0.3)

Table 3: Cross-validation parser and POS results. Each
result is the mean for the section (dev or test) over the 8
splits (standard deviation in parentheses). All scores are
expressed as percentages.

classifier. For more details, see Kitaev and Klein
(2018).

Our implementation is based on version 0.2.0
of the Berkeley Neural Parser?, with some modifi-
cations for using the PPCEME and EEBO data as
input.* While the earlier work used ELMo embed-
dings pretrained from scratch on EEBO, here we
use RoOBERTa embeddings (Liu et al., 2019) with
continued pre-training for two epochs on EEBO
starting from roberta-base.” For more details on
training and hyperparameters, see Appendix C.

3.2 Cross-Validation Results on PPCEME

We use the same 8-fold split of PPCEME as in
Kulick et al. (2022a,b), training each of the 8§ mod-
els for 50 epochs and using the evalb score on
the dev section as our criterion for saving the best
model. Table 3 gives our parsing and POS re-
sults, combined over the 8 cross-validation splits,
as scored by evalb (matching brackets for the pars-
ing score and POS accuracy for the tagging score).®

The parser scores are all 1.2% higher (absolute)
than the ELMo-based results reported in Kulick
et al. (2022b), with the POS results also showing
a slight increase (an average of 0.08). Kulick et al.
(2022b) point out some differences in annotation
style from the Penn Treebank (PTB) (e.g., lack of
base NPs) that lead to lower parser scores here than
if run on PTB. For details of the cross-validation
splits, see Appendix D.

4 Parsing and POS Accuracy for Overlap

At this point, we have the token alignment between
the PPCEME and EEBO overlap versions, and we

Shttps://github.com/nikitakit/self—
attentive-parser

“These modifications and other relevant software will
be made available at https://github.com/skulick/
emeparse.

5https ://huggingface.co/roberta-base

SFor reasons discussed in Kulick et al. (2022b), we use
the modified evalb supplied with the Berkeley parser (Sed-
dah et al., 2014), which does not remove words based on
punctuation tags.

section  # files #tokens % of split
train 184 1,041,352 54.58
dev 6 60,960 3.20
overlap 42 805,475 42.22
total 232 1,907,787 100.00

Table 4: Split of PPCEME for evaluating on overlap.

#tokens parser POS
PPCEME overlap
all tokens 805,475 91.64 98.26
EEBO overlap
aligned tokens 796,704 - 95.17
non-punc only 702,464 - 9725
only w/ bullet 2,057 - 80.12

Table 5: Parser (evalb f1) and POS (accuracy) scores
for PPCEME and EEBO versions of overlap.

have trained and evaluated on all of PPCEME with
cross-validation, showing improved results over
earlier work. Our next step is to train the parser in
order to evaluate on the overlap versions.

We reserve the overlap for testing and partition
the remaining non-overlap PPCEME material into
training and dev sections, as set out in Table 4.

4.1 Scoring the PPCEME overlap

Having trained the parser, we now evaluate it on
the PPCEME version of the overlap. Since we have
gold trees for this material, we can do so with evalb.
The top part of Table 5 shows aggregate evalb and
POS results. Appendix E gives a breakdown by
text, including recall and precision.

The parser score of 91.64% is lower than the
cross-validated results in Table 3. This is hardly
surprising, since the parser is only being given 55%
as much training data.

4.2 Scoring the EEBO overlap

For the EEBO version of the overlap, we have no
corresponding gold trees, and so cannot evaluate
with evalb.” However, we can - for the first time
- evaluate POS accuracy on EEBO by taking ad-
vantage of the token alignment discussed in Sec-
tion 2.2. 97.9% (796,704) of the tokens in EEBO
are aligned to a corresponding token in PPCEME.
For these tokens, we can take the gold tag in EEBO
to be that of its PPCEME partner. EEBO tokens

"But see the conclusion for a possible modification of
evalb.
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# tokens
tag gold EEBO rec prec f1
N 93,720 92,513 96.82 9557 96.19
P 91,175 91,190 98.89 9891 98.90
, 57,992 71,966 7691 9544 85.18
D 62,701 62,440 99.49 99.08 99.29
PRO 52,368 52,204 99.34 99.03 99.19
CONJ 42,478 42,154 99.44 98.68 99.06
ADJ 35,769 35480 9593 95.16 95.54
NS 30,937 30,974  96.79 9691 96.85
ADV 24,804 24477 96.83 9556 96.19
VB 22,724 22,718 97.39 9737 9738
. 36,415 22274 88.70 5426 67.33
NPR 19,277 20,210 8836 92.64 90.45
PROS 17,060 17,023  99.37 99.16 99.26
BEP 14,938 14,905 99.14 98.92 99.03
VAN 14,540 14,726 9543 96.65 96.04
VBP 14,291 14,345 95.88 96.24  96.06
Q 14,044 13,998 98.75 98.43 98.59
MD 13,828 13,709 99.43 98.58 99.00
VBD 13,663 13,653 9748 9741 97.44
TO 10,890 10,858 99.54 99.25 99.39
total 796,704 796,704  95.17 95.17 95.17

Table 6: Breakdown by 20 most frequent tags for the
95.17% score in row “aligned tokens” of Table 5. Note
that the toral row includes all POS tags.

without an alignment partner are left out of the
scoring.

The results are shown in row “aligned tokens” in
Table 5. The score (95.17%) is lower than the corre-
sponding score for the PPCEME overlap (98.26%).
Table 6 breaks the score down by tag for the 20
most common tags. Appendix F presents more de-
tailed results along two dimensions, breaking down
the bottom (EEBO) part of Table 5 by overlap file
and expanding Table 6 to include all tags.

4.3 Punctuation in EEBO

The third most common tag in Table 6, comma,
and the 11th most common tag, period, have low
scores of 85.18% and 67.33%, respectively. This
is because they are often confused, which in turn
follows from a combination of PPCEME’s POS
annotation style with the differences in sentence
segmentation in PPCEME and EEBO discussed in
Section 2.1. PPCEME tags all tree-final punctua-
tion as period. For example, in the first two lines of
Figure 2, the comma after bed is tagged as comma,
while the one after rest is tagged as period. In con-
trast, the parser assigns comma to both in EEBO -
a reasonable error since in the EEBO version, the

Negative declarative sentences
VERB-NOT-DECL  They drank not the ale
DO-NOT-DECL They did not drink the ale

Negative imperatives
VERB-NOT-IMP Drink not the ale

DO-NOT-IMP Do not drink the ale
Direct questions

VERB-SBJ Drank they the ale?

DO-SBJ Did they drink the ale?

Table 7: Sentence types retrieved by query searches.

second comma is not tree-final. Re-evaluating with-
out these two tags (row “non-punc only” in Table
5) raises the accuracy to 97.25%.

4.4 Tokens with Bullet Characters in EEBO

We were also curious about accuracy on tokens
containing a bullet character. As the row “only w/
bullet” shows, the score for such tokens drops to
80.12%, although they are too rare to have a major
effect on the overall score. The bullet character is
completely missing from the training data. Aug-
menting that data to randomly include it would
likely improve the score on these tokens.

5 Queries and Scoring

5.1 Query Types

Kulick et al. (2022b) focused on six sentence types,
which are formulated as queries for tree struc-
tures in the CorpusSearch query language (Randall,
2010). We use the same queries here. Table 7 il-
lustrates the three pairs of sentence types retrieved
by the queries, along with our labels for them (see
Appendix G for a full description of the sentence
types). For each pair, the first sentence type is the
variant dominant in 1500, and the second the vari-
ant dominant by 1700. The leading idea of the
overall project is that large datasets like EEBO will
eventually allow us to decide between competing
conceptual models of the loss of the older variant
- specifically, competition (Kroch, 1989; Zimmer-
mann, 2017) versus drift (Karjus, 2020).

We run the queries over three sets of trees -
PPCEME-gold (the gold trees from the release),
PPCEME-parsed (the parsed trees of the PPCEME
version of the overlap, using the parser trained with
the split described in Section 4), and EEBO-parsed
(the parsed trees of the EEBO version of the over-
lap, using the same parser). This allows us to ad-
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dress the problem outlined in the introduction -
determining the accuracy of the query-based re-
trieval on parsed EEBO text as compared to parsed
PPCEME text - by comparing query hits on EEBO-
parsed and PPCEME-parsed, respectively, to query
hits on PPCEME-gold.

5.2 Query Scoring on PPCEME

For scoring the query retrieval on PPCEME,
we can use the same approach as Kulick et al.
(2022b) for scoring queries over the PPCEME
cross-validation splits. Since we are comparing
parsed to gold versions of the same text, the sen-
tence segmentation and tokens are identical, and
the comparison can therefore proceed on a tree ba-
sis. Each query hit is considered to have a location
(tree #, index), where the tree number is the tree it
occurs in, and the index is an arbitrary numbering
of the number of hits within a tree (usually just
1). Since the trees are in alignment, the matches
are those for which the query hits from the gold
and parsed trees have the same location, and the
recall/precision/f-measure scores follow.

5.3 The Need for a New Method

However, this approach does not extend to scoring
EEBO-parsed vs. PPCEME-gold, since neither the
sentence segmentation nor the tokens necessarily
match up. Figure 3 illustrates the problem, using
the last two segments from the first example in Fig-
ure 2. The left side shows two gold PPCEME trees,
while the corresponding text on the right comes
from one large EEBO tree, due to the different
segmentation in EEBO.

The lower PPCEME tree shows a VERB-SBJ
query hit covering how do you to day ?, and the
EEBO tree fragment shows a VERB-SBJ query hit
covering Good morrow Dame , how doe you to
day. (The question mark is not part of the hit in
the EEBO version, since there it is outside of the
CP-QUE-MAT clause.)

While the text covered is different, both query
hits correctly label the sentences they find as VERB-
SBJ. But the PPCEME trees are #s 137 and 138
among the PPCEME trees, while the EEBO tree is
#98 among the EEBO trees, and so comparison by
tree number is not possible.

5.4 Alignment-Mediated Scoring

However, we also have the spans of the con-
stituents from the query hits, as indicated
by <3272,3278> for the PPCEME tree and
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<3001, 3009> for the EEBO tree. These spans
refer to the PPCEME or EEBO overlap section as
a whole, not to the individual trees. We can use
this span information, together with our word align-
ment, to carry out an alignment-mediated scoring
(AMS), as follows:

(1) Given a list of m query hits from the gold trees,
and n query hits from the parsed trees, we form a
m x n array of scores for each pair of hits. The
score for a pair of hits is computed by using the
token alignment to convert the EEBO-parsed span
to a span in PPCEME-gold, and then computing a
simple span overlap, normalized for length. For ex-
ample, in Figure 3, <3001, 3009> in the EEBO
tree maps (by the alignment) to <3268, 3277> on
PPCEME, and so the span overlap is computed be-
tween the PPCEME hit span <3272, 3278> and
the span mapped from EEBO, <3268, 3277>.
The span overlap score is 0.55, and this becomes
the score for this pair of hits. Hits in PPCEME and
EEBO that match exactly would have a score of
1.0, and ones with no tokens in common (again,
after using the alignment to compare them) would
have a score of 0.0.

(2) We treat this as a bipartite graph minimum
weight matching problem, where the “weight” for
a pair of trees is one minus the span overlap, com-
puted as just described. In this way the “penalty”
for the overall mapping is minimized. We filter the
results to ensure that all hits have at least one token
in common.

For consistency, we compare PPCEME-parsed
to PPCEME-gold in the same way as EEBO-parsed
to PPCEME-gold (that is, using AMS). This also
demonstrates the validity of the algorithm, since
the results for PPCEME-parsed vs. PPCEME-gold
using AMS are identical to those using the method
from Kulick et al. (2022b).8 Further details of the
algorithm are available in Appendix H.

6 AMS Results and Analysis
6.1 Results and Analysis for EEBO

Table 8 presents scores from the query-based evalu-
ation for PPCEME-parsed and EEBO-parsed, us-
ing AMS to produce the latter results. Our goal
was to estimate the effect on the query results of

$We thus also resolve a lingering doubt from the earlier
work. The earlier scoring method allowed a hit in a parsed
PPCEME tree to “match” a hit in a completely different part
of the corresponding PPCEME gold tree. The current method
rules out such spurious matches, since it relies on the actual
spans, not just the trees in which they occur.



(IP-MAT

(VBD Quoth) [...]
(NP-SBJ (NPR Iohn)) (IP-PPL
(, ) (VBD quoth)
(QTP (INTJP (ADJ Good) (NP-SBJ (NPR Iohn))
(N morow) ) (r )

(NP-VOC (N Dame))) (CP-QUE-MAT %<3001,3009>|verb-sbijx*

(. ,)) (NP-VOC (ADJ Good)
(N morrow)
(CP-QUE-MAT %<3272,3278>|verb-sbjx* (NP-VOC (N Dame)))

(WADVP-1 (WADV how)) G )
(IP-SUB (WADVP (WADV how))

(ADVP *Tx—1) (IP-SUB

(DOP do) (DOP doe)

(NP-SBJ (PRO you)) (NP-SBJ (PRO you))

(NP-TMP (N (N to) (NP-TMP (N (N to)

(N day)))) (N day)))))))

(. ?)) (.

(a) Two gold PPCEME trees

?))

(b) Fragment of one parsed EEBO tree

Figure 3: Example of the query matching problem. (a) shows two gold PPCEME trees with a VERB-SBJ query hit

in the lower tree, at span <3272, 3278> covering how do

you to day ?. (b) is a fragment of a larger parsed EEBO

tree with a VERB-SBJ query hit at span <3001, 3009> covering Good morrow Dame , how doe you to day.

PPCEME-gold PPCEME-parsed EEBO-parsed
query #hits #hits recall prec fl  #hits recall prec fl
Negative declarative sentences
VERB-NOT-DECL 662 680 9547 9294 94.19 634 87.16 91.01 89.04
DO-NOT-DECL 329 318 9544 98.74 97.06 304 89.97 9737 9352
Negative imperative sentences
VERB-NOT-IMP 148 135 81.76 89.63 85.51 120 71.62 8833 79.10
DO-NOT-IMP 31 26 80.65 96.15 87.72 25 7742 96.00 85.71
Questions
VERB-SBJ 302 266 7947 90.23 84.51 228  68.54 90.79 78.11
DO-SBJ-ORD 306 282 90.20 97.87 93.88 253  80.72 97.63 88.37

Table 8: AMS results for PPCEME-parsed and EEBO-parsed versions of overlap, as compared to PPCEME-gold

trees.

parsing on EEBO instead of PPCEME. This ta-
ble provides the answer - the f1 scores generally
decrease by about 4-6 points. (The score for DO-
NOT-IMP, which is less frequent, decreases less.)

Comparing the recall and precision scores re-
veals that the decrease is largely due to decreases in
recall. Precision stays relatively stable, while recall
goes down by as much as 10 points (e.g. for VERB-
SBJ, from 79.47% to 68.54%). This means that
parser errors on EEBO are preventing the queries
from finding the structure that is present in the gold
PPCEME trees.

Examination of the parser errors suggests that
longer sentence length is exacerbating a tendency
of the parser (already noted in Kulick et al. (2022b))
to produce nonsensical flat structures with two sub-
jects or two finite verbs (or both). For example,
consider the second sentence in the example of sen-
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corpus gold parsed
PPCEME 4 233
EEBO - 934

Table 9: Number of trees with two subjects, as one
example of nonsensical parser error.

tence segmentation in Figure 2. The last segment
what care I for her ? is a VERB-SBJ that is missed
in the EEBO-parsed tree because the parse of the
entire sentence No , Nan Winchcombe ... for her ?
is such a nonsensical structure. Omitting details,
the structure of the parse, with the two subjects and
two finite verbs, is shown in Figure 4.

Parser error analysis can be complex and tedious
(especially here, with the differences in sentence
segmentation), but we can facilitate it by extend-
ing our use of query-based searches from finding



(CP-QUE-MAT
(INTJ No)
NP-VOC (NPR Nan)
’ I)
NP-SBJ
MD will)
VB call)

( (NPR Winchcombe) )
(
(
(
(
(IP-SMC her name...Nan)
(
(
(
(
(

(PRO I))

;o)

INTJP (WPRO what))
’ I)

NP-SBJ (PRO I))
BED was)

Figure 4: Incorrect flat parse on EEBO text.

structures of linguistic interest to finding structures
that should never occur, such as clauses with two
subjects. Table 9 shows the large increase of trees
with such impossible structures in EEBO-parsed,
although the number in PPCEME-parsed is already
higher than desired.’

6.2 Cross-Validated Results on PPCEME

As pointed out in Kulick et al. (2022b), the parses
need not be perfect for query-based search to be
useful, since if an error rate can be estimated, it can
be factored into the linguistic analysis. We have
determined the increase in error rate when querying
on EEBO rather than on PPCEME.

We are also interested in determining the er-
ror rate when querying on PPCEME. Kulick
et al. (2022b) addressed this issue with the cross-
validation query-based evaluation on PPCEME.
However, that was using an older language model,
and while here we presented improved evalb scores
(Table 3), the improvements are not guaranteed to
carry over to the query-based scores.

This other aspect is not our focus here, but it is
part of the overall goal, and so we give some results
in Appendix I, with updated cross-validated query
results on the current version of the parser, along
with some discussion of the impact of using less
training data for the overlap split.

7 Conclusion

Exploiting the existence of an overlap between
PPCEME and EEBO, we have succeeded in scoring
POS tagging on EEBO and extending query-based
evaluation to EEBO. Given these results, could the
trees and POS-tags of a parsed EEBO be used with
confidence? For those wishing to use the POS tags,

°The four occurrences in PPCEME-gold are annotation
errors that have been corrected for the next release.
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we have shown that the POS tags can overall be ex-
pected to be of high accuracy (with some variation
for individual tags, and excepting the punctuation
issue discussed in Section 4.2). For the structure-
based queries, we now have the needed estimate
of the decrease in accuracy on EEBO compared to
PPCEME. There are some obvious next steps to
improve the parsing and query results on EEBO,
and so lessen that decrease in accuracy.

The first priority is to address the problem of
sentence segmentation in EEBO. We have shown in
this paper why this is an important issue for parsing
EEBO, and we can use the overlap to measure the
effect more precisely. We will do so by using the
token alignment to “fix” the sentence segmentation
in the EEBO version of the overlap to be consistent
with the sentence segmentation in the PPCEME
version of the overlap, thus allowing us to directly
measure the query accuracy on EEBO without the
distorting effect of the segmentation differences
and thus to estimate the latter effect.

Following this step, we see two possibilities for
addressing the effects of the differences in sen-
tence segmentation in PPCEME and EEBO. One
approach modifies the training data, while leav-
ing the EEBO segmentation as it is, by combining
the PPCEME trees used for training when the text
has a final comma in the text, thus approximat-
ing the EEBO segmentation. The other (preferred)
approach would directly modify the EEBO seg-
mentation by using the existing segmentation in
PPCEME to train a segmenter for EEBO.

The are different directions to pursue after that
point:

Improving the parser architecture. While Sec-
tion 6 discussed the increase in nonsensical struc-
tures from PPCEME to EEBO, there were already
too many (233) with PPCEME. It is possible that
a parser model that moves away from the span-
based approach of the Berkeley neural parser, using
well-defined grammatical structures instead, might
overcome this problem. In particular we plan to
experiment with a Tree Adjoining Grammar (TAG)
or related architecture (Kasai et al., 2018). This
change of architecture would also allow for the re-
covery of the empty categories and co-indexing,
which will be required as the range of linguistic
inquiries expands, with the precise approach used
to accomplish this depending on which architecture
is chosen.

Another aspect of the parser architecture that



should be improved is the recovery of the function
tags. As mentioned in Appendix C.2, currently we
simply retain the function tags as part of atomic
nonterminals for the training and parsing. While
this approach works surprisingly well, it is poten-
tially problematic for combinations of nontermi-
nal/function tag that do not appear with frequency
in the training data. One possible alternative is to
integrate the function tag recovery in the current
parser model analogously the POS tagging, as a
separate classifier with a joint training loss.

Treebank representation. PPCEME is a phrase-
structure treebank, with the associated linguistic
queries reflecting that structure, and so it was nat-
ural for us to focus on phrase-structure parsing.
However, it would be useful to represent PPCEME
in a dependency format, so that a dependency
parser could be used as well. While it might be
possible to adapt one of the phrase-structure-to-
dependency converters for use on PPCEME and
the parsed EEBO, our preference would be for this
to follow from the use of a TAG-like formalism,
which is in a sense intermediate between a phrase-
structure and dependency representation.

Application to other historical treebanks. As
mentioned in the introduction, PPCEME is just one
of a series of historical treebanks, which share an-
notation philosophy and guidelines. In addition to
applying this work to those other treebanks, they
would in turn serve as an extensive and varied
testbed for evaluating the different parser models.

Query retrieval without parsing. An entirely
different direction from the work described here,
but with the same goal, is to use sentence embed-
dings derived from token embeddings, as in Arora
et al. (2017), to identify the desired sentences di-
rectly, without using a parser at all. For example, it
might be possible to find EEBO sentences ““similar”
to a given sentence, akin to an information retrieval
system.

Additional types of annotation. The overlap
and alignment to PPCEME can be used to evaluate
the automatic annotation of other types of anno-
tation on EEBO. For example, if PPCEME were
annotated with lemmas for each token, then a lem-
matizer on EEBO could be tested on the overlap
section by using the existing alignment and treat-
ing the PPCEME lemmas for the aligned tokens as
the gold lemmas. In addition, research in the last
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few years on improving word sense disambigua-
tion (Bevilacqua et al., 2021) could be applied to
the parsed EEBO, by using example sentences in
the Oxford English Dictionary'® to map each word
instance to its sense usage.

Modified evalb. Finally, we stated in Section 4.2
that we cannot run evalb on parsed EEBO files
in the absence of gold trees for EEBO. However,
AMS opens up the possibility of doing just that.
Since evalb scores matching brackets, it can be
modified to match brackets using this approach
instead of searching for identical spans. Such a
modification could then even be adopted for ma-
terial that already has matching text and sentence
segmentation, allowing for a “fuzzy” evalb that can
match brackets without an exact match, degrading
the score if desired.
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A Detailed Overlap Section Statistics

A.1 Sentence lengths by file

Table 10 extends Table 1 from Section 2 to the
42 files shared by PPCEME and EEBO. For each
corresponding file (e.g., armin-e2/A21397), it de-
tails the total number of tokens and mean sentence
length for both versions.

A.2 How representative is the overlap section?

In Figure 5 and Table 11 we provide summaries of
the sentence length distributions for both PPCEME
and EEBO, both overall and for the overlap section
alone. From both the summary statistics and ker-
nel density estimates (KDE)), it is readily apparent
that the PPCEME overlap is very representative of
PPCEME overall, showing a nearly identical dis-
tribution of sentence lengths. The EEBO overlap
shows less of a match to EEBO overall, with the
overlap section containing a much higher propor-
tion of extremely short sentences relative to EEBO
as a whole.

This striking difference in distributions for
EEBO overlap vs EEBO overall is overwhelm-
ingly an artifact of how the overlap correspondence

http://www.linguist.

was constructed. As discussed in Appendix B,
the EEBO version of the overlap section contains
character names in plays that are counted as two-
word “sentences”. However, when considering
all of EEBO, we only consider sentences with
EEBO contexts (as indicated by the markup in the
EEBO XML files) that are relevant for the query
search (<P > indicating prose and <SP /L> indicat-
ing verse structure within speech.) The EEBO over-
all sentence lengths therefore do not include these
two-word “sentences”. The main point here is that
the segmentation problem discussed throughout
the main text is not peculiar to the EEBO overlap
section. The average sentence length throughout
EEBO is greater than that of PPCEME.

B Alignment Details

B.1 Alignment by Source

Table 12 expands on Table 2 by providing
full alignment statistics for each text. In
addition to raw counts for number of inser-
tions/deletions/substitutions in each text, it also
provides a summary statistic for alignment quality
— token error rate (TER) — which is defined as:

# insert + # del 4 # sub

TER =100 — 55 CEME tokens 2)

where # insert/del/sub are the total count of inser-
tion, deletion, and substitution errors for the text.

B.2 Alignment Algorithm Details

As mentioned in Section 2.2, the sentences of the
PPCEME source texts are not always in the same or-
der as in the corresponding EEBO files, and so we
first focused on a rough correspondence between
the PPCEME and EEBO versions of the overlap,
followed by the word alignment. Since the sen-
tences of the EEBO files were in the proper order,
we rearranged the PPCEME sentences to match
that order. At the same time, some of the meta info
in PPCEME, such as character names in plays, was
filtered out of the the PPCEME source by the initial
preprocessing of PPCEME. As a result, the EEBO
overlap has instances of character names that are
not present in the PPCEME version of the overlap.

We spot-checked cases of unaligned tokens in
both directions, making sure that such cases fell
into the categories discussed in the text (e.g., the
first two cases in Figure 1), or the character names
just discussed. In addition, each pair of aligned
tokens has a Levenshtein distance similarity score,
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PPCEME EEBO
name #sents # tokens tokens/sent name #sents # tokens tokens/sent
0 : armin-e2 1,271 18,768 14.77 + A21397 358 18,150 50.70
1 . asch-el 496 16,121 32.50 © A21975 314 16,010 50.99
2 ' bacon-e2 480 20,181 42.04 + A01516 260 20,209 77.73
3 | behn-e3 675 19,335 28.64 1 A27305 302 19,481 64.51
4 . blundev-e2 750 22,619 30.16 : A16221 374 22,787 60.93
5 boethpr-e3 1499 32,806 21.89 | A28548 1,332 33,176 2491
6 : boylecol-e3 165 7,544 45.72 + A28975 78 7,545 96.73
7 : brinsley-e2 656 19,710 30.05 | A16865 590 19,830 33.61
8 | burnetroc-e3 680 21,112 31.05 : A30466 356 21,123 59.33
9 clowes-e2 905 22,500 24.86 : A19029 427 21,937 51.37
10 : coverte-e2 984 20,769 21.11 : A19470 446 20,785 46.60
11 : deloney-e2 1346 26,738 19.86 : A20126 679 27,014 39.78
12 : elyot-el 514 19,157 37.27 © A21287 472 19,387 41.07
13 : fabyan-el 507 19,029 37.53 : A00525 518 19,023 36.72
14 fisher-el 466 10,915 23.42 1 A00771 891 10,918 12.25
15 fitzh-el 1058 18,813 17.78 + A00884 550 19,068 34.67
16 : fryer-e3 610 18,970 31.10 : A40522 279 19,093 68.43
17 © gifford-e2 1230 21,148 17.19 : A01716 922 21,642 23.47
18 : harman-el 1115 19,366 17.37 + A02657 372 18,026 48.46
19 : hooke-e3 539 22,494 41.73 + A44323 247 22,464 90.95
20 : hooker-a-e2 343 9,025 26.31 : A03598 233 9,043 38.81
21 : hooker-b-e2 405 8,600 21.23 : A03598 258 8,641 33.49
22 © hoole-e3 552 21,531 39.01 : A44390 364 21,527 59.14
23 | jetaylormeas-e3 404 8,682 21.49 1 A64030 130 8,753 67.33
24 . jotaylor-e2 1106 31,202 28.21 1 A13415 367 31,215 85.05
25 © langf-e3 767 18,351 23.93 | A49545 355 18,140 51.10
26 : latimer-el 966 17,603 18.22 + A05143 698 17,827 25.54
27 . markham-e2 253 6,138 24.26 : A06913 47 6,192 131.74
28 © middlet-e2 2117 19,051 9.00 : A07493 3,111 21,624 6.95
29 : milton-e3 638 21,307 33.40 : A50902 395 21,325 53.99
30 : record-el 1092 23,422 21.45 1 A10541 620 23,778 38.35
31 : shakesp-e2 2332 22,032 945+ A11954 2315 24,166 10.44
32 : smith-e2 949 18,408 19.40 : A12367 457 18,463 40.40
33 | stevenso-el 1512 16,936 11.20 : A12969 1,962 17,404 8.87
34 | stow-e2 640 17,457 27.28 1 A13043 353 17,627 49.93
35 | turner-el 581 16,302 28.06 : A14053 464 16,320 35.17
36 . turnerherb-el 43 837 19.47 © A14059 31 844 27.23
37 © tyndnew-el 2906 39,476 13.58 1 A68940 1,931 39,654 20.54
38 : tyndold-el 2149 33,901 15.78 + A13203 1,209 34,080 28.19
39 © vanbr-e3 2081 25,052 12.04 1 A65075 2,570 27,954 10.88
40 : vicary-el 954 19,510 20.45 1 A14387 424 19,269 45.45
41 . walton-€3 664 12,557 18.91 . A67462 317 12,433 39.22
total 39,400 805,475 20.44 28,378 813,947 28.68

Table 10: Overlap between PPCEME and EEBO, with filename, number of tokens, number of sentences, and mean
sentence length.
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Figure 5: Kernel density estimates (KDE) for sentence length in PPCEME and EEBO. KDEs for the overall corpus

and overlap section are plotted on the same figure.

sentence length

source division #sents mean std min 10% 25% 50% 75% 90%  max
EEBO overall 33,840,032 41.45 4557 1 7 14 29 53 88 8,195
EEBO overlap 28,378 28.68 36.89 1 2 6 16 37 69 562
PPCEME overall 94,462 20.20 24.77 1 5 8 13 24 41 957
PPCEME overlap 39,400 20.44 20.01 1 5 8 14 26 43 399

Table 11: Sentence length summary statistics in PPCEME and EEBO. The following statistics are presented for each
corpus (both overall and for the overlap section only): mean/standard deviation, min/max, and 10/25/50/75/90-th

percentiles.
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# tokens

text PPCEME EEBO TER #insertions # deletions # substitutions
00-armin-¢2 18,768 18,150 23.22 277 895 3,185
Ol-asch-el 16,121 16,010  3.60 50 161 370
02-bacon-e2 20,181 20,209 2.16 69 41 326
03-behn-e3 19,335 19,481 19.73 262 116 3,437
04-blundev-e2 22,619 22,7787  9.77 285 117 1,807
05-boethpr-e3 32,806 33,176  2.12 411 41 245
06-boylecol-e3 7,544 7,545 1.50 17 16 80
07-brinsley-e2 19,710 19,830 13.28 274 154 2,190
08-burnetroc-e3 21,112 21,123 1.17 44 33 170
09-clowes-e2 22,500 21,937 7.10 108 671 819
10-coverte-e2 20,769 20,785  3.53 40 24 670
11-deloney-e2 26,738 27,014 13.60 436 160 3,040
12-elyot-el 19,157 19,387 24.97 630 400 3,753
13-fabyan-el 19,029 19,023 36.82 421 427 6,159
14-fisher-el 10,915 10,918 15.72 67 64 1,585
15-fitzh-el 18,813 19,068  7.94 428 173 892
16-fryer-e3 18,970 19,093  2.31 160 37 242
17-gifford-e2 21,148 21,642  4.59 530 36 404
18-harman-el 19,366 18,026 29.36 178 1518 3,990
19-hooke-e3 22,494 22464  1.55 47 77 224
20-hooker-a-e2 9,025 9,043 1.97 45 27 106
21-hooker-b-e2 8,600 8,641 2.38 63 22 120
22-hoole-e3 21,531 21,527 2.16 91 95 279
23-jetaylormeas-e3 8,682 8,753 7.79 175 104 397
24-jotaylor-e2 31,202 31,215  3.98 141 128 972
25-langf-e3 18,351 18,140 5.70 115 326 605
26-latimer-el 17,603 17,827 28.86 393 169 4,519
27-markham-e2 6,138 6,192 7.41 79 25 351
28-middlet-e2 19,051 21,624 17.35 2665 92 548
29-milton-e3 21,307 21,325 0.82 33 15 126
30-record-el 23,422 237778 11.32 554 198 1,899
31-shakesp-e2 22,032 24,166 13.41 2259 125 570
32-smith-e2 18,408 18,463 1.51 82 27 169
33-stevenso-el 16,936 17,404 13.52 763 295 1,231
34-stow-e2 17,457 17,627  5.31 205 35 687
35-turner-el 16,302 16,320 4.31 133 115 454
36-turnerherb-el 837 844 10.99 7 0 85
37-tyndnew-el 39476 39,654 13.07 258 80 4,821
38-tyndold-el 33,901 34,080 8.46 300 121 2,448
39-vanbr-e3 25,052 27,954 19.41 3247 345 1,270
40-vicary-el 19,510 19,269 19.27 204 445 3,111
41-walton-e3 12,557 12,433 21.34 697 821 1,162
total 805,475 813,947 10.62 17,243 8,771 59,518
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Table 12: Token alignment statistics for each text. The first two columns indicate the token counts in the PPCEME
and EEBO versions of the text. The next four columns provide information about the alignment quality with #
insertions, # deletions, and # substitutions indicating the total number of insertion, deletion, and substitution errors
in the EEBO text relative to the PPCEME text given the alignment. TER is a summary statistic defined as in eqn. 2



hyperparameter value
attention_dropout 0.2
batch_size 32
char_lIstm_input_dropout 0.2
checks_per_epoch 4
clip_grad_norm 0.0
d_char_emb 64
d_ff 2048
d_kv 64
d_label_hidden 256
d_model 1,024
d_tag_hidden 256
elmo_dropout 0.5
encoder_max_len 512
force_root_constituent ’auto’
learning_rate 5e-05
learning_rate_warmup_steps 160
max_consecutive_decays 3
max_len_dev 0
max_len_train 0
morpho_emb_dropout 0.2
num_heads 8
num_layers 8
predict_tags True
relu_dropout 0.1
residual_dropout 0.2
step_decay_factor 0.5
step_decay_patience 5
tag_loss_scale 5.0
max_epochs 50

Table 13: Hyperparameters used with the Berkeley Neu-
ral Parser.

modified by common and expected cases for char-
acter differences, as discussed in Section 2.2. We
spot-checked cases where the similarity was be-
low 0.9, which highlighted cases such as those
discussed in Section 2.2 (e.g., & and and). We
then treated these as special cases for the similar-
ity metric and redid the alignment, in an iterative
process.

C Model and Evaluation

Table 13 shows the hyperparameter settings used
in the Berkeley Neural Parser (all default). We
added a parameter max_epochs for the maxi-
mum number of epochs, setting it to 50 for the
cross-validation training reported.

C.1 RoBERTa Pretraining

We downloaded the most recent version of English
roberta-base from Huggingface'' and continued

"https://huggingface.co/roberta-base
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pre-training for two epochs on EEBO. EEBO was
preprocessed using the same steps as described in
Kulick et al. (2022a,b), yielding a 1.374 billion
token train set and 115K token validation set. We
used the run_mlm script from Hugging Face with
a batch size of 2 on 5 GPUs for an effective batch
size of 10. Future work will explore improved
performance as a function of larger models and/or
additional epochs.

C.2 Function Tags

Function tags are important for us since the queries
rely upon them to find the structures of linguistic
interest. As in Kulick et al. (2022a,b), we adopted
the approach of Gabbard et al. (2006) to function
tag recovery. The function tags are retained in pre-
processing, and so nonterminals like NP—-SBJ are
treated as atomic units. Since the decision whether
to delete is part of preprocessing, this approach
does not require modification to the parser.

C.3 Default Flat Parses

Of the 28,378 sentences in the EEBO overlap sec-
tion, 5 exceeded the 512 subword limit imposed
by the language model and the encoder within the
parser. For such cases, we modified the parser
to output a dummy flat parse, with each token as-
signed the tag XX.

D Cross-Validation Splits

Table 14 summarizes the composition of the
train/dev/test sections across the cross-validation 8
splits; specifically, the total number of files, the to-
tal number of tokens, and the percentage of total to-
kens in each section. Since the partitioning process
is performed at the level of PPCEME source files,
and these files differ substantially in size, there is
some variation in these numbers across the splits.
For this reason, we report standard deviations as
well as means. The final row (“total”) gives num-
bers for a complete split (i.e., the train/dev/test
sections combined); as these are constant across
each split, they have a standard deviation of zero.
As can be seen, overall the splits attain the target
90-5-5 breakdown; e.g., the train section on aver-
age comprises 89.65% of the total tokens with a
standard deviation of 0.54%.

The total number of tokens here (1,944,480) is
greater than the total number of tokens listed in Ta-
ble 4 (1,907,787). This is because some sentences
were removed from the PPCEME overlap files in



section # files # tokens % of split

train 205.88 (13.34) 1,743,211.25 (10,441.53) 89.65 (0.54)
dev 1250  (7.15) 101,000.12  (4,081.82) 5.19 (0.21)
test 13.62  (7.91) 100,268.62  (7,832.66) 5.16 (0.40)
total 232 (0.00) 1,944,480 (0.00) 100  (0.00)

Table 14: Mean number of files and tokens for train/dev/test sections across the 8 cross-validation splits (standard
deviations in parentheses). The percentage of tokens in each section is given in column “% of split”.

the course of preprocessing.

E Results for PPCEME Overlap

Table 15 breaks down the scores for each of the
overlap files in PPCEME. The totals for all files
correspond to the number of tokens in Table 4 and
the scores in the top part of Table 5.

F Results for EEBO Overlap

Here we expand in two ways on the POS tagging
results on EEBO from Section 4.2. First, Table
16 breaks down the results in the bottom part of
Table 5 by file. Table 17 shows the complete listing
of overall results by tag, the 20 most frequent of
which were shown in Table 6. The tag XX occurs in
the five overly long sentences mentioned in Section
C.3.

G Full Query Details

We wish to identify certain sentence types that al-
low us to track the rise of auxiliary do over the
course of Early Modern English. For expository
reasons, we present these sentence types in reverse
chronological order.!?

G.1 Sentence Types with Auxiliary Do

Modern English is unusual in requiring the auxil-
iary verb do in negative declarative sentences, neg-
ative imperatives, and all direct questions (whether
positive or negative).

DO-NOT-DECL. In negative declarative sen-
tences, the main verb appears in uninflected form.
Such sentences also contain auxiliary do in either
the present or past tense, and the negative marker
not appears between the auxiliary and the main
verb.

(IP-SUB (NP-SBJ

(DOP do)

(PRO they))

"2We are concerned only with sentences without modal
verbs (can, will, etc.), aspectual auxiliaries have and be, or
main verb be; sentences containing these elements were not
affected by the change.
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NEG not)

NP-MSR (Q much))
VB minde)

NP-OB1 (PRO them))

(
(
(
(

The IP in this sentence type (and also its histori-
cal counterpart without do) can be an independent
matrix (MAT) clause or, as here, a subordinate
(SUB) clause.

Do-not—-imp. Negative imperatives are anal-
ogous, except for the IMP function tag on IP, and

the imperative POS tag (DOI) on the auxiliary.

(IP-IMP (PP (P For)
(NP (NPR$ God’s)
(N sake)))
(DOI do)
(NEG not)
(VB overlay)
(NP-OB1 (PRO me))
(PP (P with)
(NP (ADJ superfluous)
(N Matter)))

(. .))

Do-sbj. Finally, in direct questions, auxiliary
do precedes the subject instead of following it. This
inversion occurs in both positive and negative ques-
tions, and so retrieving this sentence type relies
on the parser correctly identifying the subject via
the SBJ function tag. The annotation guidelines
for PPCEME require direct questions to be anno-
tated as CP-QUE-MAT immediately dominating
IP-SUB. In this context, IP-SUB is understood as
part of the direct question rather than an ordinary
subordinate clause.

(CP-QUE-MAT (WADVP (WADV How))
(IP-SUB (DOP do’s)
(NP-SBJ (D this) (N Sute))
(VB fit)
(NP-OB1 (PRO me)))
(NP-VOC (NPR Dauy))

(. ?))

G.2 Sentence Types Without Auxiliary Do

We now illustrate the historical precursors of the
modern sentence types just discussed. In all 3
old forms, it is the main verb (rather than aux-
iliary do) that appears in a past or present tense



text #tokens recall prec fl pos

00-armin-e2 18,768 91.67 92.49 92.08 98.42
01-asch-el 16,121 89.42 89.96 89.69 98.57
02-bacon-e2 20,181 90.28 91.06 90.67 99.11
03-behn-e3 19,335 92.61 92.69 92.65 99.24
04-blundev-e2 22,619 8844 90.76 89.58 98.21
05-boethpr-e3 32,806 95.08 9527 95.17 99.29
06-boylecol-e3 7,544 90.66 91.53 91.09 98.63
07-brinsley-e2 19,710 89.38 89.98 89.68 98.43
08-burnetroc-e3 21,112 9370 94.05 93.87 99.30
09-clowes-e2 22,500 90.34 91.13 90.73 98.32
10-coverte-e2 20,769 90.83 91.23 91.03 98.39
11-deloney-e2 26,738 93.10 9343 93.26 98.58
12-elyot-el 19,157 90.79 91.73 91.26 98.55
13-fabyan-el 19,029 89.33 89.82 89.57 97.91
14-fisher-el 10,915 91.13 91.50 91.31 97.27
15-fitzh-el 18,813 90.51 90.87 90.69 97.74
16-fryer-e3 18,970 88.83 89.29 89.06 97.83
17-gifford-e2 21,148 9390 9436 94.13 98.84
18-harman-el 19,366 9090 91.80 91.35 98.01
19-hooke-e3 22,494 88.69 88.97 88.83 98.54
20-hooker-a-e2 9,025 91.00 91.79 91.39 98.67
21-hooker-b-e2 8,600 92.13 9296 92.54 99.09
22-hoole-e3 21,531 89.79 90.27 90.03 98.37
23-jetaylormeas-e3 8,682 93.01 94.03 9352 99.14
24-jotaylor-e2 31,202 90.72 91.35 91.03 98.50
25-langf-e3 18,351 90.45 90.90 90.67 98.72
26-latimer-el 17,603 91.40 9224 91.82 98.53
27-markham-e2 6,138 90.53 91.17 90.85 98.32
28-middlet-e2 19,051 90.09 91.12 90.60 97.25
29-milton-e3 21,307 88.24 89.11 88.67 99.02
30-record-el 23,422 89.58 89.61 89.59 94.75
31-shakesp-e2 22,032 91.24 91.72 9148 97.20
32-smith-e2 18,408 94.70 95.07 94.88 99.19
33-stevenso-el 16,936 84.78 87.10 85.92 93.43
34-stow-e2 17,457 91.66 9191 91.78 98.75
35-turner-el 16,302 89.47 90.10 89.78 98.26
36-turnerherb-el 837 66.55 70.09 68.27 90.20
37-tyndnew-el 39,476 96.27 96.61 96.44 98.82
38-tyndold-el 33,901 93.29 9356 9342 98.36
39-vanbr-e3 25,052 94.13 9424 94.18 98.46
40-vicary-el 19,510 9136 92.08 91.72 97.89
41-walton-e3 12,557 9236 9242 9239 98.96
total 805,475 91.35 91.94 91.64 98.26

Table 15: Breakdown of aggregate evalb and POS results for PPCEME overlap files shown in Table 5.
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aligned non-punc bullet

sec # not aligned # acc # acc # acc
00-armin-e2 277 17,873 88.27 15,858 91.79 6  66.67
01-asch-el 50 15,960 97.07 13,250 98.13 2 100.00
02-bacon-e2 69 20,140 97.66 17,696 98.81 52 98.08
03-behn-e3 262 19,219 96.72 16,885 98.74 1 0.00
04-blundev-e2 285 22,502 9424 20,475 95.64 9 88.89
05-boethpr-e3 411 32,7765 97.45 29,068 99.07 2 100.00
06-boylecol-e3 17 7,528 97.48 6,793 98.48 0 0.00
07-brinsley-e2 274 19,556 97.21 17,207 98.01 21 85.71
08-burnetroc-e3 44 21,079 9746 18,832 99.14 0 0.00
09-clowes-e2 108 21,829 95.74 19,360 98.03 36  91.67
10-coverte-e2 40 20,745 95.86 18,268 98.04 87 8391
11-deloney-e2 436 26,578 95.79 23,553 98.25 4 100.00
12-elyot-el 630 18,757 96.83 16,789 97.83 2 100.00
13-fabyan-el 421 18,602 9586 17,005 97.39 47 8298
14-fisher-el 67 10,851 9243 9,924 96.37 4  175.00
15-fitzh-el 428 18,640 9425 16,134 96.88 5 100.00
16-fryer-e3 160 18,933 95.63 16,626 97.46 10 90.00
17-gifford-e2 530 21,112 96.03 18,571 98.51 6 100.00
18-harman-el 178 17,848 93.32 16,147 96.64 130  79.23
19-hooke-e3 47 22417 97.06 19,833 98.34 16 100.00
20-hooker-a-e2 45 8,998 97.18 7,950 98.34 2 100.00
21-hooker-b-e2 63 8,578 97.18 7,513  98.70 12 91.67
22-hoole-e3 91 21,436 9726 19,128 98.11 18  83.33
23-jetaylormeas-e3 175 8,578 89.83 7,697 92.19 27 2222
24-jotaylor-e2 141 31,074 95.61 27,332 97.74 401  76.81
25-langf-e3 115 18,025 9648 16,111 98.41 4 100.00
26-latimer-el 393 17,434 9521 15422 97.22 0 0.00
27-markham-e2 79 6,113 86.52 5,579 87.99 5  80.00
28-middlet-e2 2665 18,959 91.80 16,057 95.39 4  175.00
29-milton-e3 33 21,292 9724 18470 98.74 6 100.00
30-record-el 554 23224 9224 20,747 93.41 7 57.14
31-shakesp-e2 2259 21,907 9140 18,220 95.93 5  60.00
32-smith-e2 82 18,381 96.14 16,035 98.88 2 50.00
33-stevenso-el 763 16,641 88.40 14,569 90.10 385 64.42
34-stow-e2 205 17,422 96.61 15,386 98.39 54  88.89
35-turner-el 133 16,187 95.72 14,315 97.88 2 50.00
36-turnerherb-el 7 837 96.30 747 97.46 0 0.00
37-tyndnew-el 258 39,396 96.13 34304 98.36 257  93.00
38-tyndold-el 300 33,780 95.66 30,471 97.52 241  87.55
39-vanbr-e3 3247 24,707 9422 20,975 97.24 7 57.14
40-vicary-el 204 19,065 9436 16,832 97.08 178  85.39
41-walton-e3 697 11736 9298 10,330 96.56 0 0.00
total 17,243 796,704 95.17 702,464 97.25 2,057 80.12

Table 16: Breakdown of aggregate POS results for PPCEME overlap files from Table 5. “aligned” includes all
aligned PPCEME tokens (796,704), “non-punc” excludes punctuation tags, and “bullet” includes only words with a
bullet character.
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tag gold EEBO rec prec fl 3 tag gold EEBO rec prec fl
N 93,720 92,513 96.82 9557 96.19 : ADJR 1,530 1527  93.71 93.53 93.62
P 91,175 91,190 98.89 9891 9890 : EX 1478 1495 97.26 9838 97.81
, 57,992 71,966 7691 9544 8518 . HV 1382 1368  98.98  97.97 98.47
D 62,701 62,440  99.49 99.08 99.29 : INTJ 1378 1457 80.44  85.05 82.68
PRO 52,368 52,204 9934  99.03 99.19 : SUCH 1361 1352 99.70  99.04 99.37
CONJ 42,478 42,154 99.44 98.68 99.06 : ADIJS 1288 1309 95.19  96.74 95.96
ADJ 35,769 35480 9593 95.16 95.54 : N$ 1217 1238 87.96  89.48 88.72
NS 30,937 30,974 9679 9691 96.85 : ALSO 1212 1205 99.59  99.01 99.30
ADV 24,804 24477 96.83 9556 96.19 : NPRS 1177 1186  82.21 82.84 82.52
VB 22,724 22,718 9739 97.37 97.38 . BAG 1163 1161 9940  99.23 9931
. 36,415 22274 8870 5426 6733 1 WD 1127 1145 95.81 97.34  96.57
NPR 19,277 20,210 8836 92.64 90.45 : QS 989 1001 97.70  98.89  98.29
PROS$ 17,060 17,023 9937 99.16 99.26 : DOD 887 884 99.66  99.32 99.49
BEP 14,938 14,905 99.14 9892 99.03 : BEN 730 726 99.72  99.18 99.45
VAN 14,540 14726 9543  96.65 96.04 : DO 728 740 97.16  98.76  97.96
VBP 14,291 14,345 9588 9624 96.06 : NPR$ 707 695 86.19 84.72  85.45
Q 14,044 13,998 9875 9843 9859 : OTHERS 487 506  91.50  95.07 93.25
MD 13,828 13,709  99.43 98.58 99.00 : HAG 397 393 9898  97.98 98.48
VBD 13,663 13,653 9748 9741 97.44 . WARD 320 323 9257 9344 93.00
TO 10,890 10,858 99.54 99.25 99.39 i WPRO$ 315 310 99.03 97.46 98.24
C 9,071 9,113 9752 9797 97.75 : DAN 266 266 98.12  98.12 98.12
WPRO 7,934 7920 99.12 9894 99.03 : WQ 258 259 9151 91.86 91.68
NUM 6,419 6,473 9472 9551 95.11 : NS$ 254 294 67.69 7835 72.63
VAG 6,181 6,140 9570 95.07 9538 : FOR 244 259 9228 9795 95.03
BED 6,014 6,001 99.60 99.38 99.49 : DON 186 184  97.83 96.77  97.30
NEG 5,720 5691 99.58 99.07 99.33 i ADVS 186 150  95.33 76.88 85.12
BE 5,379 5361 9922 98838 99.05 : ELSE 133 138 92.03 95.49 93.73
VBN 4,547 4,586 96.14 96.97 96.55 . DOI 108 106 9434 9259 93.46
FW 4,637 4332 91.60 8557 8848 : HVN 89 91 91.21 9326 92.22
HVP 4,276 4265 99.11 9885 9898 : BEI 83 88 81.82  86.75 8421
RP 4,194 4,182 9584 9557 9570 : DAG 55 44 6591 5273 5859
ADVR 3,930 3,880 97.14 9590 96.52 : HAN 52 56  92.86 100.00 96.30
VBI 3,991 3,733 93.65 87.60 90.52 : ONES 52 54 9444  98.08 96.23
WADV 2,874 2,822 98.02 9624 97.12 : NPRS$ 36 33 81.82  75.00 78.26
ONE 2,483 2,478 9895 9875 98.85 i HVI 27 21 8571 66.67 75.00
OTHER 2,430 2,441 9791 9835 9813 : X 24 80  0.00 0.00  0.00
XX 0 2242 000 000 0.00:$ 23 23 6522 6522 6522
HVD 2,064 2,051 99.07 9845 98.76 : OTHER$ 21 22 81.82 8571 83.72
DOP 2,028 2,026 99.01 9892 98.96 : " 16 9  0.00 0.00  0.00
Fp 1,833 1,847 9534 96.07 9571 : ONE$ 12 13 84.62 91.67 88.00
QR 1,718 1717 98.66 98.60 98.63 i~ 9 0  0.00 0.00  0.00
OPAREN 1,690 1,703  97.18 97.93 9755 : OTHERS$ 6 4 7500  50.00 60.00
CPAREN 1,661 1,668 9724 97.65 97.45 i NUM$ 3 0 0.00 0.00  0.00

total 796,704 796,704 95.17 95.17 95.17

Table 17: Complete breakdown by tag of 95.17% score in row “aligned words” in Table 5, extending Table 6. EEBO
tags are mapped to PPCEME (gold) tags using token alignment.
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form, and it occupies the same position as auxiliary
do. Thus, we have negative declarative sentences
(VERB-DECL-NOT) like:

(IP-SUB (NP-SBJ (PRO I))
(VBD sent)

(NEG not)
(PP (P to)

(NP (PRO you))))

negative imperatives (VERB-NOT-IMP) like:

(IP-IMP (VBI let)
(NEG not)
(IP-INF (NP-SBJ (D that))
(VB hurt)
(NP-OB1 (PRO me)))

(. )

and questions (VERB-SBJ) like:

(CP—QUE-MAT
(WADVP (WADV When) )
(IP-SUB (VBP comes)
(NP-SBJ (PROS$ your)
(N Taylor))
(ADVP-DIR (ADV hither)))

. ?))

G.3 Sample CorpusSearch Query

In order to retrieve the 6 diagnostic sentence types,
we formulate queries in CorpusSearch (Randall,
2010), a query language for querying, editing, and
coding tree structures. Each query is a sequence
of boolean conditions on the parser output. For
instance, the following query retrieves direct ques-
tions with auxiliary do (DO-SBJ).

CP-QUE-MAT# iDoms IP-SUB«)

(
AND (IP-SUB* iDoms DOD |DOP)
AND (IP-SUBx iDoms NP-SBJ%*)
AND (IP-SUB%x iDoms DO|VB)
AND (DOD|DOP precedes NP-SBJx)
AND (NP-SBJx precedes DO|VB)

The asterisks on the labels allow the query to
match tokens with further trailing function tags
(say, -SPE to indicate direct speech or -RSP for re-
sumptive subjects). Our formulation of the queries
assumes that the parser has correctly constructed
the relevant clause boundaries.

H Alignment-Mediated Scoring

For the bipartite graph minimum weight
matching problem, we use the scipy implemen-
tation https://docs.scipy.org/doc/
scipy/reference/generated/scipy.
optimize.linear_sum_assignment.
html.

The PPCEME-gold trees that are compared
against are the original “psd” files from the release,
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because we wanted to avoid any possibility of pre-
processing of PPCEME affecting the “gold” results.
These “.psd” trees have empty categories and meta
data that affects the spans of the query hits on these
gold trees. For example, the lower gold tree in
Figure 3(a) has a (ADVP T»*-1), and the span
for the VERB-SBJ, <3272, 3278> includes that
empty leaf.

As mentioned in Section 2.2, we follow the pre-
processing of the PPCEME files as described in
Kulick et al. (2022b,a), for parsing the PPCEME
files. This preprocessing removes empty cate-
gories and meta data, and so even the AMS evalua-
tion of the PPCEME-parsed files requires a token
alignment, although a trivial one that simply skips
over the empty categories in the alignment from
PPCEME-parsed to PPCEME-gold. Likewise, the
alignment used for the AMS scoring of EEBO-
parsed to PPCEME-gold is a slightly modified
version of the alignment to PPCEME-parsed dis-
cussed in Section 2.2, that aligns to the PPCEME-
gold trees.

I Cross-Validated Results on PPCEME

As briefly discussed in Section 6.2, in addition to
the evalb scores on the cross-validated PPCEME
sections using the the new language model (Ta-
ble 3), we also have query-based evaluation (using
the method in Kulick et al. (2022b)) for the cross-
validation splits. These results are shown in Table
18 and are generally increases over the scores re-
ported in Kulick et al. (2022b).

As discussed in Section 4.1, the parser used on
the overlap section is trained on less data than each
of these cross-validation splits were trained on,
yielding a score of 91.64%, which is lower (as ex-
pected) than the cross-validated results using more
training data (Table 3). In order to obtain a more ro-
bust measure of how the loss in training data affects
the parser, we redid the cross-validation split with
the training section of each split cut to 55% of its
original size. These results are in the bottom half
of Table 19, in which, for convenience, we repeat
the scores from Table 3. The score of 91.64% is
within the expected range.



DEV EVAL
query # hits recall prec fl  #hits recall prec fl
Negative declarative sentences
VERB-NOT-DECL 720 93.73 (3.5) 92.95(3.9) 93.32 (3.5) 655 94.05 (3.3) 93.68 (2.8) 93.79 (1.4)
DO-NOT-DECL 339 96.53 (2.3) 98.05 (2.7) 97.23 (0.7) 405 96.26 (4.4) 98.58 (2.4) 97.34 (2.2)
Negative imperative sentences
VERB-NOT-IMP 120 93.08 (8.0) 90.93 (8.5) 91.69 (6.2) 143 78.16 (14.1) 83.91(12.8) 80.69 (12.6)
DO-NOT-IMP 41 7434 (45.9) 71.01 (44.2) 72.55(44.9) 23 80.0 (38.5) 87.5(35.4) 82.14(36.4)
Questions
VERB-SBJ 387 89.83 (8.3) 94.65 (4.5) 92.06 (5.9) 190  78.68 (10.2) 87.37 (8.8) 82.18 (5.3)
DO-SBJ 564 92.64 (3.9) 99.01 (1.0) 95.67 (1.9) 329 94.36 (7.1) 99.46 (1.5) 96.75 (4.4)

Table 18: Query-based results for the cross-validation dev and test sections.

DEV EVAL
% train evalb POS evalb POS
100 92.08 (1.6) 98.23(0.7) 91.77(0.6) 98.37(0.3)
55 91.54 (1.7) 98.02 (0.7) 91.35(0.7) 98.26 (0.4)

Table 19: Cross-validation parser and POS results. Each result is the mean for the relevant section (dev or test) over
the 8 splits (standard deviation in parentheses). Results are reported using both full train section of each split and
55% of the train section.
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