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Abstract

Recent work has shown evidence of ”Clever
Hans” behavior in high-performance neural
translationese classifiers, where BERT-based
classifiers capitalize on spurious correlations,
in particular topic information, between data
and target classification labels, rather than
genuine translationese signals. Translationese
signals are subtle (especially for professional
translation) and compete with many other sig-
nals in the data such as genre, style, author,
and, in particular, topic. This raises the general
question of how much of the performance of a
classifier is really due to spurious correlations
in the data versus the signals actually targeted
for by the classifier, especially for subtle target
signals and in challenging (low resource) data
settings. We focus on topic-based spurious cor-
relation and approach the question from two
directions: (i) where we have no knowledge
about spurious topic information and its distri-
bution in the data, (ii) where we have some indi-
cation about the nature of spurious topic corre-
lations. For (i) we develop a measure from first
principles capturing alignment of unsupervised
topics with target classification labels as an in-
dication of spurious topic information in the
data. We show that our measure is the same as
purity in clustering and propose a ”topic floor”
(as in a ”noise floor”) for classification. For
(ii) we investigate masking of known spurious
topic carriers in classification. Both (i) and (ii)
contribute to quantifying and (ii) to mitigating
spurious correlations.

1 Introduction

The term translationese refers to systematic lin-
guistic differences between originally authored
texts and translated texts in the same language
(Gellerstam, 1986). Important aspects of transla-
tionese have been identified in the linguistic lit-
erature (Toury, 1980; Baker et al., 1993; Teich,
2012; Volansky et al., 2013), including source lan-

guage interference, over-adherence to target lan-
guage, simplification, explicitation, and implicita-
tion. Translationese may manifest itself at lexi-
cal, syntactic, semantic, and discourse-related lev-
els of linguistic description. While translationese
signals are subtle (especially for professional hu-
man translation), corpus-based linguistic methods
(Baker et al., 1993) and machine learning based
classification methods (Volansky et al., 2013; Ra-
binovich and Wintner, 2015; Rubino et al., 2016;
Pylypenko et al., 2021) are able to reliably dis-
tinguish between original and translated texts in
the same language, genre, and style. While basic
research focuses on identifying and categorizing
aspects of translationese, research has also shown
that translationese clearly impacts practical cross-
lingual tasks that involve translated data (Singh
et al., 2019; Zhang and Toral, 2019; Clark et al.,
2020; Artetxe et al., 2020). Finally, translationese
is sometimes regarded as (one of) the final fron-
tier(s) of high-resource machine translation (Fre-
itag et al., 2020, 2019; Ni et al., 2022).

In this paper, we focus on translationese classifi-
cation (into original O and translated T data) using
machine learning based approaches. Early work
on translationese classification focused on manu-
ally engineered and linguistically inspired sets of
features (n-grams, POS, discrete LM-based fea-
tures etc.), using supervised classification models
such as decision-trees or support vector machines
(SVMs) (Baroni and Bernardini, 2005; Volansky
et al., 2013; Rubino et al., 2016).

More recently, research focused on feature-and-
representation learning neural network methods for
translationese classification (Sominsky and Wint-
ner, 2019; Pylypenko et al., 2021). Pylypenko
et al. (2021) show that BERT-based approaches
outperform handcrafted feature and SVM-based ap-
proaches by a large margin (15-20 accuracy points
absolute). Amponsah-Kaakyire et al. (2022) show
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that this performance difference is due to learned
features (rather than the classifiers).

Using Integrated Gradient (IG) based input attri-
bution methods (Amponsah-Kaakyire et al., 2022)
also show that BERT (Devlin et al., 2019a) some-
times exploits topic differences between O and T
data as spurious correlations with the target classifi-
cation labels (original O and translation T ) as short
cuts, rather than ”true” translationese signals: the
T part of the (Europarl-based) data, translations
from Spanish into German, happens to contain
mentions of Spanish locations while German orig-
inals O tend to mention German location names.
Spurious correlations in the data with target clas-
sification labels may cause ”Clever Hans” behav-
ior (Lapuschkin et al., 2019; Hernández-Orallo,
2019), where the classifier picks up accidental pat-
terns in the data correlated with but otherwise un-
related to the classification target, in the case at
hand, topic/content differences rather than proper
linguistic indicators of translationese.

To the best of our knowledge, to date, we do
not know how to measure spurious correlations
between topic signals in the data and target classifi-
cation labels, such as translationese (O and T ). At
the same time, this is an important question, as an
answer would allow us to better understand to what
extent we can trust a classifier to pick up on in-
formation truly relevant to the target classification
labels, and to which extent a classifier is exploiting
”Clever Hans”, i.e. spurious correlations in the data
with the target labels. This is especially pertinent
with subtle classification targets and challenging
low-resource data settings, as in translationese clas-
sification: translationese data sets tend to be small,
and translationese signals are subtle while compet-
ing with many other signals in the data.

We approach our research question of ”measur-
ing spurious topic correlation in the data with re-
spect to target classification labels” from two op-
posing ends: (i) where we assume no prior knowl-
edge about topics in the data and (ii) where we have
some idea about spurious topic signals in the data.
We refer to (i) as Chasing Unknown Unknowns
(Section 4 below)1 and (ii) as Chasing Known
Unknowns (Section 5 below). For (i) we use unsu-
pervised topic modeling (LDA and BERTopic) and

1Readers may relate this to a 2002 hearing with the then US
Secretary of Defence Donald Rumsfeld. In one scenario we do
not know the topics and their impact, the unknown unknowns;
in the other we have some indication about a spurious topic
but again do not know its impact, the known unknowns.

we develop a measure from first principles that cap-
tures the alignment of (unsupervised) topics with
target classification labels. Based on this we pro-
pose the concept of a ”topic floor” in classification,
akin to the concept of a ”noise floor” in Electronic
Engineering. We show that our alignment-based
measure is the same as purity with respect to target
classes in clustering. Given data, target classifi-
cation labels and unsupervised topic models, our
measure and noise floor provide an upper bound on
how much spurious topic information may account
for target classification labels. For (ii) we use mask-
ing of already identified spurious topic information,
such as location names, in the data and measure
classification accuracy with masked and unmasked
versions of the data, to quantify the impact of the
identified source of spurious correlation.
Our main contributions include the following:

1. We present a measure that, given a data set
and target classification labels, quantifies the
possible impact of unknown spurious topic
information on classification. The measure
is based on aligning unsupervised topics with
the target labels. Based on this we propose the
concept of a ”topic floor” (akin to ”noise floor”
in Electronic Engineering) in classification.

2. We use masking to both quantify and mitigate
known spurious topic information.

3. We present empirical results for topic floor
and masking to quantify ”Clever Hans” in
the translationese data of Amponsah-Kaakyire
et al. (2022). We use IG attribution to show
that in masked settings where known spuri-
ous correlations are mitigated, BERT learns
features closer to proper translationese.

2 Related Work

Puurtinen (2003); Ilisei et al. (2010); Volansky et al.
(2013); Rabinovich and Wintner (2015); Rubino
et al. (2016); Pylypenko et al. (2021) train clas-
sifiers to distinguish between originally authored
and translated data. Many of them explore hand-
crafted and linguistically inspired feature sets, man-
ual feature engineering, and a variety of classifiers
including Decision Trees and Support Vector Ma-
chines (SVMs) and use feature ranking or attribu-
tion methods to reason back to particular dimen-
sions of translationese and their importance in the
data and classification results. Feature engineering
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based translationese classification used SVM fea-
ture weights (Avner et al., 2016; Pylypenko et al.,
2021), decision trees or random forests (Ilisei et al.,
2010; Rubino et al., 2016), training separate clas-
sifiers for each individual feature (or feature sets)
and comparing accuracies (Volansky et al., 2013;
Avner et al., 2016), to explain results.

More recent research uses feature and represen-
tation learning approaches (sometimes augmented
with hand-crafted features) based on neural net-
works (Sominsky and Wintner, 2019; Pylypenko
et al., 2021). Pylypenko et al. (2021) shows that fea-
ture learning based approaches (e.g. a pretrained
BERT based classifier) outperform hand-crafted
and feature engineering based approaches (SVM)
by as much as 15 to 20 percentage points absolute
in classification accuracy. Amponsah-Kaakyire
et al. (2022) show that the difference in classifi-
cation accuracy is due to feature learning rather
than the classifiers, and, using Integrated Gradients
(IGs) (Sundararajan et al., 2017), provide evidence
that the feature learning methods exploit some spu-
rious correlations with the classification labels in
the data, that are clearly not translationese, but
topic related cues: the data are German originals
O and translations T (into German) from Span-
ish, and Spanish place names are highly IG-ranked,
given the trained classifiers.

Dutta Chowdhury et al. (2022) use divergence
from isomorphism based graph distance measures
to show that translationese is visible even in O
and T word embedding spaces. While POS fea-
tures have been used in feature-engineering-based
translationese classification, some experiments in
(Dutta Chowdhury et al., 2022) use POS (instead
of the surface words) to mitigate possible topic in-
fluences on the graph divergence results. This is
an approach we develop further (e.g. in terms of
partial masking using NEs) in our work below.

3 Data

Our experiments use the monolingual German
dataset from the Multilingual Parallel Direct Eu-
roparl (MPDE) corpus (Amponsah-Kaakyire et al.,
2021) consisting of 42k paragraphs, with half of
the paragraphs German (DE) originals (below we
call this O) and the other half translations (below
we call this T ) from Spanish (ES) to German. The
average length (in terms of tokens) per training
example is 80. Like all of MPDE, the DE-ES sub-
set contains only data from before 2004, since for

post-2004 data, it may not be known whether or
not the source language SL is already the result of
a translation (Bogaert, 2011). While this limits the
amount of data, it ensures that the O and T data are
clearly identifiable and ”pure” O or T . Both O and
T are German, but T is German translated from
Spanish, and both coming from MPDE ensure that
they are the same Europarl genre and style.

4 Chasing Unknown Unknowns

In this section, we assume that we have no prior
information about topics and their distribution in
the data. Because of this, we use unsupervised
topic modeling. We develop a measure that checks
whether, and if so to what extent, the topics estab-
lished in this fashion align with the target classes
O and T in our data. The measure quantifies to
which extent topic is a giveaway for translationese.

4.1 How to Measure Topic Bias Relevant to
Translationese Classification?

The goal is to investigate the amount and distribu-
tion of topic signal in O and T data, that could be
used as a spurious signal in translationese (i.e. O
and T ) classification. As initially we do not know
anything about possible topics and their distribu-
tion in the data, we use standard approaches to
unsupervised topic modeling, like Latent Dirichlet
Allocation (LDA) (Blei et al., 2001) and BERTopic
(Grootendorst, 2022). Both LDA and BERTopic
will cluster our data into classes, i.e. topics. How
can we measure whether the topics established by
the topic model are potentially relevant to transla-
tionese classification? Topics are relevant to O and
T translationese classification if the paragraphs in
each of the topics are either mostly O paragraphs
or if they are mostly T paragraphs, in other words
if topics are well aligned to either O or T . If this is
the case, a translationese classifier may learn to use
topic, rather than proper translationese signals (or
a mix of both) in translationese classification. To
give a simple (and extreme) example, suppose we
take the union2 of O and T and cluster the union
using LDA into, say, two topics (classes) top1 and
top2. If (and this is the extreme case) top1 = O and
top2 = T (or vice versa, i.e. top1 = T and top2 = O),
then topic perfectly predicts O and T . We would
like our measure to capture this, and we would like
the measure to be symmetric, i.e. give the same

2As O and T paragraphs are disjoint, this is the same as
their concatenation.
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result no matter whether top1 = O and top2 = T or
vice-versa. Now consider another (extreme) case:
lets say top1 is half O and half T , with top2 the
same but with the other halfs of O and T . In this
case topic is not able to distinguish between O and
T (beyond chance). What about cases in between
the two extreme cases? Lets say, top1 is 3/4 O and
1/4 T , and therefore top2 is 1/4 O and 3/4 T (or
vice versa - swap top1 and top2). In this case topics
top1 and top2 are pretty good indicators of O and
T , and a translationese classifier may pick up on
topic signals rather than just translationese proper.

To design a measure that captures the relevance
of topic classes to (binary) translationese classi-
fication, we need our measure to be symmetric,
generalize to more than 2 topic classes, and fac-
tor in possible O and T class imbalance. To keep
things simple3, here we present a straightforward
and easy to use measure we call alignment of topic
topi with O and T , denoted

alignO,T (topi) (1)

with the majority class O or T covered by topi
(whatever it is for a given topi) given the benefit of
the doubt as the ”correct” translationese class. We
assume that Data = O∪T , O∩T = ∅,

⋃n
i=1 topi =

Data and
⋃

i ̸=j topi ∩ topj = ∅, i.e. topic partitions
our data, as does O and T . With this

alignO,T (topi) =
max(|topi ∩O|, |topi ∩ T |)

|topi|
(2)

max(·, ·) makes the measure symmetric. Given
alignO,T (topi), the weighted average is simply:

avg alignO,T (tops) =
n∑

i=1

wi × alignO,T (topi)

(3)
where a weight wi = |topi|/|Data| is just the pro-
portion of paragraphs in topic topi divided by the
total number of paragraphs in the data.

It is easy to see that the definition generalizes
to n topic classes top1 to topn, that it adapts to
different topi topic sizes as well as the class im-
balance between O and T 4. alignO,T (topi) ∈ [0.5,

3We could design an entropy-based measure of the dis-
tribution of topic classes with respect to O and T , factor in
classification probabilities of LDA etc.

4To see this, note that as O, T partition the data and as⋃
topi also partition the data, if, let us say, O ≪ T and for

some topi = O, then there is nothing of O left to any of the
other topj ̸=i. Note that in our data we have |O| ≈ |T |).

1] where alignO,T (topi) = 1 signals perfect align-
ment of topic topi with one of O or T , and that
alignO,T (topi) = 0.5 signals that topi is maximally
undecided with respect to O and T . And the same
for avg alignO,T (top).

Our alignment-based measure5 is in fact the
same as cluster purity (Zhao and Karypis, 2001)
defined as

1

M

∑
clu∈Cluster

max
cla∈Class

(clu ∩ cla) (4)

where M is the size of the data, Cluster and
Class the set of clusters and classes, respectively.
With this we have

avg alignClass(Cluster)

=
∑

clu∈Cluster

wclu × alignClass(clu)

=
∑

clu∈Cluster

|clu|
M

× maxcla∈Class(clu ∩ cla)

|clu|

=
1

M

∑
clu∈Cluster

max
cla∈Class

(clu ∩ cla) (5)

4.2 Experiments
We use LDA (Blei et al., 2001) as our main unsu-
pervised topic model, as it provides a standard and
well-understood baseline6. LDA makes two key
assumptions: (1) documents are a mixture of topics,
and (2) topics are a mixture of words. LDA gener-
ates a document-term matrix (DTM), where each
document is represented by a row and the terms
(words) corresponding to each document are repre-
sented by the columns. The DTM is decomposed
into a document-topic matrix and a topic-word ma-
trix. LDA assigns every word to a latent topic (topi)
through iteration, computing a topic word distri-
bution (θ) in the data. To build this distribution,
LDA uses two parameters: α which controls the
per-document topic distribution, and β (the Dirich-
let parameter) which controls the per-topic word
distribution. LDA requires us to specify the num-
ber of topics n in advance. In our experiments we
explore n over three orders of magnitude, roughly
doubling n at each step, starting with n = 2 and
going up to n = 500.

5One of our reviewers suggested we compare our measure
to existing cluster quality measures.

6We use the Gensim (Rehurek and Sojka, 2011) implemen-
tation of Mallet LDA (McCallum, 2002).
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As LDA requires us to specify n in advance, we
also use BERTopic (Grootendorst, 2022), which
can find an optimal n given the data7. By default,
BERTopic utilizes contextual sentence embed-
dings (SBERT), dimensionality reduction (UMAP),
clustering (HDBSCAN), tokenizing (CountVec-
torizer), and a weighing scheme (c-TFIDF) to
perform topic modeling. We choose the embed-
ding model ’T-Systems-onsite/cross-en-de-roberta-
sentence-transformer’ from Huggingface (Wolf
et al., 2020) and the defaults for all other modules.

For LDA, we explore a number of topics n
with n = 2, 5, 10, 20, 30, 50, 100, 200, 300, 400
and 500, over three orders of magnitude. BERTopic
returns 207 topics8.

For each document (here paragraph), we use
the highest probability LDA or BERTopic topic as-
signed to the document to label the document. A
topic is then represented by the set of documents
labeled with the topic. For each topic topi, we com-
pute how well the topic is aligned with O and T , i.e.
we compute alignO,T (topi), and the weighted aver-
age over the topics: avg alignO,T (top1, ..., topn).

4.3 Results
We plot avg alignO,T (top1, ..., topn) in Fig. 1,
varying n from 2 to 500, at each step roughly dou-
bling n for LDA, and with n = 207 for and as
determined by BERTopic. An average alignment
of 0.5 (the dashed green line) shows topics maxi-
mally undecided with respect to O and T , while a
score of 1 indicates perfect alignment where top-
ics completely predict O and T . Fig. 1 shows
topic alignment with O and T in the range of 0.55
to 0.62, depending on n, with BERTopic achiev-
ing the overall highest score of 0.62 at n = 207.
For LDA, scores are highest (0.611 - 0.618) for
n = 10, 20, and 30. For good choices of topic
numbers n, both LDA and BERTopic topics are
able to predict O and T (i.e. translationese) by
close to 0.62.

4.4 Discussion and Interpretation: the ”Topic
Floor” in Classification

This is an interesting and perhaps somewhat sur-
prising result, but what exactly does it mean? There
are two important caveats:

7We partly do this as a sanity check to assess whether our
steps increasing n across three orders of magnitude for LDA
missed an important region of number of topics.

8BERTopic is stochastic due to UMAP and returns a dif-
ferent number of topics for each run, however, the differences
are small.

First, the fact that topic is able to predict O and
T by close to 0.62 in the data does not necessarily
mean (i.e. prove) that a high-performance BERT
translationese classifier, such as the one presented
in (Pylypenko et al., 2021), necessarily uses spuri-
ous topic information aligned with O and T in the
data. At the same time, however, it cannot be ruled
out. As a sanity check we tested how well a BERT
classifier can learn to predict LDA topic classes for
n = 2, 10, 20 and 30 and for BERTopic’s 207. The
results are 0.83, 0.64, 0.42, 0.44 and 0.57 (all acc.
and well above the largest class baseline). Given
how well BERT-based classifiers can pick up pat-
terns in the data, it is prudent to assume that BERT
will be sensitive to and use topic signals spuriously
aligned with O and T .

Second, we cannot at this stage completely rule
out (other than perhaps through laborious manual
inspection) that some LDA or BERTopic topics
may in fact reflect genuine rather than spurious
signals. LDA, e.g., uses lexical information, and
perhaps some such information is a genuine trans-
lationese signal (unlike the place names clearly
identified as a spurious topic signal in (Amponsah-
Kaakyire et al., 2022)), such as e.g. certain forms
of verbs (see Section 5 on the Known Unknowns).

The two caveats are aspects of the ”unknown
unknowns” we are chasing in this part of the paper.
We have a clear indication that topic aligns with
and hence can predict O and T in our data up to
0.62. There are very good reasons (but no proof)
to assume that it is likely that a high-performance
BERT classifier may use this, while we cannot
completely rule out that some of the supposedly
spurious topic signal may actually be genuine trans-
lationese. Given this, 0.62 is an upper bound of
how well topic may predict O and T in our data.
We may be well advised to take inspiration from
the concept of a ”noise floor” in Electronic Engi-
neering. The noise floor is the hum and hiss (of a
circuit) due to the components when there is no sig-
nal, and below which we cannot identify a signal.
Given our findings, perhaps we should regard the
0.62 topic alignment with O and T in our data as a
”topic floor” for translationese classification. This
is in fact the recommendation we take from our
work: instead of using 0.5 as a random baseline for
our (roughly) balanced binary translationese data
set, we should require 0.62 as established by the
topic alignment experiments as a safe(r) baseline.
Put differently, given our data we cannot really be
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Figure 1: Average Topic - Target Classification Align-
ment avg alignO,T (top1, ..., topn) for LDA and Bertopic

sure about O and T classification results ≤ 0.62.
Suffice it to say, even with a 0.62 baseline, (most
of) the classifiers presented in (Pylypenko et al.,
2021; Amponsah-Kaakyire et al., 2022) easily sur-
pass that baseline (with acc ≥ 0.9).

5 Chasing Known Unknowns

In this section, we assume that we have some
knowledge about spurious topics in our data and
that we want to both quantify and mitigate this spu-
rious topic information in translationese classifica-
tion. The difference in classification accuracy be-
tween a classifier that has access and one that does
not have access to spurious topic information quan-
tifies the impact of the spurious topic information
in question. Using IG, Amponsah-Kaakyire et al.
(2022) show that high-performance BERT-based
classifiers use location names (Spanish names in
the T , and German names in the O data) in the
classification, clearly not a proper translationese
but a spurious topic signal. Similarly, named enti-
ties (NEs) are often highly ranked in LDA topics.
Therefore, the most straightforward approach to-
wards mitigating specific spurious topic informa-
tion in translationese classification is identifying
NEs and masking them in the data.

5.1 Named Entity Recognition on Europarl
We focus on a scenario where we identify (and
later mask) NEs automatically, rather than man-
ually. While automatic NER is noisy, unlike po-
tentially high-quality manual NER, it scales and
constitutes a realistic application scenario. To as-
sess NER performance, we experiment with a num-
ber of SOTA NER models, namely SpaCy (Hon-
nibal and Montani, 2017), FLERT (Schweter and
Akbik, 2020), multilingual-BERT (Devlin et al.,

NER model Precision Recall F1-score
SpaCy 0.26 0.56 0.35
FLERT 0.39 0.35 0.37
mBERT-large 0.33 0.31 0.32
XLM-R-base 0.20 0.33 0.25
XLM-R-large 0.19 0.31 0.24
DistilBERT-large 0.34 0.31 0.32
BERT-German 0.65 0.42 0.52

Table 1: Comparison table for NER models on the gold
standard dataset from (Agerri et al., 2018)

2019b), XLM-RoBERTa (Conneau et al., 2020),
DistilBERT (Sanh et al., 2019), and BERT-German
(Chan et al., 2020), comparing F1, precision and
recall for each of the models against a gold stan-
dard NE tagged dataset (Agerri et al., 2018). The
gold standard consists of 800 sentences from the
Europarl German data manually annotated follow-
ing the ConLL 2002 (Tjong Kim Sang, 2002) and
2003 (Tjong Kim Sang and De Meulder, 2003)
guidelines, with a total of 433 named entities.

Table 1 shows that BERT-German (a fine-tuned
version of bert-base-multilingual-cased on the Ger-
man WikiANN dataset) has the highest precision,
second-highest recall and the highest F1 (0.52)
among all the NER models. Hence, we choose
BERT-German for all our NER experiments.

5.2 Translationese Classification

To quantify the impact of NE-based spurious topic
information on translationese classification, we
modify our data by masking NEs (Section 5.2.1),
and, in a separate experiment, we explore full mask-
ing of the data using POS (Section 5.2.2).

Following (Pylypenko et al., 2021), we use mul-
tilingual BERT (Devlin et al., 2019b) (BERT-base-
multilingual-uncased) and fine-tune BERT on the
training set of our data set using the Huggingface
library. We use a batch size of 16, a learning rate of
4 ·10−5, and the Adam optimizer with ϵ = 1 ·10−8.

We compare our models with the BERT model
reproduced from (Pylypenko et al., 2021): a pre-
trained BERT-base model (12 layers, 768 hidden
dimensions, 12 attention heads) fine-tuned on trans-
lationese classification using unmasked data.

5.2.1 Named Entity Masking
We use Bert-German to replace NEs with one
of three course-grained NE-type tags: [LOC],
[PER], and [ORG]. For example, the unmasked
string ”John will go to Berlin.” is NE masked as
”[PER] will go to [LOC]”. In our train-dev-test
sets, we have 202036, 42072, and 43489 NEs.
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We carry out experiments with four train-test con-
figurations: masked-masked, unmasked-masked,
masked-unmasked, and the original unmasked-
unmasked. For each of these configurations, we
fine-tune BERT to the specifics of the training set
(i.e. masked or unmasked). We supply the three
NE-type tags as special additional tokens to the
BERT tokenizer to ensure that they are consistently
represented by their NE-type token (and that no
sub-word splitting is applied to NE-type tokens). If
NEs are responsible for spurious topic information
in translationese classification, we expect masking
NEs to mitigate spurious correlations in the data
and to result in reduced translationese classification
accuracies, allowing us to quantify this aspect of
spurious topic correlations.

5.2.2 Part-Of-Speech (POS) Full Masking
To analyze BERT’s performance on fully delex-
icalized data, we use the finer POS tagger from
SpaCy (Honnibal and Montani, 2017) which uti-
lizes the TIGER Treebank (Brants et al., 2004)9.
Given: ”Jetzt solle erneut ein Antrag gestellt wer-
den .”, the POS tag sequence is: ”ADV VMFIN
ADJD ART NN VVPP VAINF $.”. We pre-
train BERT on POS-tagged data from 3% of the
German Wikipedia dump (1.5 million sentences)
on the BertforMaskedLM objective for 2 epochs.
We use BertWordPieceTokenizer for tokenization.
To adjust the BERT model to the small vocab-
ulary, we use only 6 encoder layers (instead of
12), a learning rate of 5.10−6, and the Adam op-
timizer with ϵ = 1.10−8. We use the POS-pre-
trained model and fine-tune it with the POS-tagged
monolingual German dataset from the MPDE cor-
pus (Amponsah-Kaakyire et al., 2021) (same fine-
tuning parameters as other experiments).

5.3 Integrated Gradients (IG)

Amponsah-Kaakyire et al. (2022) use IG attribution
scores to show that BERT utilizes spurious correla-
tions in the data, for example, German T data trans-
lated from Spanish contain mentions of Spanish
geographical areas, such as ’Spanien’, ’Barcelona’
etc. as top tokens identified by IG. Here we use
IG on BERT trained on masked data, and compute
the top tokens with the highest attribution scores
on average across the masked test sets. We also
compute the top POS tags by performing IG on

9https://github.com/explosion/spaCy/
blob/master/spacy/glossary.py (last accessed 11
Aug, 2023)

BERT trained on fully POS-tagged data.

5.4 Results

Train-Test Test Set Acc (%) 95% CI
m-m 0.89±0.00 [0.88,0.89]
m-u 0.89±0.00 [0.89,0.90]
u-m 0.90±0.00 [0.90,0.91]
u-u 0.92±0.00 [0.91,0.93]

Table 2: NE masked experiments pretrained-BERT-ft
Acc(uracy); CI(Conf. Interval); m(asked), u(nmasked).

Test Set Acc (%) 95% CI
0.78 ± 0.00 [0.77, 0.79]

Table 3: POS-masked experiments POS BERT fine-
tuned with TIGER Treebank tags, Acc(uracy); CI(Conf.
Interval)

Translationese Original
Token AAS Token AAS

1 besuchte 0.61 • 0.83
2 entdeckte 0.60 alpen 0.69
3 veroffentlichte 0.53 apo 0.66
4 gehorten 0.51 profits 0.63
5 fuhrte 0.47 ##nova 0.59
6 nominal 0.46 super 0.49
7 benutzt 0.46 ##bud 0.48
8 tari 0.45 ##ndus 0.46
9 starb 0.44 ##enland 0.46
10 eman 0.43 ##hutte 0.45
11 loste 0.39 digitale 0.45
12 planeten 0.39 ros 0.45
13 geboren 0.38 population 0.43
14 veroffentlichten 0.38 pla 0.43
15 neige 0.37 express 0.42
16 schrieb 0.37 ##vagen 0.40
17 priester 0.36 stahl 0.40
18 scheiterte 0.36 ez 0.40
19 genus 0.35 stands 0.40
20 territorium 0.35 ##nog 0.39

Table 4: Top-20 tokens with highest IG average attribu-
tion score (AAS) for the NE-masked test set.

5.4.1 Results NE Masking
Table 2 shows test set accuracies for the NE mask-
ing experiments outlined in Section 5.2.1. We use
Bootstrap Resampling, with 100 samples and 95%
confidence intervals. Results (u-u against all oth-
ers) are statistically significant. Consistent with
expectation, under all training-test data conditions,
masking NE-related information lowers classifica-
tion results. Compared to the (Amponsah-Kaakyire
et al., 2021) unmasked-unmasked baseline, the per-
formance drop is between 0.026-0.032 points ab-
solute. In absolute terms, the performance drop
incurred in mitigating spurious topic information

https://github.com/explosion/spaCy/blob/master/spacy/glossary.py
https://github.com/explosion/spaCy/blob/master/spacy/glossary.py
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Translationese Original
Token AAS Token AAS

1 APPO (ADP) 0.32 ADV (ADV) 0.21
2 PRELS (PRON) 0.19 . (PUNCT) 0.12
3 KOUI (SCONJ) 0.15 TRUNC (X) 0.06
4 PPOSAT (DET) 0.14 ADJD (ADJ) 0.05
5 PRELAT (DET) 0.12 FM (X) 0.04
6 PIS (PRON) 0.12 PROAV (ADV) 0.03
7 PPER (PRON) 0.11 PDS (PRON) 0.03
8 PDAT (DET) 0.11 VVIZU (VERB) 0.02
9 VVFIN (VERB) 0.11 PTKANT (PART) 0.02
10 VMFIN (VERB) 0.10 PTKZU (PART) 0.01

Table 5: Top-10 tokens with highest IG average at-
tribution score (AAS) for the POS-tagged test set
(TIGER Treebank tags). Corresponding UPOS tags
are given in braces. We use the conversion ta-
ble from https://universaldependencies.org/

tagset-conversion/de-stts-uposf.html (last
accessed 11 Aug, 2023).

in terms of NEs masking is visible but small, in the
order of 3 to 4 % points absolute, if classification
accuracy is expressed as % points. This indicates
that this type of spurious topic information and the
ensuing ”Clever Hans” is a small part of the strong
BERT translationese classification performance.

5.4.2 Results Full POS Masking
Table 3 shows that translationese classification re-
sults on fully de-lexicalized POS-masked data are
much lower than for NE-masked data10. In this
regime, BERT is missing much valuable informa-
tion. At the same time, the classification accuracy
of almost 0.78 shows that BERT is able to pick
up on morpho-syntactic aspects of translationese.
We also performed an analogous experiment with
Universal POS tags (see Appendix, section A.3),
and obtained accuracy of almost 0.77.

5.4.3 Integrated Gradients NE and POS
Table 4 shows the top-20 IG token attributions for
O and T data in the masked-masked condition. Un-
like (Amponsah-Kaakyire et al., 2022) the ”trans-
lationese” column does not show any Spanish or
other place names. At the same time the ”original”
column still contains a few location tokens (or pos-
sible subwords of location tokens), such as ”alpen”,
”##enland”, ”ez” (as in (Amponsah-Kaakyire et al.,
2022)), confirming the fact that automatic NER is
not perfect (see P, R and F1 scores in Table 1).

It is interesting to note that hand-in-hand with
the reduction of spurious NE-based cues, many of
the observations from (Amponsah-Kaakyire et al.,

10For fully PoS-masked data it does not make sense to
report mixed train-test conditions.

2022) are confirmed and in fact come to the fore.
In the T class we observe an even stronger pres-
ence of verbs in Präteritum form (this time not only
regular, but also irregular verbs), which Amponsah-
Kaakyire et al. (2022) link to the fact that trans-
lators might have preferred to use a more written
style while translating the transcribed speeches.

Table 5 presents the top-10 IG attributed tokens
for the POS-tagged test set, for BERT trained on
POS-tagged data. Interestingly, the top tags are
APPO (postpositions) for the translationese class T ,
and ADV (adverbs) for the originals class O, which
confirms findings in (Pylypenko et al., 2021) who
show that relative frequencies of adverbs and adpo-
sitions are among the highest-ranked features that
correlate with predictions of various translationese
classification architectures, including BERT (even
though their experiment is performed in the mul-
tilingual setting, and not on just German data like
ours). They also show that the ratio of determin-
ers is an important feature, and we see many tags
corresponding to this category in our list: PPOSAT
(attributive possessive pronouns), PRELAT (attribu-
tive relative pronouns), PDAT (attributive demon-
strative pronouns), etc. The results for UPOS tags
are similar (see Appendix, section A.3).

6 Conclusion

We present a measure that, given a data set and
target classification labels, quantifies the possible
impact of unknown spurious topic information on
classification. The measure is based on aligning
unsupervised topics with target labels and is equiv-
alent to purity in clustering. We propose the con-
cept of a ”topic floor” (akin to ”noise floor”) as an
upper bound of the impact of spurious topic infor-
mation on classification in classification. We use
masking to quantify and mitigate known spurious
topic information. We present empirical results for
topic floor and masking to quantify ”Clever Hans”
in the translationese data of (Amponsah-Kaakyire
et al., 2022). We use IG attribution to show that
in masked settings where known spurious correla-
tions are mitigated, BERT learns features closer to
proper translationese.
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German’s next language model. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 6788–6796, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. TyDi QA: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454–470.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019a. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019b. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Koel Dutta Chowdhury, Rricha Jalota, Cristina España-
Bonet, and Josef Genabith. 2022. Towards debias-
ing translation artifacts. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3983–3991, Seattle,
United States. Association for Computational Lin-
guistics.

Markus Freitag, Isaac Caswell, and Scott Roy. 2019.
APE at scale and its implications on MT evaluation
biases. In Proceedings of the Fourth Conference on
Machine Translation (Volume 1: Research Papers),
pages 34–44, Florence, Italy. Association for Com-
putational Linguistics.

Markus Freitag, David Grangier, and Isaac Caswell.
2020. BLEU might be guilty but references are not
innocent. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 61–71, Online. Association for
Computational Linguistics.

https://www.aclweb.org/anthology/L18-1557
https://www.aclweb.org/anthology/L18-1557
https://aclanthology.org/2021.motra-1.1
https://aclanthology.org/2021.motra-1.1
https://aclanthology.org/2022.blackboxnlp-1.23
https://aclanthology.org/2022.blackboxnlp-1.23
https://aclanthology.org/2022.blackboxnlp-1.23
https://doi.org/10.18653/v1/2020.emnlp-main.618
https://doi.org/10.1093/llc/fqi039
https://doi.org/10.1093/llc/fqi039
https://doi.org/10.1093/llc/fqi039
https://doi.org/10.1093/llc/fqi039
https://proceedings.neurips.cc/paper/2001/file/296472c9542ad4d4788d543508116cbc-Paper.pdf
https://doi.org/10.18653/v1/2020.coling-main.598
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.naacl-main.292
https://doi.org/10.18653/v1/2022.naacl-main.292
https://doi.org/10.18653/v1/W19-5204
https://doi.org/10.18653/v1/W19-5204
https://doi.org/10.18653/v1/2020.emnlp-main.5
https://doi.org/10.18653/v1/2020.emnlp-main.5


205

Martin Gellerstam. 1986. Translationese in swedish
novels translated from english. Translation studies
in Scandinavia, 1:88–95.

Maarten Grootendorst. 2022. Bertopic: Neural topic
modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794.
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A Appendices

A.1 Topics by LDA and Bertopic
Here we take a closer look at LDA and Bertopic
topics. While we do not find much evidence
for geographic LDA topics, we do find quite
a few geographic BERTtopic topics, for exam-
ple, Topic 10 consists of word tokens ”türkei,
türkischen, türkische, kriterien, helsinki, daß, poli-
tischen, kurdischen, menschenrechte, die”, Topic
14: ”palästinensischen, israel, arafat, israelis-
chen, palästinensische, sharon, autonomiebehörde,
palästinenser, frieden, israels”, Topic 23: ”kuba,
kubanischen, kubaner, kubas, kubanische, dissiden-
ten, volk, castro, cotonou, havanna” predominantly
consist of geographical terms.

A.2 Topic Classification
To understand if BERT is able to learn the top-
ics identified by the topic modeling experiments,
we perform topic classification by finetuning pre-
trained-BERT on the topics found by LDA and
BERTopic.

We use a similar ratio for each topic as the
train:dev:test (29580:6336:6344) ratio for the
translationse classification experiments.

n Test Set Acc
(%)

95% CI Baseline
Acc

2 0.832±0.00 [0.83,0.84] 0.50
10 0.636±0.01 [0.62,0.64] 0.18
20 0.417±0.00 [0.41,0.42] 0.13
30 0.442±0.00 [0.44,0.45] 0.11
207 (BT) 0.569±0.00 [0.56,0.57] 0.002

Table 6: Topic Classification experiments pretrained-
BERT-ft Acc(uracy); n(umber of topics), CI(Conf. In-
terval), BT (BERTopic).

Table 6 shows the topic classification results for
the topics output by LDA and BERTopic. We also
show baseline accuracies, when the model only
predicts the largest class.

A.3 Full UPOS Masking
Apart from full masking with detailed tags from
the TIGER Treebank, we also explore full masking
with the more general Universal POS tags. BERT
was pre-trained and fine-tuned on the POS-tagged
data in the same way as described in section 5.2.2
for the TIGER tags. The translationese classifica-
tion accuracy (Table 7) is slightly lower than for
the detailed tags (Table 3).

Test Set Acc (%) 95% CI
0.768 ± 0.00 [0.76, 0.77]

Table 7: POS-masked experiments POS BERT fine-
tuned with UPOS tags, Acc(uracy); CI(Conf. Interval)

IG results (Table 8) show patterns similar to
those for the detailed tags (Table 5): PRON, DET
and SCONJ for translationese; X, ADV, PART and
ADJ for originals.

Translationese Original
Token AAS Token AAS

1 PRON 0.12 X 0.31
2 PUNCT 0.08 ADV 0.16
3 CCONJ 0.07 PART 0.07
4 DET 0.06 AUX 0.05
5 SCONJ 0.04 VERB 0.03
6 NOUN 0.02 NUM 0.02
7 PROPN 0.02
8 ADJ 0.02
9 NOUN 0.02

Table 8: Top-10 tokens with highest IG average attri-
bution score (AAS) for the POS-tagged test set (UPOS
tags).
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