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Abstract

A fundamental challenge in the current NLP
context, dominated by language models, comes
from the inflexibility of current architectures to
“learn” new information. While model-centric
solutions like continual learning or parameter-
efficient fine-tuning are available, the ques-
tion still remains of how to reliably identify
changes in language or in the world. In this
paper, we propose WikiTiDe, a dataset derived
from pairs of timestamped definitions extracted
from Wikipedia. We argue that such resource
can be helpful for accelerating diachronic NLP,
specifically, for training models able to scan
knowledge resources for core updates concern-
ing a concept, an event, or a named entity.
Our proposed end-to-end method is fully auto-
matic, and leverages a bootstrapping algorithm
for gradually creating a high-quality dataset.
Our results suggest that bootstrapping the seed
version of WikiTiDe leads to better fine-tuned
models. We also leverage fine-tuned models
in a number of downstream tasks, showing
promising results with respect to competitive
baselines1.

1 Introduction

Handling new information is one of the most crit-
ical (and vastly unresolved) challenges in the cur-
rent NLP landscape, mostly because language mod-
els (LMs) such as BERT (Devlin et al., 2019), T5
(Raffel et al., 2020), GPT-3 (Brown et al., 2020) or
PaLM (Chowdhery et al., 2022) can only learn from
information they have seen during pretraining. This
is an important limitation when it comes to dealing
with updates in the world and language changes
alike, since these updates, if not dealt with properly
in an LM-centric system, can cause temporal mis-
alignment (Luu et al., 2021; Lazaridou et al., 2021;
Jang et al., 2022), which is especially harming in

1https://github.com/hsuvas/wiki_
weakly_supervised_classifier-main.git

knowledge-intensive tasks, such as closed-book
QA.

Unsuprisingly, thus, there is a significant body
of work concerned with, for instance, updating lan-
guage models by pretraining them on in-domain
data (Gururangan et al., 2020), editing specific facts
(De Cao et al., 2021; Zhu et al., 2020; Dai et al.,
2021), continual learning (Agarwal and Nenkova,
2021; Del Tredici et al., 2018; Giulianelli et al.,
2020; Dhingra et al., 2022; Loureiro et al., 2022),
pre-training with an objective specifically designed
to handle infusion of newly coined terms (Yu et al.,
2021), or directly modifying the attention mecha-
nism to account for temporality (Rosin and Radin-
sky, 2022). All these, in addition to the extensive
body of work on diachronic and dynamic (contex-
tualized and static) word embeddings (Hamilton
et al., 2016a; Rudolph et al., 2016; Hamilton et al.,
2016b; Rudolph and Blei, 2018; Hofmann et al.,
2020).

Regardless of the method, however, a critical
component of time-aware NLP is to have access to
dynamically changing facts about language and the
world so that LMs are exposed to them. As Jang
et al. (2022) argues, collaborative resources such
as Wikipedia or Wikidata can satisfy this desider-
atum, since they provide a dynamically updated2

life-long resource. Given this, with WIKITIDE we
put forward a benchmark comprised of definition
pairs annotated in terms of whether they are the
same or not, and if not, if this difference can be
attributed to a fundamental change in that term,
event or entity (as opposed to, for instance, seman-
tic variations such as introduction of a paraphrase
or stylistic nuances). We construct WIKITIDE in a
weakly supervised manner via bootstrapping, and
evaluate a number of LM-based baselines on the

2According to https://en.wikipedia.org/
wiki/Wikipedia:Statistics, Wikipedia is edited
twice per second.

https://github.com/hsuvas/wiki_weakly_supervised_classifier-main.git
https://github.com/hsuvas/wiki_weakly_supervised_classifier-main.git
https://en.wikipedia.org/wiki/Wikipedia:Statistics
https://en.wikipedia.org/wiki/Wikipedia:Statistics
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WikiTiDe Definitions Label

pdeffirst ”All or Nothing” is a song by German dance-pop group Milli Vanilli.
0

pdefsecond ”All or Nothing” is a song by German dance-pop group Milli Vanilli.

pdeffirst ”Along the Navajo Trail” is a country/pop song, written by Dick Charles
(pseudonym for Richard Charles Krieg), Larry Markes, and Edgar De
Lange in 1945.

1
pdefsecond ”Along the Navajo Trail” is a country/pop song, written by Dick Charles

(pseudonym for Richard Charles Krieg), Larry Markes, and Eddie De-
Lange in 1945.

pdeffirst Alan Sheffield Ball (born March 29, 1985) is an American football
cornerback for the Jacksonville Jaguars of the National Football League.

2
pdefsecond Alan Sheffield Ball (born March 29, 1985) is a former American football

cornerback in the National Football League for the Dallas Cowboys,
Houston Texans, Jacksonville Jaguars, and Chicago Bears.

Table 1: Examples of WikiTiDe for each label. In these specific examples, there is full agreement between all
ChatGPT instances that performed the annotation.

task of determining the type of difference between
two timestamped definitions. Our results suggest
that bootstrapping is helpful, and that this dataset
can be used for both aiding in lexical semantics
tasks, as well as for efficient scanning for critical
updates in Wikipedia.

2 Related Work

This paper can be broadly positioned within two ar-
eas, namely lexicograhpic definitions (understood
as a lexicographic resource but also as a high qual-
ity source of information for augmenting LMs),
and diachronic NLP. We therefore make a clear
distinction between them in the review of relevant
works.

Definitions Definitions have traditionally played
a crucial role in NLP and computational lexicog-
raphy. As the building blocks of dictionaries and
encyclopedias, they are used when the meaning of
a word is sought (Navigli and Velardi, 2010), and
thus the task of automatically constructing glos-
saries and terminologies is a well established task
in NLP and Information Retrieval (Espinosa-Anke
and Schockaert, 2018; Spala et al., 2019, 2020;
Veyseh et al., 2020; Azarbonyad et al., 2023).

However, definitions have also been leveraged to
improve the quality of NLP systems. For instance,
Delli Bovi et al. (2015) and Espinosa-Anke et al.
(2016) harnessed definitions to build knowledge
bases by extracting semantic relations from them;

Joshi et al. (2020) used definitions to provide ad-
ditional context to LMs in reading comprehension
tasks; Yu et al. (2021) pre-trained BERT on tasks
that exploit definitions, specifically seeking to im-
prove contextual representations of rare terms; and
Xu et al. (2022) used definitions as the backbone
of prompt-based taxonomy learning.

In a parallel strand of work, others have ex-
plored definition modeling systems (i.e., given a
term and potentially some context, generate a def-
inition) (Gadetsky et al., 2018; Zhu et al., 2019;
Mickus et al., 2019, 2022; Bevilacqua et al., 2020),
and these systems have been applied in tasks such
as controlled definition modeling, e.g., jargon or
varying technical complexity (August et al., 2022;
Huang et al., 2022), as well as lexical semantics
tasks like word sense disambiguation and word-
in-context classification (Pilehvar and Camacho-
Collados, 2019).

Diachronic NLP While there is agreement in
that continual learning helps to mitigate the funda-
mental issues of temporal misalignment (Jang et al.,
2022) and catastrophic forgetting (Cossu et al.,
2022), the availability of benchmarks for retriev-
ing new facts and evaluating LMs on their capacity
to account for them is not overwhelming. Social
media seems to be a particularly well suited do-
main for exploring temporal generalization, given
its naturally fast-paced nature, and so we find a
number of Twitter-specific benchmarks (Osborne
et al., 2014; Yogatama et al., 2014). Moreover,
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Algorithm 1 Collect Definition Pairs
1: Let P be the set of Wikipedia pages
2: Let D be the list of definition pairs
3: Let n be the desired number of definition pairs

(n = 10, 000)
4: Let SRP(p, tl) be a function for selecting a

random page given a specific timeline tl
5: D = {}
6: while |D| < n do
7: Find a random p ∈ P with timeline tly
8: tly ← SortYearsAscending(tly)
9: m← FindMedian(t)

10: pfirst ← SRP(p, tly ≤ m)
11: psecond ← SRP(p, tly ≥ m)

12: pdeffirst ← GetDefinition(pfirst)

13: pdefsecond ← GetDefinition(psecond)
14: D ← D ∪ {(pdeffirst, p

def
second)}

other resources such as arXiv papers (Lazaridou
et al., 2021) or Wikipedia (Jang et al., 2022) have
been benchmarked for evaluating temporal gener-
alization, as well as temporal variations of existing
relation extraction datasets (Dhingra et al., 2022).

In this context, we argue that Wikipedia is indeed
a valuable and underutilized resource for training
and evaluating LMs on their language and knowl-
edge update capabilities. While, as Jang et al.
(2022) points out, not all changes in Wikipedia
or Wikidata correspond to an actual change in the
real world, we aim to alleviate this limitation by fo-
cusing on changes in definitions alone. In this way,
we drastically reduce the chances of falsely confus-
ing one superfluous change in a Wikipedia entry
with a change that results in a necessary update of
our understanding of a concept or entity. In what
follows, we discuss how we create our seed for the
WIKITIDE dataset, the algorithm for growing it,
and then report on several experimental evaluation
results.

3 WIKITIDE

In this section, we discuss, first, the process of re-
trieving candidate definition pairs for annotation.
Then, we provide details about the annotation pro-
cess, and finally, present examples and summary
statistics, aimed to shed light on the properties of
WIKITIDE.

The process of creating the required definition
pairs of WIKITIDE is shown in Algorithm 1. In
a nutshell, we start from the set P of Wikipedia

pages, and construct, by sampling two sufficiently
distant definitions (that is, the first sentence of a
Wikipedia article p ∈ P ), a dataset D which con-
tains 10,000 unannotated definition pairs. After
this, we randomly select 30% from D for annota-
tion, which we perform combining the annotations
of 4 instances of GPT-3 (Brown et al., 2020)3. The
main motivation for “replacing” manual annotation
with a LM is twofold. First, we posit that we can
leverage the knowledge embedded in ChatGPT’s
parameters about well known entities, concepts and
events (well known because they have a correspond-
ing Wikipedia page). Second, recent work has
shown that leveraging ChatGPT can outperform
other annotation frameworks, for example Ama-
zon Mechanical Turk (Gilardi et al., 2023). The
four rounds of annotations we perform differ in the
instruction, as the hyperparameters remain fixed
(specifically temperature = 0 and top p = 1).
The instruction combines a prompt and a few ex-
amples (potentially - but not always - covering all
possible labels). The specific variations involve
paraphrasing some of the instructions or definitions
of labels, or selecting different examples4. As for
the labels, we define our task as a 3-label classi-
fication problem, and hence the 3 different labels
(and how they are described to ChatGPT) can be
broadly defined as follows:

1. Class 0: pdeffirst and pdefsecond essentially convey
the same information, with negligible differ-
ences in terms of style.

2. Class 1: pdeffirst and pdefsecond may be semanti-
cally similar but conveying analogous infor-
mation, or else convey different information,
however these differences cannot be attributed
to a fundamental change or update in our un-
derstanding about p.

3. Class 2: pdeffirst and pdefsecond are different, and
this difference can be unequivocally attributed
to some fundamental changes happening to p
and/or our shared understanding of p, which
changed during the period that spanned be-
tween pdeffirst and pdefsecond.

The final labels are selected as follows: We only
select instances labeled as class 2 if all instances of

3Specifically, the version powering ChatGPT:
gpt-3.5-turbo.

4One example of a prompt is provided in the appendix of
this submission.
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ChatGPT label it as such, thus ensuring the tightest
possible agreement for this label, which is both
the most interesting and infrequent in the dataset.
Then, for the rest, we resort to the label assigned
by the majority among three ChatGPT annotators,
and only in case of draw, we incorporate a fourth
one, which acts as referee. At the end of this pro-
cess, we annotate 3,000 instances out of the 10,000
initial set, with a Fleiss-Kappa Agreement score of
(Fleiss, 1971) of 24.84, which according to the lit-
erature, falls within the fair agreement range. Table
1 shows illustrative examples of definition pairs in
WIKITIDE. This 3k training set (TS) has the fol-
lowing label distribution: 1,082 examples for label
0; 1,830 for label 1; and 87 definition pairs for the
most interesting label 2. In the following section
we describe how we use TS to fully annotate D.

4 Bootstrapping WIKITIDE

With TS being the ChatGPT-annotated seed dataset
in WIKITIDE (with a label set L = {0, 1, 2}), let
DS be the remaining unannotated 7,000 instances,
and D = TS ∪ DS. We seek to iteratively boot-
strap a development set with “high confident” pre-
dictions, starting from a seed classifier trained, in
a first iteration, only on TS. We argue that this
approach, which can be traced back to applications
in word sense disambiguation and definition extrac-
tion (Yarowsky, 1995; Espinosa-Anke et al., 2015),
can be effectively applied to our use case as each
newly bootstrapped definition pair will be reliable
indicatives of the source training set, which can
contribute to increase recall as the model will have
seen more positive examples.

As summarized in Algorithm 2, the bootstrap-
ping process requires at a minimum an annotated
training set TS and an unannotated test set DS,
and optionally held-out test set HS to monitor per-
formance. At the first iteration, we set |TS| =
2160; |DS| = 7, 000; and |HS| = 840. We then
fire the bootstrapping process, in which, first, a
model is trained and applied on DS, then we ex-
tract the K most confident predictions for each
label, append them to TS, and remove them from
DS. Every time we exhaust all labels in L, we
evaluate a new instance of the model on HS.

In terms of classifier, we select a wide range
of models to evaluate, all of them based on the
Transformers architecture (Vaswani et al., 2017),
namely BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), DistilBERT and DistilroBERTa (Sanh

Algorithm 2 Bootstrapping on WIKITIDE

Require: Initial training set TS
Require: Development set DS
Require: Held-out test set HS
Require: Label set L = {0, 1, 2}
Require: K← 10
Require: Temperature T > 0

1: while |DS| ≥ topnPreds · |L| do
2: model← trainModel(TS)
3: model(DS) // Apply model to DS
4: for l ∈ L do
5: DSl ← {x | x ∈ DS, label(x) = l}
6: Pl ← {P (x, l) | x ∈ DSl}
7: Sort P ′

l in descending order
8: DS′

l ← Top K instances from DSl

based on P ′
l

9: TS ← TS ∪DS′
l

10: DS ← DS \DSl

11: evaluateModel(model, HS)

et al., 2020), Tiny-BERT (Bhargava et al., 2021;
Turc et al., 2019) and XLM-Roberta-base (Conneau
et al., 2019)5. Finally, in terms of manipulating
the inputs to these models, we opt for minimal
preprocessing, simply injecting special tokens ‘<
y>’ and ‘</y>’ for isolating timespans, and ‘<t>’
and ‘</t>’ in order to mark the target term.

4.1 Results and Discussion

We flesh out the results obtained by different mod-
els in the task of predicting, given a pair of def-
initions from Wikipedia, the labels introduced in
Section 3. As can be seen in Table 2, the boot-
strapped models are consistently better than their
base counterparts (which, we recall, are equivalent
models but being trained only on TS). RoBERTa-
based models are superior to the rest, and crucically,
they also reach to the best performing iteration at
later stages, which suggests they tend to overfit
less to the training set. In terms of gap between
base and boostrapped models, this is rather large,
and largest for label 2. As an example, RoBERTa-
large is almost 40 points more precise when boot-
strapped, and 27 F1 points better. Interestingly, our
intuition of using a multilingual model to handle
“foreign” (non English) spellings, typically used
in Wikipedia definitions for non English entities
or concepts, seems to not work well, with XLM-

5All of them available at the Huggingface model hub www.
huggingface.co.

www.huggingface.co
www.huggingface.co
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Label 2 Label 1 Label 0 Avg.

Model Boot. P R F1 P R F1 P R F1 P R F1 BI

roberta-base no 48.98 50.00 49.49 77.47 77.67 77.56 78.94 79.69 79.24 68.47 69.12 68.76
roberta-base yes 81.22 70.35 74.58 86.93 88.33 87.08 88.07 90.13 88.43 85.41 82.94 83.62 47

distilbert-base-cased no 64.83 72.44 67.78 75.96 76.98 75.81 77.79 79.33 78.05 72.88 76.25 73.88
distilbert-base-cased yes 74.28 64.40 68.00 80.16 81.34 80.12 81.44 83.22 81.54 78.62 76.32 76.56 28

xlm-roberta-base no 48.99 50.00 49.49 29.88 50.00 37.41 30.89 50.00 38.19 36.59 50.00 41.70
xlm-roberta-base yes 67.91 58.52 61.43 84.72 86.09 84.61 86.53 88.65 86.56 79.72 77.75 77.53 9

bert-base-cased no 60.97 60.97 60.97 59.84 53.57 48.33 65.68 54.67 49.62 62.17 56.41 52.98
bert-base-cased yes 63.73 72.31 66.89 72.24 73.12 72.07 73.60 74.83 73.74 69.86 73.42 70.90 14

bert-tiny no 48.76 40.77 44.41 51.09 50.86 49.73 41.36 47.46 39.91 47.07 46.36 44.68
bert-tiny yes 50.80 52.54 50.52 57.42 57.15 57.19 57.66 56.68 56.72 55.29 55.49 54.81 44

distilroberta-base no 48.99 50.00 49.49 73.38 73.88 71.64 75.23 76.24 73.14 65.87 66.71 64.76
distilroberta-base yes 60.86 66.43 63.01 80.67 81.88 80.52 83.05 84.84 83.33 74.86 77.72 75.61 11

roberta-large no 48.99 50.00 49.49 81.03 64.34 62.86 82.19 65.15 64.57 70.74 57.17 58.97
roberta-large yes 88.29 70.47 76.56 87.59 88.25 87.86 88.76 89.90 89.21 88.21 82.87 84.54 54

Table 2: Results on the held-out test set HS for a number of LMs. For the bootstrapped models, we also report the
best iteration (column BI).

Figure 1: Macro-F1 scores of Roberta-Large with re-
spect to Number of Iterations

roBERTa-base being the 2nd to last model, only
surpassing BERT-tiny.

In terms of analyzing the bootstrapping itera-
tive process, we can see in Figure 1 that the im-
provements of the bootstrapped models becomes
apparent after few iterations, both for the most rel-
evant label 2 (left plot) and on average (right plot).
We also see less “up and down spikes” for the av-
erage results, suggesting that performance on the
other labels becomes smoother over time. More-
over, in order to gain further understanding on the
effects of the bootrsapping process into the differ-
ences in definition pairs over time, we measure
semantic drift, i.e., whether (or, more precisely,
the extent to which) the bootstrapped training set
exhibits an increasingly diverse set of definitions,
measured by how dissimilar they are as they are
iteratively fetched from DS. We focus on label
2, and plot the results of this analysis in Figure
2, which clearly shows an increasing drift in aver-
age distances. This confirms that the bootstrapped
training set is semantically more diverse than the

Figure 2: Cosine Distance of definition pairs for Label
2 with respect to bootstrapping iterations

seed ChatGPT-annotated version.

As a form of qualitative evaluation, we list in
Table 3 a set of bootstrapped instances from one
of the best performing models (RoBERTa-base).
Note that these are not carefully selected examples,
as we have simply listed an instance of high con-
fidence classifications per label. We can see the
improvement in quality of 2-labeled instances, es-
pecially between iterations 1 and 83, in which the
difference in knowledge concerning Carlos Alberto
Valencia is minimal in terms of string edit distance,
however the model correctly identified a critical
change for this named entity, specifically, the fact
that he changed teams.
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Iteration WikiTiDe Definitions Label

1 pdeffirst Argentine football saw Lomas Athletic Club win their 5th Argentine championship in 6
seasons 2

pdefsecond Argentine football saw Lomas win its 5th Primera División championship within 6
seasons.

1 pdeffirst The 7th Army Aviation Regiment is an army aviation formation of the Ukrainian Ground
Forces 1

pdefsecond The Army Aviation Brigade is an army aviation formation of the Ukrainian Ground
Forces.

1 pdeffirst The 16S rRNA is a long component of the small prokaryotic ribosomal subunit (30S)
and is known to interact with the 50S subunit in both P and A site. 0

pdefsecond 16S ribosomal RNA (or 16S rRNA) is the RNA component of the 30S subunit of a
prokaryotic ribosome (SSU rRNA).

43 pdeffirst Dr. Bhupendranath Dutta was a famous Indian revolutionary and later a noted Sociologist. 2
pdefsecond Bhupendranath Datta was an Indian revolutionary and later a noted sociologist and

anthropologist.

43 pdeffirst Dexia Mons-Hainaut is the Belgian professional basketball club, who based in Quareg-
non. 1

pdefsecond Belfius Mons-Hainaut is a Belgian professional basketball club that is based in Mons,
Wallonia.

43 pdeffirst Berkshire soil series is the name given to a well drained loam or sandy loam soil which
has developed on glacial till in parts of southern Quebec, eastern New York State and
New England south to Massachusetts.

0

pdefsecond Berkshire soil series is the name given to a well-drained loam or sandy loam soil which
has developed on glacial till in parts of southern Quebec, eastern New York State and
New England south to Massachusetts.

83 pdeffirst Carlos Alberto Valencia is a Colombian left wing back who plays for River Plate of
Buenos Aires, Argentina. 2

pdefsecond Carlos Alberto Valencia Paredes is a Colombian footballer who plays as a left-back for
Independiente Medellı́n.

83 pdeffirst The Carnegie Free Library of Beaver Falls was the first public library built in Beaver
County, Pennsylvania. 1

pdefsecond The Carnegie Free Library of Beaver Falls is a historic Carnegie library in the city of
Beaver Falls, Pennsylvania, United States.

83 pdeffirst Carl-Johan Lindqvist is a Swedish luger who competed in the early 1990s 0
pdefsecond Carl-Johan Alexander Lindqvist (born November 15, in Tyresö) is a Swedish luger who

competed in the early 1990s.

Table 3: Examples of Model output on different iterations of Bootstrapping for Roberta-Base.

5 Case Study: WiC-TSV

The WiC-TSV (Word in Context-Target Sense Ver-
ification) task (Breit et al., 2021) is a “shootoff”
from the original WiC task (Pilehvar and Camacho-
Collados, 2019). It proposes a binary classification
problem, where the input is a pair of sentences: the
first one, a sentence with a target word in context,
and the second one, a definition of that target word.
This is a suitable test bet for a model fine-tuned
on WIKITIDE, since this is a dataset which es-
sentially measures definition similarity. However,
since WIKITIDE is a multilabel dataset, we com-
bine labels 1 and 2 as label 0 in WiC-TSV and
assume equivalence between the notion of “change”

in WIKITIDE and polysemy in WiC-TSV. For our
model to work, both input sentences must be defini-
tions, however, this is not always the case in WiC-
TSV. To work around this limitation, we replace
the non-definition sentences in WiC-TSV with a
definition generated using ChatGPT (Brown et al.,
2020). Both sets of results (directly applying our
model to WiC-TSV as well as replacing one of
its sentences with a ChatGPT-generated definition)
are reported, for train, test and development sets6

(which is possible as we cast this problem as an
unsupervised classification task), in Table 4.

6https://github.com/
semantic-web-company/wic-tsv/tree/
master/data/en.

https://github.com/semantic-web-company/wic-tsv/tree/master/data/en
https://github.com/semantic-web-company/wic-tsv/tree/master/data/en
https://github.com/semantic-web-company/wic-tsv/tree/master/data/en
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Train Dev Test

Original GPT3.5 Original GPT3.5 Original GPT3.5
Base Bootsr. Base Bootsr. Base Bootsr. Base Bootsr. Base Bootsr. Base Bootsr.

roberta-base 0.33 0.48 0.33 0.35 0.34 0.44 0.33 0.34 0.34 0.50 0.34 0.35
distilbert-base-cased 0.33 0.46 0.33 0.33 0.3 0.47 0.34 0.34 0.34 0.43 0.34 0.34
xlm-roberta-base 0.33 0.39 0.33 0.40 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.43
bert-base-cased 0.3 0.38 0.33 0.39 0.46 0.52 0.3 0.34 0.48 0.48 0.34 0.43
bert-tiny 0.33 0.33 0.33 0.35 0.3 0.34 0.33 0.34 0.36 0.36 0.37 0.35
distilroberta-base 0.34 0.34 0.33 0.34 0.34 0.34 0.33 0.34 0.36 0.36 0.34 0.35
roberta-large 0.30 0.53 0.33 0.50 0.34 0.51 0.34 0.48 0.34 0.45 0.34 0.45

Train Dev Test

Original GPT3.5 Original GPT3.5 Original GPT3.5
Base Bootsr. Base Bootsr. Base Bootsr. Base Bootsr. Base Bootsr. Base Bootsr.

roberta-base 0.50 0.50 0.50 0.50 0.51 0.48 0.50 0.51 0.51 0.53 0.51 0.51
distilbert-base-cased 0.5 0.49 0.49 0.50 0.51 0.50 0.51 0.50 0.51 0.48 0.50 0.51
xlm-roberta-base 0.50 0.50 0.50 0.49 0.5 0.51 0.50 0.51 0.50 0.51 0.51 0.50
bert-base-cased 0.50 0.52 0.50 0.52 0.50 0.50 0.51 0.51 0.49 0.49 0.51 0.51
bert-tiny 0.50 0.50 0.50 0.50 0.51 0.51 0.40 0.5 0.49 0.50 0.48 0.50
distilroberta-base 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.52 0.49 0.50 0.51 0.51
roberta-large 0.50 0.51 0.49 0.51 0.50 0.51 0.50 0.49 0.50 0.46 0.51 0.48

Table 4: F1 (top) and accuracy (bottom) results on WiC-TSV. The Vanilla columns refer to instances where we run
inference with a classifier trained on WIKITIDE directly, without adapting inputs or further fine-tuning. GPT3.5
columns denote a use case where we use GPT3.5 for generating a definition of the target word in the first sentence
of the dataset instance, and then run inference on this updated input.

Moreover, we report results reported in previous
works to further contextualize the results we ob-
tain, which, to reiterate, are from an unsupervised
model not directly optimized for this task. Breit
et al. (2021) reports the all true baseline on the
test split has having Accuracy of 50.8% and F1 of
67.3%. Additionally, they obtain Accuracy scores
of of 54.4% and F1 scores of 26.2% with an un-
supervised BERT-based model, whereas they find
significant improvements (Accuracy, 76.0% and
F1-score, 78.8%) for a supervised GBERT-based
model. We also find in the work by Zervakis et al.
(2022), where they propose target sense verifica-
tion as an analogy detection task, that they achieve
Accuracy scores of 78.6% and F1 of 79.7% on the
test set (for supervised approaches), and Accuracy
of 61.2% (and 51.3% F1) for an unsupervised ap-
proach.

The results of our experiment display the abil-
ity of the models before and after bootstrapping
on all three sets (train,deveopment and test). The
bootstrapped approach considerably increases the
Macro-F1 performance of the models with respect
to WiC-TSV’s Task 1 unsupervised setting base-
lines (Breit et al., 2021). The results also suggest
that while BERT shines on a few occasions, the
RoBERTa family of models show the highest per-
formance, with RoBERTa-large bootstrapped being
the best with F1 score of 0.53. The vanilla versions

of the models perform within a range between 0.30
to 0.34. The bootstrapped versions outperform their
non-bootstrapped counterparts in all three datasets,
with respect to F1 score. We also observe that the
difference in F1 scores between before and after
bootstrapped versions can go as high as 17 points,
which signify that the models learns better during
the bootstrapping process. Finally, we also find that
the larger models with more parameters outperform
their distilled counterparts in most of the dataset
versions.

6 Conclusion

We propose a dataset and methodology to design
a classifier for detecting temporal changes in tem-
poral definition pairs. We use weak supervision
technique by boostrapping the model an unlabelled
dataset in output controlled setting. We also see
that bootstrapping a model improves the accuracy
of the model as well as makes the model more
robust. However, the process requires more time
to bootstrap the model and the success of the pro-
cess depends on the initial training. Although the
process has its own limitations, we conclude that
the idea of using a classifier to detect information
changes in with respect to temporality and train-
ing it with boostrapping can result in easement of
defining which information is relevant to update
a model’s knowledge base and can help to miti-
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gate the issues that a language model suffers due
to temporal misalignment.

Ethics and Broader Statement

This paper is concerned with the automatic con-
struction of a dataset by combining publicly avail-
able information in the web. Therefore, it might
be possible that incorrect or harmful information
is present in this derived dataset, although we wel-
come efforts by the community to contribute miti-
gating these risks. The dataset construction process
did not involve humans.

Potential risks in the dataset might also include
incorrectly flagging new knowledge about any ar-
ticle, as our data source Wikipedia is a publicly
editable data source. Therefore the possibility of
having conflicting or incorrect information also in-
creases. However, the difference of information,
which our classifier is trained to detect can help
to detect such outliers and provide some insights
about it.
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