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Abstract

Multilingual continual learning is important for
models that are designed to be deployed over
long periods of time and are required to be up-
dated when new data becomes available. Such
models are continually applied to new unseen
data that can be in any of the supported lan-
guages. One challenge in this scenario is to
ensure consistent performance of the model
throughout the deployment lifecycle, beginning
from the moment of first deployment. We em-
pirically assess the strengths and shortcomings
of some continual learning methods in a multi-
lingual setting across two tasks.

1 Introduction

There is a substantial amount of research in con-
tinual learning that studies how large language
models can be trained in multiple steps. Task-
incremental learning (Kirkpatrick et al., 2017;
Chaudhry et al., 2019; Lopez-Paz and Ranzato,
2017), class-incremental learning (Wu et al., 2019),
domain-incremental learning (Wang et al., 2022)
and language-incremental learning (Badola et al.,
2022; Castellucci et al., 2021; M’hamdi et al., 2022;
Praharaj and Matveeva, 2022) have been exten-
sively studied (van de Ven and Tolias, 2019) in
the realm of continual learning. The motivation
is for the same model to be trained on various
tasks/classes/domains/languages not only to avoid
having individual models for each task, class, do-
main, or language but also to improve the overall
model performance.

One of the challenges in continual learning is to
counteract the tendency of large language models
to “forget” previously learned information when
trained on new data. In multilingual models, the
performance of the model on languages fine-tuned
in the past tends to decrease or can even result
in catastrophic forgetting (Mccloskey and Cohen,
1989; French, 1999).

Task-incremental learning, class-incremental
learning, and domain-incremental learning re-
search typically focus on few-step continual learn-
ing, where the model is incrementally fine-tuned
with a few tasks, classes, or domains. while
language-incremental learning or multilingual con-
tinual learning offers an opportunity to do continual
learning over dozens of steps. We will use the term
“multilingual continual learning” in this paper.

This work addresses the performance of training
multilingual models over many fine-tuning steps.
We analyze the main existing approaches, provide a
summary of their performance on two multilingual
datasets and provide an analysis of the trade-offs
for selecting one approach over another.

For this work, we develop a test scenario that is
representative of the practical setting: we update
multilingual classification models over a large num-
ber of steps with small amounts of training data,
and the training data is in different languages.

We consider three dimensions in which the ap-
proaches differ: the amount of previously seen data
that is used in fine-tuning steps, the training time,
and the fine-tuning of data in different languages.
The main contributions are as follows:

* We study different multilingual continual
learning approaches on two datasets with a
long sequence of training steps and provide an
empirical analysis of the strengths and weak-
nesses of these approaches.

* We show that the performance on a two-class
versus a multi-class dataset is very different.
We also show that more research is needed
for some approaches before they can be used
for continual learning over long sequences of
training data.

* We provide recommendations for different
model deployment scenarios depending on
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the availability of resources.

2 Related Work

There are multiple approaches to language-
incremental learning such as Praharaj and
Matveeva (2022); Castellucci et al. (2021); Badola
et al. (2022); Yang et al. (2021); M’hamdi et al.
(2022); Pfeiffer et al. (2022). In this paper, we
provide a comparison of the main methods in ap-
plication to continual learning over many steps and
discuss considerations for selecting one approach
over another.

One group of existing studies considered how
to construct the training data at each step: join-
ing all training data from all previous fine-tuning
steps vs using only the training data from the cur-
rent step. Joint training of all languages (M’hamdi
et al., 2022) or domains (Ozler et al., 2020) has
been shown to work better than sequential train-
ing using only the current data. Since joint tuning
does not comply with possible privacy constraints,
we consider both approaches in our study, joint
fine-tuning with all training data and sequential
fine-tuning with only current training data.

For sequential fine-tuning, we consider Praharaj
and Matveeva (2022). They present an analysis of
sequential training with multilingual BERT (De-
vlin et al., 2019) and show that a combination of
translation augmentation and specialized training
methodology facilitates stable continual learning
performance over many multilingual steps. We
consider their approach for our study because they
also used a large number of fine-tuning steps. We
adapt their approach to generating long training
sequences with some modifications.

Adapter-based methods such as Houlsby et al.
(2019); Ke et al. (2021); Pfeiffer et al. (2020)
were proposed as another methodology for robust
continual learning. More recently, Pfeiffer et al.
(2022) have proposed a parameter modularization
approach in pre-training (X-MOD) that enables
positive transfer between languages while also re-
ducing negative interference between them. We
include X-MOD as one of the approaches in our
analysis.

Memory-based approaches such as Chaudhry
et al. (2019); Lopez-Paz and Ranzato (2017);
Scialom et al. (2022) have also been explored to
mitigate forgetting. Such methods make use of an
episodic memory or a cache that stores a subset of
data from previous tasks. These examples are then

used for training along with the current examples
in the current optimization step. We don’t consider
them in our study. To represent approaches that
assume access to the previous training data, we use
joint fine-tuning.

3 Compared Approaches

We focus on four approaches in this survey.
Joint training (Joint), joint-incremental training
(Joint-Inc), sequential fine-tuning with a special-
ized optimization regime (SeqF71-SO) (Praharaj
and Matveeva, 2022) and pre-trained adapters
for individual languages (Ada-SeqFT) (Pfeiffer
et al., 2022). Out of the four approaches we
consider here, only SeqFT1-SO was studied for
continual multi-lingual learning. Therefore we
don’t have many related research results. We
implemented each approach and used the best
practice parameters from the literature for each of
them. This section outlines how we implemented
these approaches.

Joint training. (Joint) Training the base
model on all data in the language sequence
simultaneously in only one step. Previous
literature on continual learning has shown
that joint training outperforms most sequential
training methods. This is a non-incremental base-
line since there is no continual learning aspect here.

Joint-incremental training. (Joint-Inc) The
model is trained incrementally, collecting data from
each step. At each step, all previously available
training data is combined for fine-tuning, and the
base model is fine-tuned. This means that the train-
ing set size and the training time grow over time.
This approach performed well on task incremental
learning (M’hamdi et al., 2022). At the last step of
the Joint-Inc training, all data is available, and so it
will be the same as the Joint baseline.

Both approaches, Joint and Joint-inc require
access to training data from previous steps. While
combining training data leads to better results, it
may not be possible to store data from previous
steps due to privacy concerns. Both approaches
combine data from all languages in each training
step and don’t handle each language individually.

Adapters. (Ada-SeqFT (Pfeiffer et al., 2022))
This approach uses language-specific modules
called adapters during fine-tuning with an aim to
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disentangle the linguistic component from the task
information component so as to mitigate negative
interference between languages. The training and
inference cost remains constant regardless of the
number of languages involved because only one
module is used at a time. However, since a dedi-
cated module is learned for each language, adding
a new language results in an increase in the total
number of parameters. We incorporate this method
in a continual learning setting by adding a language
adapter during training and inference of the desig-
nated train/test languages. For example, at a given
step in the sequence, if the training data arrives in
Spanish, we would “plug” in the pre-trained Span-
ish adapter during fine-tuning. At test time, we
would use an English adapter for a test set in En-
glish, a Spanish adapter for a test set in Spanish,
etc. As recommended by the authors, we freeze
the adapter weights during fine-tuning and only
update the weights shared by all languages. The
Ada-SeqFT has specialized procedures for training
data in each language, unlike all other approaches
we consider here. We use adapters with sequential
fine-tuning, which means for each training step, we
use only the current training data. This approach
can be used when data privacy is important.

Sequential Fine-tuning. (SeqF1-SO (Praharaj
and Matveeva, 2022)) Sequential fine-tuning uses
only the current training data in each fine-tuning
step. Once the training data from a particular step
is used to fine-tune the model, it has to be discarded.
This approach can be used when the training data
cannot be stored due to privacy considerations. Pra-
haraj and Matveeva (2022) showed that with an
appropriate training regime SeqFT-SO avoids catas-
trophic forgetting and allows the model to improve
for 50 incremental fine-tuning steps. The difference
to the Joint-inc approach is that here we don’t store
the additional training data after the incremental
fine-tuning is done. The main difference to Ada-
SeqFT is that here the same model is fine-tuned
with all supported languages.

To summarize, for Joint-Inc, the training data
increases in size after each step, and so the training
time increases. Ada-SeqFT and SeqFT-SO use only
the current training data to sequentially fine-tune
the model so the training set size does not grow
over time. Joint-Inc and SeqFT-SO use training
data for all languages to fine-tune the full model,
whereas Ada-SeqFT fine-tunes only the language-
specific adapter at each fine-tuning step.

4 Experiments

4.1 Data

Datasets We use two datasets for the evaluation:
sentiment classification MARC (Keung et al.,
2020) and intent classification MTOP (Li et al.,
2021). MARC is a multilingual dataset of customer
reviews for various product categories. The MTOP
dataset is an almost parallel task-oriented semantic
parsing dataset for two tasks: intent classification
and slot filling. We use the intent classification
data for our evaluation.

For MARC, we transformed the multi-class data
into binary class data by combining 4-star and
5-star reviews as positive sentiment reviews and
I-star and 2-star reviews as negative sentiment
reviews. We use data from five languages for
products in four categories, resulting in 60 possible
language-category combinations that may occur
in the sequence. The languages used are German,
English, French, Chinese, and Japanese. The
categories used are apparel, home, musical
instruments, and sports. At each step, the training
data is from a particular language-category
combination. Though categories vary from step to
step, the classification problem remains the same -
sentiment classification.

The MTOP intent classification task has 117
classes across six languages. We use all lan-
guages included in MTOP, German, English,
French, Spanish, Hindi, and Thai. We filter
out any classes that do not feature in all six
languages or do not have at least four exam-
ples in each language. This leaves us with 113
classes in the training set which span domains
such as alarm (e.g., SET_ALARM, music (e.g.,
PLAY SONG), messaging (e.g. SEND_MESSAGE),
weather (e.g. GET_-WEATHER), recipes (e.g.
GET_INFO_RECIPES), etc. This is a more chal-
lenging task compared to MARC in terms of the
number of classes. At each step, all classes are
present in the training data. So from step to step,
only the language of the data varies. This en-
sures that the learning is exclusively language-
incremental and not class-incremental.

4.2 Experimental Setup

In our continual multilingual learning scenario, a
pre-trained model is sequentially fine-tuned using
training data in different languages over multiple
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steps. For our experimentation, we assume that the
set of training languages is fixed. We define this
set of languages as £ = Lo, L1,..., L. We also
assume that in each step, the data is exclusively in
one language.

Base Model We begin with a pre-trained multi-
lingual model M. For joint and sequential fine-
tuning, we use mBERT (Devlin et al., 2019) as
our base model. For X-MOD, the pre-trained
weights made available are an extension for the
XLM-RoBERTa (Conneau et al., 2020). The batch
size used was 32 with a learning rate of 3e — 5.
For sequential fine-tuning, we apply a layer-wise
learning rate decay of 0.95. We train all runs (for
all methods) over three epochs. For MARC, we
set the maximum sequence length to 512 (for all
methods), whereas for MTOP, we set the maximum
sequence length to 128 (for all methods).

Intermediate pre-training Analogous to the
inception stage followed by Badola et al. (2022),
we first initialize the base model M, by fine-tuning
it on some task data on all expected languages. We
call this process intermediate pre-training (IPT).
This step could be thought of as setting up the
model and endowing it with task knowledge before
it is deployed and incrementally trained on new
incoming data. We consider this IPT model M,
to be starting model for our continual fine-tuning
steps.

Training sequence creation M, is fine-tuned
over multiple stages to create incremental versions
M; where ¢ = 0...N. In each fine-tuning step the
training data D; is in a language £;, where 0 <
7 < K. We randomly generate sequences of train-
ing data to simulate a sequential fine-tuning sce-
nario using the method from Praharaj and Matveeva
(2022). For the MARC dataset, the training data
for each step comes from a language-category com-
bination, and the classes of positive-negative senti-
ment remain the same. For the MTOP dataset, at
each step, all classes are represented in the data,
and only the language changes across steps. Table
1 shows the sequences of the training data for each
step and for each dataset.

For each dataset, we generate three random se-
quences. For MARC, we train over 24 steps, and
for MTOP we train over 20 steps. We define a
step as one iteration of fine-tuning the weights of
the model and then evaluating it on the test data.
For Joint-Seq at each step, we train M with the
combined training data.

We would like to point out that for Joint-Inc, we
did not train each step in the sequence. We only
trained it at the points that we show on the plots
in Figure 1. We did this because the training set
size and the training time increased. And since
the performance trend seemed to be very clear, it
did not make sense to use resources for that. For
the other sequential approaches, we fine-tune the
models at every step in the sequence.

Task Seq. Steps

1 zh,de, en, fr, fr, en, de, en, fr, jp, zh, zh, jp, de, jp, de, fr, zh, jp, en
jp. zh, de, en, fr, zh, fr, jp, de, fr, de, jp, en, de, fr, zh, en, zh, jp, en
fr, zh, en, jp, en, jp, zh, fr, de, jp, zh, en, en, de, zh, fr, jp, de, de, fr

MARC

fr, hi, es, th, es, en, de, en, de, fr, hi, es, hi, en, th, fr, hi, de, es, th, fr, de, th, en
th, hi, fr, de, es, en, es, hi, th, de, fr, es, en, de, th, en, fr, hi, hi, es, fr, th, de, en
en, fr, th, hi, de, es, fr, hi, en, th, es, de, fr, hi, th, en, de, es, es, de, fr, en, hi, th

MTOP

W= W

Table 1: Training sequences by dataset. We generate
three random sequences each for both datasets. Each
comma-separated entry represents the language of the
training set for that step in the sequence.

Test data and evaluation metric We use the
original test splits for both MARC and MTOP. Each
language has a separate test set. At each step, we
evaluate the model on all test sets. This means at
each step we evaluate the model on all languages
and use the same test sets at each evaluation step.
We use average accuracy over all test sets as our
evaluation metric.

5 Results

We provide a comparison of the performance of
the methods over the MARC and MTOP datasets
in Figure 1. For each dataset, we generated three
sequences. For these plots, we took the average
accuracy at each step across all three sequences,
and we show the average accuracy results for all
four approaches.

The first important observation is that the dif-
ferent training sequences for each dataset show
similar performance trends. This suggests that the
approaches are largely stable and show only a small
performance variation due to the variation in the
order of the languages in the training data, with
the exception of Ada-SeqFT on the MTOP dataset.
This is important because the order of the train-
ing data in each sequence is different. For MARC,
each sequence has a different order of language-
category combinations, and for MTOP, the order
of languages is different. The sequence details are
provided in Table 1. This means that the perfor-
mance is stable under variations of the training
data. Another observation is that approaches are
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Figure 1: Comparison of average accuracies at each step on MARC (left) and MTOP (right) for the four considered
methods. Average accuracy is computed for the same test data at each step. Step 0 is the model after intermediate

pre-training (IPT).

stable when languages from different language fam-
ilies are mixed in the training data. This holds for
both — a two-class MARC dataset and 113 class
MTOP dataset. Again, with the exception of Ada-
SeqFT on the MTOP dataset, we address it below.
Let’s take the example of SegFT-SO on the MARC
dataset. We see in Table 1 that the first three steps
for MARC for sequence 1 are Chinese (zh), Ger-
man (de), and English (en). For sequence 2, we
had Japanese (jp), Chinese (zh), and German (de).
For sequence 3, we had French (fr), Chinese (zh),
and English (en). On the plot in Figure 1, we show
the average over the three sequences, and the confi-
dence interval is small, which means the average
accuracies for each sequence at step 3 are compa-
rable.

This is an important result. Since in the practical
setting, users have no control over the sequence
of languages that will be used for fine-tuning, it
is important that the model performance does not
depend on any particular sequence of languages.

We also investigate the role of the size of the
training data. Joint is the baseline for when all data
is available, and as expected, it performs higher
in both datasets. Joint-Inc performance improves
with every step as the training set size grows for
both datasets. This is in line with expectations and
existing results from the literature. On the MARC
dataset, the performance of all methods seems to
converge after 20 steps. SeqFT-SO performance is
just below Joint-Inc and Ada-SeqFT after the initial
15 steps performs the same as the Joint baseline

and slightly outperforms the other two sequential
approaches. On the MTOP dataset, we see a wide
difference between the approaches. In this case,
the Joint-Inc outperforms the other two sequential
approaches and reaches the same accuracy as the
Joint baseline at step 22, before all training data that
is used for Joint is available to it. The performance
of SeqFT-SO, on the other hand, improves much
more gradually.

Another set of interesting results is about the
performance of Ada-SeqFT. Adapters are supposed
to provide better handling for each language, and
this can lead to significant improvements. As we
mentioned, Ada-SeqFT has the best performance
on the MARC data set and even performs the same
as the Joint baseline. However, Ada-SeqFT per-
forms worst on the MTOP dataset. We see that
after a brief upward trend, the average accuracy
starts dropping. This phenomenon was observed
in all three sequences, even though the drop be-
gins at different points: at step 8 for sequence 1, at
step 18 for sequence 2, and at step 13 for sequence
3. This explains the wider confidence interval for
Ada-SeqFT after step 8. It seems that X-MOD
is prone to catastrophic forgetting when there are
many classes in the data. Another interesting obser-
vation about Ada-SeqFT is on the MARC dataset,
the average accuracy after the first non-IPT step
collapses to as low as 50%. This was observed
in all three sequences. Although the performance
recovers at the next step, in a practical model de-
ployment, even a one-time drop is undesirable.
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In summary,

¢ For the two class MARC dataset, there is no
difference between using all available training
data (Joint and Joint-Inc) versus only the cur-
rent training data (Ada-SeqFT and SeqFT-SO).
On the other hand, for the 113-class MTOP
dataset, combining all available training data
results in much higher accuracy. If privacy
is not a consideration and training data can
be stored and used throughout the multi-step
fine-tuning, it is beneficial to use the Joint-Inc
approach for multi-class datasets.

* All approaches are stable with respect to the
order and the types of languages in the train-
ing sequence. This is an important positive
result. Ada-SeqFT underperforms on MTOP,
but it does not seem to be related to the lan-
guages.

* For the two class MARC data set Ada-SeqFT
has the best performance. But on the MTOP
dataset, it exhibits catastrophic forgetting. It
appears that the adapters approach needs more
research when dozens of fine-tuning steps are
applied.

* The training set size increases for the Joint-
Inc approach, and the training time increases
accordingly. If longer training time is accept-
able, it is beneficial to use the Joint-Inc ap-
proach for multiclass datasets.

We provide the following recommendation. We
recommend using SeqgF7T-SO for two class data. It
has a shorter training time because it uses only cur-
rent training data and is compliant with privacy
considerations. If there are data privacy consider-
ations or training time considerations with multi-
class data, SeqFT-SO is the recommended robust
approach that improves model performance over
time. If there are no privacy constraints, Joint-Inc
is expected to provide better performance for multi-
class data. Ada-SeqFT requires more research as
it exhibits unstable performance in step 3 on the
two-class dataset and catastrophic forgetting on the
multiclass dataset.

6 Conclusion

We provided a comprehensive study of approaches
to multilingual continual learning. We carry out
multi-step training using a two-class and a 113-
class dataset. We consider three dimensions of
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their difference: the amount of previously seen data
that is used in fine-tuning steps, the training time,
and handling the fine-tuning for data in different
languages. The main result is that all approaches
are stable with respect to the order and type of
languages in multi-step training data sequences.
The adapters approach needs more research to be
reliably used in multilingual continual learning, es-
pecially for multiclass data. Joining all previous
training data results in the best performance. How-
ever, if there are privacy constraints or training
time constraints, sequential incremental learning is
a robust alternative.
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