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Abstract

The paper introduces a cross-lingual speaker
identification system for Indian languages, util-
ising a Long Short-Term Memory dense neu-
ral network (LSTM-DNN). The system was
trained on audio recordings in English and eval-
uated on data from Hindi, Kannada, Malay-
alam, Tamil, and Telugu, with a view to how
factors such as phonetic similarity and native
accent affect performance. The model was
fed with MFCC (mel-frequency cepstral co-
efficient) features extracted from the audio
file. For comparison, the corresponding mel-
spectrogram images were also used as input
to a ResNet-50 model, while the raw audio
was used to train a Siamese network. The
LSTM-DNN model outperformed the other two
models as well as two more traditional base-
line speaker identification models, showing that
deep learning models are superior to probabilis-
tic models for capturing low-level speech fea-
tures and learning speaker characteristics.

1 Introduction

Ascertaining the identities of the writers and speak-
ers are important tasks in language and speech pro-
cessing. The vocabulary a person uses as well
as the ways a person writes and talks can give
us information about their identity or their back-
ground. Furthermore, people’s voices are unique
identifiers, just like their retinas and fingerprints,
making speaker recognition (the task of recognis-
ing the voice of a speaker based on audio input)
applicable to building human-to-machine interac-
tion and biometric solutions such as voice assis-
tants, voice-controlled services, and speech-based
authentication products (Beigi, 2011). There are
two basic speaker recognition tasks:

(i) Speaker Verification: confirm the identity of
a speaker.

(ii) Speaker Identification: identify a voice in a
set of speakers.

Speaker recognition can be monolingual as well as
cross-lingual (Sale et al., 2018). For monolingual
tasks, the same language is used to both train and
test models. In cross-lingual speaker recognition,
a model is trained on one language, e.g., English,
and tested on a different language, e.g., Arabic.

In a multilingual country like India, with more
than 120 languages having tens of thousands of
speakers and some 50 languages having official sta-
tus at national or regional level, most citizens speak
several languages fluently. Due to this plethora
of multilingual speakers, it is not feasible to train
a speaker recognition model in one language and
re-train the model in a new language. Therefore,
the development of cross-language speaker recog-
nition models has become a salient task. Intu-
itively, language mismatch in training and test lan-
guage should not be a problem, since a person’s
vocal traits have nothing to do with what they
are saying, but in general, the performance of a
speaker recognition system still degrades when a
model is trained on one language and verification
is done on another (Li et al., 2017b). Probabilis-
tic models like Gaussian Mixture Model (GMM;
Reynolds and Rose, 1995) and Gaussian Mix-
ture Model-Universal Background Model (GMM-
UBM; Reynolds et al., 2000) have traditionally
been used for speaker recognition; however, in re-
cent years deep learning-based approaches have
outperformed probabilistic-based ones for both
speaker identification and speaker verification.
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This paper reports on research conducted on five
Indian languages: Hindi, Kannada, Malayalam,
Telugu, and Tamil. English was used as the train-
ing language for the models. Previous research
has shown that extracting features from the audio
signal and using them as input to the model will
produce much better performance than directly con-
sidering raw audio signal as input. Here raw audio,
mel-frequency cepstral coefficients (MFCCs; Dave,
2013), and spectrogram images were utilised as in-
put. The impact of language mismatch, the number
of speakers, and the duration of utterances were
studied while comparing the performances of the
three input methods.

The rest of the paper is structured as follows:
Section 2 describes related work in the domain,
while Section 3 presents the methodology and pro-
posed neural network architecture. Experimental
results are discussed in Section 4 and further anal-
ysed in Section 5, while Section 6 concludes the
observations.

2 Related Work

Cross-lingual speaker recognition has been in focus
for researchers for some time because of the abun-
dance of bilingual speakers in the world. Ma and
Meng (2004) studied the enrollment-test mismatch
and found that it caused significant performance
degradation for speaker recognition. Auckenthaler
et al. (2001) investigated the mismatch between
training and operation, within a GMM-UBM archi-
tecture, finding considerable performance degra-
dation if the speech data used to train the Uni-
versal Background Model and the data used to
validate/test speakers were in different languages.
Misra and Hansen (2014) drew similar conclusions
when utilizing a model based on i-vectors (Dehak
et al., 2010), an intermediate vector representation
between Gaussian Mixture Models and MFCC.

Several Deep Neural Network (DNN) models
have been proposed for the speaker recognition
task, with Li et al. (2017b) arguing that the reason
for performance degradation in the cross-lingual en-
vironment is the use of probabilistic-based models—
as in all the above-mentioned methods—and show-
ing considerable improvement when using a DNN
model. Heigold et al. (2016) proposed a text-
dependent speaker verification architecture utilis-
ing an LSTM to extract d-vectors, i.e., embeddings
over the averaged activation from the network’s
last hidden layer, with Deep Speaker by Li et al.

(2017a) showing better results than i-vector based
methods.

Snyder et al. (2018) introduced the concept of x-
vector embeddings, a model based on a Time-Delay
Deep Neural Network architecture that computes
speaker embeddings from variable-length acoustic
segments. The network consists of layers that oper-
ate on speech frames, a statistics pooling layer that
aggregates over the frame-level representations, ad-
ditional layers that operate at the segment level,
and finally a softmax output layer. The embed-
dings are extracted after the statistics pooling lay-
ers. Koluguri et al. (2020) described SpeakerNet,
an architecture using an x-vector-based statistics
pooling layer to map variable-length utterances to
a fixed-length embedding. Novoselov et al. (2022)
presented a transformer-based speaker recognition
system using wav2vec 2.0 (Baevski et al., 2020).

This paper broadly discusses two main ap-
proaches to feature extraction: (i) MFCC-based
and (ii) Spectrogram-based. Due to its computa-
tional simplicity and robustness to multicollinear-
ity, MFCC is the most popular feature extraction
technique among researchers. MFCC yields un-
correlated features which are favorable for linear
models like support vector machines (SVM) and
Gaussian mixture models. In the MFCC-based ap-
proach, filter banks are designed in a manner to
operate in a similar way to the human auditory fre-
quency perception. Many fusions of MFCC-based
features have been studied. Combining two differ-
ent sets of features from MFCCs and Perceptual
Linear Predictive Coefficients (PLPC) using ensem-
ble classifiers in conjunction with principal compo-
nent transformation can significantly improve the
performance of MFCC-GMM speaker recognition
systems (Bose et al., 2017). Combining MFCC fea-
tures with Residual Phase Cepstrum Coefficients
(RPCC) also offers significant overall improvement
to the robustness and accuracy of speaker identifi-
cation tasks (Bo et al., 2014). Ma et al. (2016) used
MFCC incorporated into a histogram transform
feature for text-independent speaker identification.

Spectrogram images as a feature for convolu-
tional neural network (CNN) models have also
been explored (Bunrit et al., 2019; Kadyrov et al.,
2021), by extracting spectrogram images from au-
dio files and feeding them to a CNN. The network’s
performance improved significantly when there
were short utterances and a moderate amount of
audio files present per speaker.
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Speakers Utterances
Language Male Female Total Male Female Total

Hindi 21 8 29 959 395 1354
Kannada 12 6 18 591 263 854
Malayalam 14 6 20 608 289 897
Tamil 14 14 28 604 607 1211
Telugu 15 10 25 639 533 1172

English 76 44 120 4351 1321 5672

Table 1: Gender wise distribution of speakers

3 Methodology

The National Institute of Technology Karnataka’s
speaker profiling dataset (NISP; Kalluri et al.,
2021) was used for the experiments. It contains
recordings of some 4–5 minutes each of speakers
talking in both English and their mother tongues.
The corpus includes Hindi, which is an Indo-Aryan
language, together with four Dravidian languages:
Kannada, Malayalam, Tamil, and Telugu. The text
prompts used for the recordings were presented
in two different sessions to the speakers, in their
native language and in English, respectively. The
data was sampled at 44.1 kHz with a bitrate of 16
bits per sample. Each speaker’s data consists of 30
to 40 audio files in .wav format.

A subset of the original NISP dataset was used
to train the models, due to limitations of available
computing resources. The dataset statistics are sum-
marised in Table 1. The total number of utterances
is 5,488 in the native languages and 5,672 in En-
glish. Overall, there are 76 male speakers and 44
female speakers, in the age group of 18 to 45.

3.1 Feature Extraction
The goal of feature extraction is to transform an
input waveform into a sequence of feature vectors
that can be fed to a machine-learning model. Each
feature vector represents information correspond-
ing to a small time window in a signal. Two feature
extraction methods were used, spectrogram images
and mel-frequency cepstral coefficients (MFCC).

A spectrogram is a visual representation of a
signal’s strength, as it varies over time at different
frequencies. It is basically a three-dimensional
graph, where the x-axis represents time, the y-axis
represents frequency, and the colour or intensity of
the graph at each point represents the magnitude or
power of the signal at that frequency and time. A
spectrogram image represents the level of energy

Figure 1: Mel-spectrogram obtained from an audio file

from light to dark. In case the colour is white or
nearly white, there is little or no energy. Conversely,
if there is a lot of energy, the colour is black colour
or nearly black. A mel-spectrogram is obtained
by converting a spectrogram to a mel scale. The
Python library Librosa was used to extract the mel-
spectrogram for each audio file and save it as .png
files. An example of the mel-spectrogram image
obtained from an audio file is shown in Figure 1.
Spectrograms were obtained using a sample rate
of 22,050 times/second and an FFT (Fast Fourier
Transform) window size of 2,048 samples.

Mel-frequency cepstral coefficients (MFCC) is
the most common feature extraction technique. It is
based on the idea of cepstrum (Bogert et al., 1963),
which is the inverse FT of the logarithm of the esti-
mated signal spectrum. Five steps are involved in
deriving MFCC: (i) pre-emphasis, which boosts the
amount of energy in high frequencies, since there is
more energy at lower frequencies than at higher in
spectrum voice segments like vowels; (ii) window-
ing, which slices the audio waveform into smaller
sliding frame windows, assuming the signal in each
frame to be stationary; (iii) Discrete Fourier Trans-
form (DFT) is used to extract spectral information
(magnitude and phase) from a windowed signal;
(iv) mel filter and log, with a set of filters convert-
ing the DFT spectrum to a mel-cepstrum and taking
the natural logarithm of each mel-cepstrum value;
and (v) inverse discrete Fourier transform, which
computes the cepstrum as the inverse DFT of the
logarithm of the signal spectrum.

For the experiments, 40 MFCC features were
extracted using the Librosa library for music and
audio analysis. The number of 40 MFCC features
extracted for each audio file is a typical value used
in speech-processing applications. This is because
40 MFCC features provide a good balance between
capturing relevant information and reducing the di-
mensionality of the data. The function allows for
customisation of the number of MFCC features to
extract, as well as other parameters such as the sam-
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(a) LSTM dense neural network architecture (b) Siamese network for few-shot learning

Figure 2: Model architectures

pling rate and window size. The MFCC features
were extracted frame by frame, with each frame
representing a short segment of the audio signal.
The frames were then averaged across the different
frames for each audio file to obtain a single set of
40 MFCC features for each file.

3.2 Model Architectures
Five different machine learners were evaluated on
the cross-lingual speaker identification task. An
SVM classifier trained with the 40-dimensional
MFCC features was included as a baseline and a
GMM-UBM architecture trained on the same fea-
tures was added for comparison since those two
approaches have traditionally been the go-to solu-
tions for speaker identification.

For the main experimental architecture, the
MFCC features were used as input to a Long Short-
Term Memory-based dense neural network (LSTM-
DNN) model, as shown in Figure 2a. The archi-
tecture was implemented using Keras and trained
on Google Colab, with categorical cross entropy
as a loss function and compiled using the Adam
optimizer with a 0.001 learning rate. The network
has two LSTM layers with 64 units each and a re-
current dropout of 0.2; the output of the last LSTM
layer feeds into the first dense layer. Three dense
layers are utilised with 512, 256, and 128 units,
respectively, and ReLU (Rectified Linear Unit) ac-

tivation functions. A dropout layer is added after
each dense layer with a dropout rate of 0.2. Finally,
a softmax layer denotes the number of speakers
used for training. The model was trained for 500
epochs with batch sizes of 32 for all datasets.

For comparison, experiments were also carried
out with a few-shot learning approach to speaker
identification using a Siamese network architec-
ture, shown in Figure 2b. The network consists of
two identical encoder modules built with convo-
lution blocks. At the end of the encoder block,
a dense layer with 64 units is utilised to get a
64-dimensional embedding of speaker input. Eu-
clidean distance is used to calculate the distance be-
tween two embeddings and create a 1-dimensional
vector that is then passed to the sigmoid function.

Six audio files were sampled for each speaker
to create a dataset of similar pairs with label 1
and dissimilar pairs with label 0. During train-
ing, the pair of raw audio inputs were fed into two
different encoder blocks. In the first phase, the
Siamese model was trained for 50 epochs using
batch size 32 and Adam optimizer with a 0.001
learning rate. In the second phase, the training
inputs were passed through one encoder block to
get the 64-dimensional embeddings, and a softmax
function was applied on top of it to output speaker
identity. The single encoder block was trained with
softmax output for 50 epochs.
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Language GMM-UBM SVM LSTM-DNN Siamese ResNet-50

Hindi 80.34 89.32 95.17 93.83 96.67
Kannada 88.41 97.11 98.27 97.89 92.51
Malayalam 49.92 68.12 76.81 80.59 72.75
Tamil 81.39 89.20 95.47 94.68 77.70
Telugu 81.23 93.43 95.50 96.79 94.95

(a) Five speakers per language

Language GMM-UBM SVM LSTM-DNN Siamese ResNet-50

Hindi 76.34 85.31 90.07 78.68 91.76
Kannada 79.55 89.26 91.32 81.52 87.15
Malayalam 38.85 61.96 68.94 65.36 70.48
Tamil 73.90 80.40 83.12 73.56 69.50
Telugu 72.81 83.67 84.09 72.45 84.10

(b) All speakers for each language

Language GMM-UBM SVM LSTM-DNN Siamese ResNet-50

Hindi 92.06 94.70 98.51 92.01 98.67
Kannada 91.05 95.37 98.15 90.04 95.01
Malayalam 92.46 95.93 97.67 90.82 98.26
Tamil 89.10 92.80 95.10 91.30 96.04
Telugu 91.95 94.41 96.65 89.35 94.30

(c) Model performance when evaluated in the same language

Table 2: Model accuracies across all languages

As a fifth and final architectural alternative, the
ResNet-50 (He et al., 2016) model was trained on
mel-spectrogram feature input, again using Google
Colab. A dense layer with 256 neurons was added
on top of the ResNet-50 model, with a softmax
layer as output. The model was trained for 300–400
epochs, the Adam optimizer was employed with
exponential learning rate decay, and categorical
cross-entropy was selected as the loss function.

4 Results and Discussion

The results of the experiments are summarised in
Table 2, with accuracy as the performance metric.
English was used as the training language for all
speakers and the trained models were validated on
the speakers’ native languages. All models were
first tested using only five speakers and then on
the complete 120-speaker dataset (i.e., with the
number of speakers per language as given in the
fourth column of Table 1). In addition to the cross-
lingual experiments, performance was evaluated
also for the mono-lingual case, that is, with the
models being trained and evaluated on the same
language, on the complete dataset.

The cross-lingual experiments with only five
speakers per language (Table 2a) show the few-
shot learning-based Siamese network using raw

audio input performing better than the ResNet-50
model. However, the limitations of the few-shot
learning approach can be observed when the num-
ber of speakers is increased; its accuracy drops
significantly on all languages when all speakers are
included and the Siamese network then performs
worse than even the SVM model (Table 2b).

In general, we can notice that the speaker iden-
tification accuracy drops for all models when the
number of speakers is increased. This means that
as the number of speakers in the dataset increases,
it becomes more difficult for the models to accu-
rately identify individual speakers. The variations
in accuracy over the five languages show the effect
of the native accent of speakers and the phonetic
similarity (Bradlow et al., 2010) between training
and test languages. The native accent of speakers
refers to the way in which they pronounce words
and phrases based on their regional or cultural back-
ground. The phonetic similarity between languages
refers to the degree to which the sounds and pro-
nunciation of words in one language are similar to
those in another language.

The learning curves in Figure 3 show the per-
formance of the model during training and testing
across all five languages. Table 2b shows the accu-
racy of the model on the test data for each language,
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(a) Hindi (b) Kannada (c) Malayalam

(d) Tamil (e) Telugu

Figure 3: Training (blue) and test (orange) learning curves for the LSTM-DNN model

with the poor results for Malayalam most likely
due to the overfitting which can be observed in the
Malayalam learning curve (Figure 3c). Overall,
the learning curves provide insight into the perfor-
mance of the model during training and testing and
can help identify issues such as overfitting that may
affect the model’s performance on new data.

Table 2c presents the performance of models
when trained and evaluated on the same language,
with a 97.67% accuracy of the LSTM-DNN model
when both trained and tested using Malayalam. Per-
formance degradation can in general be observed
when systems are evaluated in cross-lingual envi-
ronments (Sirsa and Redford, 2013), but the high
Malayalam degradation indicates the impact of lan-
guage mismatch and the speakers’ native accents.

Table 3 summarises the model setups and gives
their average accuracy performance figures for all

Model Feature extraction Accuracy

GMM-UBM MFCC 68.29
SVM MFCC 80.12
Siamese Raw audio 74.31
ResNet-50 Mel-spectrograms 80.59
LSTM-DNN MFCC 83.51

Table 3: Summary of all the models

speakers, over all five languages. As can be seen,
the LSTM-DNN model outperforms the GMM-
UBM and SVM systems traditionally used for
speaker identification, as well as both the Siamese
network and the ResNet-50 model.

The average speaker identification accuracy for
the ResNet-50 model could have been improved by
providing more spectrogram images for training.
However, as can be seen in Table 2b, for Hindi
and Malayalam the ResNet-50 model outperforms
the LSTM-DNN and equals it for Telugu when
the number of speakers is maximised. CNN-based
models rely heavily on the number of images avail-
able for training, but in a real-world scenario, it is
not feasible to get thousands of speech utterances
for an individual speaker.

5 Ablation Study

To evaluate the LSTM-DNN model, several param-
eter variations were tested, analysing changes in
one parameter at the time, while keeping the other
parameters constant.

Four groups of ablations were examined. First,
different feature extraction techniques. Second,
to explore the effects of regularization in LSTM
layers, recurring dropout rates were set to none, 0.2,
and 0.5, respectively. Third, the impact of reducing
the number of LSTM layers. Finally, the learning
rates, with two constant learning rates of 0.001 and
0.0001, and an exponential schedule with an initial
rate of 0.01 and a decay rate of 0.9.
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Ablation Hindi Kannada Malayalam Tamil Telugu

Raw audio 67.43 59.11 56.90 67.99 69.56
MFCC 90.07 91.32 68.94 83.12 84.09

Recurrent dropout
none 88.41 87.50 63.96 78.64 82.05

0.2 90.07 91.32 68.94 83.12 84.09
0.5 84.29 84.25 59.29 74.83 73.09

LSTM
layers

1 84.68 84.31 63.68 82.16 79.99
2 90.07 91.32 68.94 83.12 84.09

Learning
rate

0.001 90.07 91.32 68.94 83.12 84.09
0.0001 88.87 90.09 70.53 85.02 82.19

exp 88.47 88.05 65.23 84.64 76.04

Table 4: Feature ablation for the LSTM-DNN model

As the accuracy results in Table 4 show, em-
ploying MFCC features as inputs, as opposed to
raw audio, considerably enhanced performance. It
is crucial to select an adequate recurrent dropout
rate since the performance was negatively impacted
by setting it too high. Performance was improved
by using more dense LSTM layers, although this
comes with a higher computational cost.

6 Conclusion

An LSTM dense neural network model for cross-
lingual speaker identification is proposed in this
work. The model was trained using speaker record-
ings in English and cross-lingual speaker identi-
fication was performed on five Indian languages:
Hindi, Kannada, Malayalam, Tamil, and Telugu.

There was a clear variation in speaker identifica-
tion accuracy across the different languages. Since
English was used for training for all speakers, the
variation in accuracy is arguably due to variations
in phonetic features of the native test languages,
as well as any phonetic similarity between those
languages and English.

The average classification accuracy on the test
data for the LSTM-DNN method was 83.51%, with
68.29% for GMM-UBM, and 80.12% for SVM,
with those three learners trained using MFCC
(mel-frequency cepstral coefficient) features. A
Siamese network using raw audio input reached
74.31% accuracy and a ResNet-50 trained on mel-
spectrograms 80.59% accuracy. The LSTM-DNN
model thus yielded better average accuracy than the
other models, showing the efficiency of an LSTM-
DNN trained using MFCC features input under the
constraint of limited data.

The Siamese network few-shot learning ap-
proach using simple raw audio input is good when
there are few speakers but fails to generalise over a
significant number of speakers. A complex CNN-
based model with spectrogram inputs like ResNet-
50 gives better results than MFCC feature extrac-
tion when there are sufficient images available to
train the model; however, the scarcity of image data
is a bottleneck for that approach. Finally, the tradi-
tional probabilistic GMM-UBM performed worst
of all models in the cross-lingual environment.

While this research focused on speaker identi-
fication, the work can also be used as a spring-
board to develop more advanced frameworks like
x-vectors for Indian languages and apply the meth-
ods to the speaker verification problem.

The models developed can furthermore be
utilised in isolation or together with text-based fea-
ture extractors for similar digital forensic tasks such
as author profiling or native language identification,
i.e., to recognize a person’s L1 (native language)
based on text and speech produced in a foreign
language (L2).
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