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Abstract

We present a method for analyzing char-
acter errors for use with character-based,
end-to-end ASR systems, as used herein
for investigating dialectal speech. As end-
to-end systems are able to produce novel
spellings, there exists a possibility that the
spelling variants produced by these sys-
tems can capture phonological informa-
tion beyond the intended target word. We
therefore first introduce a way of guaran-
teeing that similar words and characters
are paired during alignment, thus ensur-
ing that any resulting analysis of character
errors is founded on sound substitutions.
Then, from such a careful character align-
ment, we find trends in system-generated
spellings that align with known phono-
logical features of Norwegian dialects, in
particular, “r” and “I” confusability and
voiceless stop lenition. Through this anal-
ysis, we demonstrate that cues from acous-
tic dialectal features can influence the out-
put of an end-to-end ASR systems.

1 Introduction

Automatic Speech Recognition (ASR) has, like all
machine learning tasks, struggled with generaliza-
tion. That is, a model will perform well on the
task and data it was trained on but when presented
with new examples, especially examples that dif-
fer in some dimension from the training data, the
model will perform markedly less well. In the
task of ASR, this means that models often struggle
with generating correct transcriptions for speakers
whose age, gender, or dialect differs from that of
the speakers on which the model was originally
trained. Of specific focus in this paper is the im-
pact of dialect on a modern ASR system.

Dialect information has been used in different
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ways in ASR. In some applications, such as Di-
alect Identification (DID), the goal is to correctly
identify the dialect for a given sample of speech.
Héamildinen et al. (2021), for example, used a
combination of speech and text features to per-
form DID. In other cases, DID is combined with
ASR systems to improve transcription accuracy.
For example, Zhang and Hansen (2018) used bot-
tleneck features extracted via unsupervised deep
learning to perform DID for both Chinese and
Arabic. Similarly, Imaizumi et al. (2022) used a
multitask model for both DID and ASR. This mul-
titask approach outperformed the single task sys-
tems on both DID and ASR.

Beyond DID, the behavior of ASR systems has
been analyzed with respect to dialectal speech (as
we do in this paper). This in order to explore pho-
netic phenomena, as well as to gain insights into
the way those complex systems work. In these
studies, even when dialectal information is not an
explicit target, there is still an interest to under-
stand what phonetic and dialectal information has
been captured in ASR models. With traditional
ASR models, this investigation has been fairly
straightforward as these models have consisted of
three semi-independent components: the acoustic
model, the language model, and the lexicon. Be-
cause of the separate acoustic models within these
multi-component models, one could, for example,
perform clustering on the model parameters them-
selves such as (Salvi, 2003a,b, 2005). In this work,
Salvi performed clustering on the acoustic model
features and correlated the resulting clusters with
known dialectally realized phonemes. Instead of
directly using an acoustic model from an ASR sys-
tem, Chen et al. (2014) adapted the concept of an
HMM acoustic model to automatically discover
dialect-specific phonetic rules.

Unlike multi-component ASR systems, inves-
tigating modern, end-to-end models for pho-
netic and dialectal information is quite different.
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Whereas parameters from an acoustic model may
be extracted and used independently, the acoustic
information in an end-to-end model cannot be so
easily excised. This design makes it more chal-
lenging, but not impossible, to investigate what
acoustic information is captured where in the net-
work. Belinkov and collaborators used the output
from each layer of an end-to-end system to train
phonetic, grapheme, and articulatory classifiers
(Belinkov and Glass, 2017; Belinkov et al., 2019).
Prasad and Jyothi (2020) investigated dialectal in-
formation captured by an end-to-end system us-
ing not only layer-wise classification but also gra-
dient and information-theoric analysis. All of
these works are focused on analyzing the network-
internal representations detached from actual net-
work output.

The output from ASR models is constrained by
the model architecture. Traditional ASR models
with lexicons are bound to output only words con-
tained within that lexicon. This means that all
transcripts generated by these models contained
only real, known words even if the transcribed out-
put did not necessarily match the word that was
spoken. Additionally, these models do not allow
for acceptable variation in spelling. For example,
the word, “favorite,” would always be spelled “fa-
vorite” never “favourite,” even if the latter might
better reflect the preference of a British English
speaker. Conversely, these newer end-to-end ar-
chitectures, trained using connectionist temporal
classification (CTC) loss, produce output at the
character instead of word level. This permits the
model to create novel words and spellings, poten-
tially better reflecting the phonetic realization of
the spoken word. Given that CTC models are al-
lowed to generate novel spellings, there exists the
potential that dialectal information will be cap-
tured by the model output itself via non-standard
spellings.

The goal of this paper is to investigate whether
dialectal acoustic information can impact spellings
with an end-to-end model. In order to test this, we
used wav2vec 2.0 (Baevski et al., 2020) to gener-
ate transcriptions of Norwegian speech. We then
performed an analysis of the resulting transcripts
for captured dialectal knowledge via a dialectal-
region based evaluation of character error pat-
terns. From this analysis we are able to see
known Norwegian dialectally-based phonological
patterns, specifically around “r” and “I” confus-
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ability and stop consonant voicing. Thus we illus-
trate that strong enough acoustic dialectal cues can
effect the character output of an end-to-end ASR
system.

2 Norwegian language and dialects

In this paper, we focus our analysis on the Nor-
wegian language. Though spoken by a relatively
small population of a little over 5 million speak-
ers, Norwegian contains many dialects differenti-
ated in phonology, syntax, and lexicon. In addi-
tion to dialectal variation, Norwegian also main-
tains two official written standards: Bokmal and
Nynorsk; though neither written standard directly
corresponds with a spoken variant. Furthermore,
Norway does not recognize any official language
standard. Indeed, people are encouraged to use
their preferred written standard and native dialect
in all aspects of work and life.

The variety in dialects stems from Norway’s
challenging and rugged topography that has histor-
ically forced the populace to organize into many,
smaller communities. Over time, the diversity
we see in Norwegian dialects developed in these
small, isolated communities. As described by pho-
neticians, there now exist large dialectal phonetic
variations ranging from infinitive verb endings to
palatalization of consonants, to /r/ and /l/ realiza-
tions, to the various pronunciations for the per-
sonal pronoun for ”I”, jeg —ranging from [jeei] to
[eg] to [i] and more (Skjekkeland, 1997).

While the number of specific Norwegian di-
alects is quite large, we can group these dialects
into larger dialect groups for the purpose of this
investigation. These grouping could be either into
the regional names used by Skjekkeland or into
the even larger, cardinal regions of “East,” ”West,”
”North,” ”South,” and ”Mid.” The analysis out-
lined in this paper relies on these cardinal regions.

3 Methods

3.1 Experimental setup and data

In order to investigate the impact of dialect on an
end-to-end ASR system, a well-performing base-
line model was required. Therefore, we used three
models trained by the Norwegian National Library
Al Lab and released publicly on the Hugging Face



repository for our analysis '23. The first model
contained one billion parameters and was origi-
nally trained on the XLS-R (Babu et al., 2021).
It was then fine tuned using the Norwegian Parlia-
mentary Speech Corpus (NPSC) to transcribe Nor-
wegian Bokmal text. The other two models were
fine tuned from the 300 million parameter VoxRex
model (Malmsten et al., 2022). One of these 300
million parameter models was fine-tuned to tran-
scribe Bokmal, the other Nynorsk. All models
use a 5-gram word-based language model. In all
cases, the NPSC corpus was used to fine-tune the
models (Solberg and Ortiz, 2022). When evalu-
ated against the NPSC corpus, the Norwegian Al
lab reports a word error rate (WER) of 6.33% for
the 1 billion parameter model, 7.03% for the 300
million parameter Bokméal model, and 12.22% for
the Nynorsk model. These results indicate that
these models will make excellent candidates for
our analysis.

As stated earlier, the models to be used were
trained on the NPSC. This consists of record-
ings from the Norwegian Parliament and thus the
speech style can be considered mostly sponta-
neous, with perhaps slightly more planning than
everyday speech. For analysis purposes, the NPSC
was excluded. This is due to data sparsity in the
NPSC test set. While the whole test set is accept-
able for model evaluation, data becomes untenably
sparse when considered dialect-by-dialect. Thus
our analysis focuses on results from two unrelated
and more dialectally robust corpora: Rundkast and
NB Tale.

The Rundkast corpus consists of radio broad-
casts from the Norwegian Broadcasting Corpora-
tion (NRK) (Amdal et al., 2008). These transcripts
are in both Bokmal and Nynorsk which are treated
separately for analysis in this paper. Dialectal an-
notations were added by the transcribers during
corpus creation and are provided directly in the
speaker metadata.

NB Tale is publicly available from the National
Library of Norway’s Language Bank and con-
sist of recordings and transcripts of native and
non-native speakers of Norwegian. All speech
was transcribed using the Bokmal standard. Read

'nttps://huggingface.co/NbAiLab/
nb-wav2vec2-1b-bokmaal

2https://huggingface.co/NbAiLab/
nb-wav2vec2-300m-bokmaal

*https://huggingface.co/NbAiLab/
nb-wav2vec2-300m-nynorsk
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speech was recorded from both the native and non-
native speakers whereas spontaneous speech was
only recorded for the native speakers. For the
analysis in this paper only speech from the native
speakers was used. For each speaker biographical
information was collected, including the munici-
pality in Norway where they lived as a child. From
this municipality, a manual mapping to dialect was
devised. This mapping then allowed us to infer the
speaker’s most likely dialect.

Data was prepared and standardized according
to the scripts provided in the combined data set, as
described by (Solberg et al., 2023). This converted
all audio to a mono, 16kHz format. The text was
normalized such that capitalizations, punctuation,
and hesitations were removed. Additionally, all
non-standard forms were converted into a standard
equivalent.

3.2 Word and character alignment

As our investigation into dialectal impact revolves
around analyzing trends in character errors, we
require an alignment between reference text and
model-generated hypothesis text where words that
only differ by a few characters are prioritized for
alignment. While character error rate (CER) com-
puted across a whole utterance is useful in un-
derstanding an aggregate of character errors, this
method loses awareness of word boundaries. For
example, “ogsa kalt” and “og sakalt” would be
aligned in whole-utterance CER with an insertion
and a deletion of a space (resulting in “og sa kalt”).
However, we prefer an alignment where we recog-
nize that “s&” was removed from the first word and
“sa” as added to the second word. Thus CER, as it
is generally used across entire utterances, does not
answer for our analysis purposes.

With traditional, word-level Levenshtein-based
alignments, word similarity is not considered. Any
pair of words that do not exactly match are treated
as completely different. However, by consider-
ing word similarity, the resulting alignments can
be used for analysis of broad trends of spellings
(e.g., a word ending in “a” instead of “e”) that can
indicate dialectal impact.

To accomplish such an alignment, an extension
to the traditional Levenshtein alignment was de-
veloped (Levenshtein, 1965). Typically edit costs
are fixed at a value before alignment is computed.
However, in our solution instead of a fixed cost
for substitutions, we allow it to be dynamically


https://huggingface.co/NbAiLab/nb-wav2vec2-1b-bokmaal
https://huggingface.co/NbAiLab/nb-wav2vec2-1b-bokmaal
https://huggingface.co/NbAiLab/nb-wav2vec2-300m-bokmaal
https://huggingface.co/NbAiLab/nb-wav2vec2-300m-bokmaal
https://huggingface.co/NbAiLab/nb-wav2vec2-300m-nynorsk
https://huggingface.co/NbAiLab/nb-wav2vec2-300m-nynorsk

computed as the CER between the two candidate
words. This still ensures that there is no cost for
aligning words that are the same while also prefer-
ring substitutions of similarly spelled words.

voiced class mnasal place rounding
“k” 0 0 0 5 0
“g” 1 0 0 5 0
“n” 1 0 1 2 0

Table 1: Example of the vectors for “k”, “g”, and
“n” for Norwegian. Indexes of the vector represent
features and values represent their realization.

height front rounding
[IPei) 2 O 0
¢ ée7 b 1 2 O

Table 2: Example of the vectors for “a”, and “e”
for Norwegian. Indexes of the vector represent
features and values represent their realization.

Once word-level alignment is computed using
the dynamic substitution cost, we can investigate
spelling errors. To ensure characters within a word
are aligned optimally, we continue to use the dy-
namic substitution cost idea and compute the sub-
stitution cost between characters as the Euclidean
distance between two feature vectors. To support
this, articulatory feature vectors were created for
each letter in the Norwegian alphabet using the
International Phonetic Alphabet (IPA) charts as a
guide. Articulatory features were considered as in-
dexes in the vector and the values correspond to
the realization. For our work, consonants (see ex-
amples in Table 1) were defined and treated sepa-
rately from vowels (see examples in Table 2). As
the goal with these vectors is not to create an ac-
curate grapheme-to-phoneme mapping, nor to per-
fectly illustrate all possible IPA nuance, but in-
stead to align letters in a more logical way, these
vectors were sufficient.

To illustrate the necessity of these vectors, con-
sider the word pair of inngang (meaning ‘“‘en-
trance”) and enkel (“easy”). Using a traditional
alignment method #, where all characters substi-
tutions have the same cost, an alignment like in

4Alignment generated using the Python Levenshtein
package: https://github.com/maxbachmann/
python-Levenshtein
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i
e

reference
hypothesis

n
n

n a

k

g g
e 1

Table 3: A possible alignment between inngang
and enkel, generated without accounting for char-
acter similarity.

1
e

reference
hypothesis

n
n

n a

€

g

ng
k 1

Table 4: A possible alignment between inngang
and enkel, generated by accounting for character
similarity.

Table 3 is generated. However, using articulatory
features as a distance, we are able to generate the
alignment in Table 4 where “g” and “k” (only dif-
fering by voicing), “a” and “e” (both being front
vowels), and “n” and “1” (both being sonorants)
are aligned.

While this solution is slightly phonologically
flawed —wholly ignoring the di- and trigraphs that
exist in Norwegian and instead treating the com-
ponent letters individually, for example —these
feature vectors do accomplish the goal of creat-
ing a logical character-level alignment. With con-
fidence in our word and character alignment we
can perform the investigation into character sub-
stitution trends that constitutes our results.

4 Results

4.1 WER by dialect

To first understand the general trend in recognition
across dialects, the WER was calculated for each
dialect across the whole of the Rundkast and NB
Tale corpora. Transcriptions were generated us-
ing both the 300 million and 1 billion parameter
Bokmal models for both corpora. Rundkast was
further transcribed with the 300 million parameter
Nynorsk model (since Rundkast actually contains
Nynorsk utterances, unlike NB Tale).

As displayed in Table 5 that shows WER across
both corpora and dialects, we can see WER values
ranging from the low teens to nearly 40%. These
values are markedly higher than the 6.33% WER
that was reported on the NPSC which highlights
the impact of domain mismatch on ASR; models
trained on one domain (the Norwegian Parliament)
do not generalize well to new domains (radio and
studio recordings).


https://github.com/maxbachmann/python-Levenshtein
https://github.com/maxbachmann/python-Levenshtein

Dataset Dialect Utterances Speakers WER%
1B Bok 300M Bok 300M Ny
Other 5087 120 25.79 26.04 —
West 4064 93 20.34 20.78 —
. Mid 1789 40 18.14 20.02 —
NB Tale —Bokmal utterances North 2760 63 17.89 1854 .
South 591 14 16.86 18.00 —
East 1898 42 16.44 17.15 —
Unknown 199 12 19.54 18.28 38.82
West 7526 176 18.21 16.66 36.28
. Mid 2917 124 17.06 17.35 37.30
Rundkast —Bokmdl utterances 1 ) 2041 153 1638 16.13 35.31
South 1372 56 16.16 15.11 35.67
East 51303 993 13.93 13.35 36.04
South 355 15 31.63 30.46 31.89
Mid 77 1 30.41 29.46 27.89
Rundkast —N K utt West 6024 161 29.35 28.26 23.99
HnEKRAst —=AYNOTSK ULETances — past 2802 34 2827 26.96 20.49
North 13 1 26.43 27.86 18.12
Unknown 3 3 0.00 0.00 0.00

Table 5: WER for Rundkast and NB Tale corpora. Transcribed using the all models. As there is no
Nynorsk text in the NB Tale corpus, we did not evaluate the Nynorsk model. The WER reported for
the models on the NPSC corpus are 6.33% for the 1B model, 7.03% for the 300M Bokmal model, and

12.22% for the 300M Nynorsk model.

For the Bokmal text in both corpora, we can see
that models perform best on the “East” dialect re-
gion whereas the “West” region has the worst per-
formance. It is unclear which model is generally
the best. The 1 billion parameter model performs
better than the 300 million parameter model on the
NB Tale text, but the 300 million parameter model
outperforms the 1 billion on the Rundkast text.

With the Rundkast corpus, we can see that
the Bokmal models perform, as expected, poorly
on the Nynorsk text with the converse (Nynorsk
model evaluated against Bokmal text) being true
as well. However, even when the Nynorsk model
is evaluated against Nynorsk text, the results are
still worse than the Bokmal model of the same size
evaluated against Bokmal text.

Of more concern than model accuracy, how-
ever, is data scarcity for Nynorsk text. Given
that Nynorsk is primarily used in the western part
of Norway, the nearly equal split of speakers be-
tween Bokmal and Nynorsk for the “West” region
is understandable. Moreover, for the other regions
(“North” and “Mid” in particular) there are too few
speakers to draw conclusions from. Therefore, as
we move forward with the character-based analy-
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sis, we will be focusing on the Bokmal models and
their performance on the Bokmal text.

4.2 /r/ and /I/ confusiblity

In Norwegian, /1/ is generally realized as either a
voiced apical tap or a voiced velar approximant
(Kvale and Foldvik, 1992). These two differ-
ent pronunciations are considered dialect features,
with the approximant version predominating in the
“South” and “West” of the country and the tap be-
ing the norm in the rest of country. The maps
in (Kvale and Foldvik, 1999) and (Skjekkeland,
1997) nicely illustrate this distribution.

Similar to the Norwegian /r/, which can be real-
ized in several variants, the Norwegian /1/ also has
dialectally motivated realizations. Many speak-
ers in the “East”, “Mid”, and southern part of the
“North” region of the country produce a voiced
retroflex flap. The norm for speakers in the rest
of the country (“West”, “South”, and the remain-
ing part of the “North”) is a voiced dental/alveolar
lateral (Kvale and Foldvik, 1995).

Understanding these phonetic realizations, we
can anticipate that the tapped [r] and the lateral ap-
proximant [1] should be minimally confusing for



NB Tale

= v
0.67%

(b)

(d)

Rundkast

= -I
0.78% 5o

Figure 1: Instances of “r”” becoming “I”. The first column (a, c) show results on the NB Tale utterances;
second column (b, d) shows results on the Rundkast utterances.The first row (a, b) being results from the
300m model and the second row (c, d) being results from the 1b parameter model.

the model. The former being a brief interruption
in the airflow and the latter being a continuous,
smooth approximant. However, for speakers in
the “East” and “Mid” parts of the country, where
both the tapped [r] and flapped [{] dialect features
are present, we would anticipate a greater degree
of confusion. Both tapped [r] and flapped [{] are
seen as brief closures with acoustic differentiation
relegated to the F3 and F4 trajectories (Kvale and
Foldvik, 1995).

Therefore to evaluate how much of an impact
these potentially similar realizations have on the
model, we used the aligned Bokmal texts (as de-
scribed in Section 3.2) and calculated how fre-
quently “r”” was transcribed instead of “I” and vice
versa. When analyzing instances of “r” transform-
ing into “I”, we only considered instances where
the “r”” did not precede another alveolar consonant

(“t”, “d”, “n”, “1”, “s”). This is due to the fact that
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“r”’, when followed by an alveolar consonant, can
be interpreted as a digraph. In dialect regions with
the alveolar [r], speakers will realize the second
alveolar consonant as a retroflex instead of pro-
nouncing two distinct sounds. That is, “rt” would
be realized as [t]). To ensure these realizations did
not cloud our analysis, we excluded all “r’s fol-
lowed by an alveolar consonant.

The maps in Figures 1 and 2 show the percent-
age of error. That is, for those instances where an
“r” was not transcribed correctly, the maps show
what percentage of those errors were because an
“l” was transcribed instead (Figure 1). And vice
versa for the “1” to “r” transformation (Figure 2).
This error calculation and plotting was done for
each of the cardinal dialect region. Darker colors
represent higher errors. In both figures the first
column (a, ¢) show results on the NB Tale utter-
ances; second column (b, d) shows results on the



NB Tale

:
N/A
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Figure 2: Instances of “1” becoming “r

@

Rundkast

0.0

3.0

6.0

9.0

12.0

|
13.24%
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. The first column (a, ¢) show results on the NB Tale utterances;

second column (b, d) shows results on the Rundkast utterances.The first row (a, b) being results from the
300m model and the second row (c, d) being results from the 1b parameter model.

Rundkast utterances. The first row (a, b) being re-
sults from the 300m model and the second row (c,
d) being results from the 1b parameter model.

For all Figures, except 2(b) and 2(d), the regions
with the most confusability between “r” and “1”
are the “East”, “Mid”, and ‘“North”. Indeed, for all
Figures except 2(d) the “South” has the lowest in-
cidences of “r”” and “1” confusion. By and large we
also see much clearer, more consistent trends with
the NB Tale data. This could be because the ut-
terances in the NB Tale corpora were selected for
phonological coverage and thus there were more
environments for “r”” and “1” confusion.

4.3 Voiceless stop lenition

In addition to /r/ and /l/ confusability, we also in-
vestigated the distribution of voiceless stop con-
sonants. In the “South” region, voiceless stops
tend to lenite to their voiced counterparts in post-
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vocalic environments (Skjekkeland, 1997). Thus,
we would expect [p], [t], and [Kk] to lenite to [b],
[d], and [g] when preceded by a vowel. To un-
derstand if this change is captured by the wav2vec
model, we found instances where a voiceless stop
was changed and then ensured that the change
was to its voiced counterpart. If a voiceless to
voice change occurred, we then ensured that both
the voice and voiceless stops were preceded by
a vowel. We counted occurrences of this post-
vocalic voicing change across all three stops of in-
terest. Results can be see in Figure 3 for the NB
Tale data and Figure 4 for Rundkast. The first col-
umn (a) shows results from the 300m parameter
model, second column (b) shows results from 1b
parameter model. Darker colors represent higher
erTors.

For both the NB Tale and Rundkast corpora we,



300m : 1b

3.01% - # 1.70%

4.0
425% 517% =
£ 4 9.0
5.18% / S N 507%
@ . 6.98% © . 637% 13.0
’ :_: ’ :.: 17.0
i ol
18.71% 18.67% 22.0

Figure 3: Percentage of postvocalic voicing error; that is, instances of (“p”, “t”, “k”) realized as (“b”,
“d”, “g”) as a percentage of total (“p”, “t”, “k”) errors on the NB Tale dataset. First column (a) shows
results from the 300m parameter model, second column (b) from the 1b parameter model

300m 1b

2.55% A 215%
' 2.0
3.64% 2.85%
£ 3.0
~1.39%

@) - 339% 5.0
7 6.0

. ’I
4.94%% 8.0

Figure 4: Percentage of postvocalic voicing error; that is, instances of (“p”, “t”, “k”) realized as (“b”,
“d”, “g”) as a percentage of total (“p”, “t”, “k”) errors on the Rundkast dataset. First column (a) shows
results from the 300m parameter model, second column (b) from the 1b parameter model
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can see that the “South” region has the highest in-
stances of voicing. Though once again, we see
stronger trends in the NB Tale data then in Rund-
kast.

4.4 Personal pronoun jeg

As mentioned when discussing the Norwegian
language in Section 2, there are many ways for
Norwegain speakers to say the first person pro-
noun jeg. This was briefly investigated as well.
Confusion pairs for jeg were aggregated and trends
sought. Regardless, no trends in the words substi-
tuted for jeg in the transcripts could be found. This
lack of results could indicate that a word like jeg
occurs so frequently in all dialects that there is an
abundance of training examples for the model to
generalize from. Or, perhaps, the 5-gram language
model used, in addition to the wav2vec compo-
nent, had enough influence to ensure that only jeg
was produced.

5 Discussion

Due to the fact that we have been able to largely
see acoustic dialectal features surfacing through
our analysis, we find that this method of care-
fully aligning text and aggregating results has
promise. Furthermore, we infer that the mod-
els have learned enough about Norwegian to un-
derstand standard spellings and apply these gen-
eralizations to broader contexts. Additionally,
the phonetic information in the dialects is strong
enough to cause the models to utilize this general
spelling knowledge and create more acoustically
aligned outputs. However, going so far as to say
that the models have internalized some knowledge
about the dialects themselves (e.g., phonetic fea-
tures) is perhaps more than can be reasonably as-
serted from this analysis.

Through this paper we have explored a couple
of known dialectally-motivated phonological re-
alizations. There still, however, exist more that
could be explored. As mentioned in Section 4.2,
there exists a pattern of retroflexting of alveolar
consonants for certain Norwegian dialects. This
analysis could certainly be extended to those en-
vironments. However, there are also phonological
changes that are hard, or potentially impossible to
see in spelling changes. For example, alveolars
are palatalized (most strongly) in the “Mid” region
as well as in certain phonological environments in
the “North” and the northern parts of the “West”
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and “East” regions. This palatalization would be
hard to see in spellings since there is no standard
way in Norwegian orthography of representing a
palatalized sound. Additional Norwegian phono-
logical features that have no written representation
(such as toneme) would also be invisible to the
analysis performed in this paper.

As the NPSC is derived from parliamentary
speeches, the distribution of parliament speakers
emulates the population distribution of the coun-
try. Thus our models, all of which were trained
on NPSC, have the same speaker representation.
That is, the “East” region would be the most rep-
resented in the training data. Given this, and the
results in Table 5, it would seem that the models
have best learnt the features which they saw the
most, as machine learning models are wont to do.
Therefore, if models are to be robust against di-
alects, it seems necessary to increase the training
data for the other regions. Additionally, it might be
possible to assign greater weight to these dialectal
character changes during training to encourage the
models to learn a better representation.

6 Conclusion

Through this paper, we demonstrate how an anal-
ysis of character errors in transcriptions generated
by an end-to-end ASR system can contain dialec-
tal trends mirroring those known through linguis-
tic descriptions. We showed increased confusabil-
ity between “r” and “I” in regions where those
phonemes are realized similarly. We also showed
increased incidences of voiceless stop lenition in
a region known for that phenomena. These errors
indicate that the end-to-end system has success-
fully learnt to spell in Norwegian, going so far so
as to slightly spell in dialect.
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