On the Concept of Resource-Efficiency in NLP

Luise Diirlich*!2

Evangelia Gogoulou

*1,3 Joakim Nivre!?

IRISE Research Institutes of Sweden, Department of Computer Science
2Uppsala University, Department of Linguistics and Philology
3KTH Royal Institute of Technology, Division of Software and Computer Systems

{luise.durlich,

Abstract

Resource-efficiency is a growing concern
in the NLP community. But what are the
resources we care about and why? How do
we measure efficiency in a way that is reli-
able and relevant? And how do we balance
efficiency and other important concerns?
Based on a review of the emerging liter-
ature on the subject, we discuss different
ways of conceptualizing efficiency in terms
of product and cost, using a simple case
study on fine-tuning and knowledge distil-
lation for illustration. We propose a novel
metric of amortized efficiency that is better
suited for life-cycle analysis than existing
metrics.

1 Introduction

Resource-efficiency has recently become a more
prominent concern in the NLP community. The
Association for Computational Linguistics (ACL)
has issued an Efficient NLP Policy Document! and
most conferences now have a special track devoted
to efficient methods in NLP. The major reason for
this increased attention to efficiency can be found
in the perceived negative effects of scaling NLP
models (and AI models more generally) to unprece-
dented sizes, which increases energy consumption
and carbon footprint as well as raises barriers to
participation in NLP research for economic reasons
(Strubell et al., 2019; Schwartz et al., 2020). These
considerations are important and deserve serious
attention, but they are not the only reasons to care
about resource-efficiency. Traditional concerns like
guaranteeing that models can be executed with suf-
ficient speed to enable real-time processing, or with
sufficiently low memory footprint to fit on small
devices, will continue to be important as well.
“Equal contribution to this work.

Uhttps://www.aclweb.org/portal/content/efficient-nlp-
policy-document

evangelia.gogoulou,

135

joakim.nivre}@ri.se

Resource-efficiency is however a complex and
multifaceted problem. First, there are many rele-
vant types of resources, which interact in complex
(and sometimes antagonistic) ways. For example,
adding more computational resources may improve
time efficiency but increase energy consumption.
For some of these resources, obtaining relevant
and reliable measurements can also be a challenge,
especially if the consumption depends on both soft-
ware and hardware properties. Furthermore, the
life-cycle of a typical NLP model can be divided
into different phases, like pre-training, fine-tuning
and (long-term) inference, which often have very
different resource requirements but nevertheless
need to be related to each other in order to obtain a
holistic view of total resource consumption. Since
one and the same (pre-trained) model can be fine-
tuned and deployed in multiple instances, it may
also be necessary to amortize the training cost in
order to arrive at a fair overall assessment.

To do justice to this complexity, we must resist
the temptation to reduce the notion of resource-
efficiency to a single metric or equation. Instead,
we need to develop a conceptual framework that
supports reasoning about the interaction of differ-
ent resources while taking the different phases of
the life-cycle into account. The emerging literature
on the subject shows a growing awareness of this
need, and there are a number of promising propos-
als that address parts of the problem. In this paper,
we review some of these proposals and discuss is-
sues that arise when trying to define and measure
efficiency in relation to NLP models.> We specifi-
cally address the need for a holistic assessment of
efficiency over the entire life-cycle of a model and
propose a novel notion of amortized efficiency. All
notions and metrics are illustrated in a small case
study on fine-tuning and knowledge distillation.

ZMost of the discussion is relevant also to other branches
of Al although some of the examples and metrics discussed
are specific to NLP.

Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 135-145
May 22-24, 2023 (©)2023 Association for Computational Linguistics

2 Related Work

Strubell et al. (2019) were among the first to dis-
cuss the increasing resource requirements in NLP.
They provide estimates of the energy needed to
train a number of popular NLP models, including
T2T (Vaswani et al., 2017), ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019) and GPT2 (Rad-
ford et al., 2019). Based on those estimates, they
also estimate the cost in dollars and the CO2 emis-
sion associated with model training. In addition to
the cost of training a single model, they provide
a case study of the additional (much larger) costs
involved in hyperparameter tuning and model fine-
tuning. Their final recommendations include: (a)
Authors should report training time and sensitiv-
ity to hyperparameters. (b) Academic researchers
need equitable access to computation resources.
(c) Researchers should prioritize computationally
efficient hardware and algorithms.

Schwartz et al. (2020) note that training costs
in Al increased 300,000 times from 2012 to 2017,
with costs doubling every few months, and argue
that focusing only on the attainment of state-of-the-
art accuracy ignores the economic, environmental,
or social cost of reaching the reported accuracy.
They advocate research on Green Al — Al research
that is more environmentally friendly and inclu-
sive than traditional research, which they call Red
Al Specifically, they propose making efficiency a
more common evaluation criterion for Al papers
alongside accuracy and related measures.

Hershcovich et al. (2022) focus specifically on
environmental impact and propose a climate per-
formance model card that can be used with only
limited information about experiments and underly-
ing computer hardware. At a minimum authors are
asked to report (a) whether the model is publicly
available, (b) how much time it takes to train the
final model, (c) how much time was spent on all
experiments (including hyperparameter search), (d)
what the total energy consumption was, and (e) at
which location the computations were performed.
In addition, authors are encouraged to report on the
energy mix at the location and the CO, emission
associated with different phases of model develop-
ment and use.

Liu et al. (2022) propose a new benchmark for
efficient NLP models called ELUE (Efficient Lan-
guage Understanding Evaluation) based on the con-
cept of Pareto state of the art, which a model is said
to achieve if it achieves the best performance at a

given cost level. The cost measures used in ELUE
are number of model parameters and number of
floating point operations (FLOPs), while perfor-
mance measures vary depending on the task (sen-
timent analysis, natural language inference, para-
phrase and textual similarity).

Treviso et al. (2022) provide a survey of current
research on efficient methods for NLP, using a taxo-
nomy based on different aspects or phases of the
model life-cycle: data collection and preprocess-
ing, model design, training (including pre-training
and fine-tuning), inference, and model selection.
Following Schwartz et al. (2020), they define ef-
ficiency as the cost of a model in relation to the
results it produces. They observe that cost can be
measured along multiple dimensions, such as com-
putational, time-wise or environmental cost, and
that using a single cost indicator can be misleading.
They also emphasize the importance of separately
characterizing different stages of the model life-
cycle and acknowledge that properly measuring
efficiency remains a challenge.

Dehghani et al. (2022) elaborate on the theme
of potentially misleading efficiency characteriza-
tions by showing that some of the most commonly
used cost indicators — number of model parame-
ters, FLOPs, and throughput (msec/example) — can
easily contradict each other when used to compare
models and are therefore insufficient as standalone
metrics. They again stress the importance of dis-
tinguishing training cost from inference cost, and
point out that their relative importance may vary
depending on context and use case. For example,
training efficiency is crucial if a model needs to be
retrained often, while inference efficiency may be
critical in embedded applications.

3 The Concept of Efficiency in NLP

Efficiency is commonly defined as the ratio of use-
ful output to total input:?

r=¢ M

where P is the amount of useful output or results,
the product, and C'is the total cost of producing the

results, often defined as the amount of resources
consumed. A process or system can then be said

3Historically, the technical concept of efficiency arose in
engineering in the nineteenth century, in the analysis of engine
performance (thermodynamic efficiency); it was subsequently
adopted in economy and social science by Vilfredo Pareto and
others (Mitcham, 1994).

136

to reach maximum efficiency if a specific desired
result is obtained with the minimal possible amount
of resources, or if the maximum amount of results
is obtained from a given resource. More generally,
maximum efficiency holds when it is not possible
to increase the product without increasing the cost,
nor reduce the cost without reducing the product.

In order to apply this concept of efficiency to
NLP, we first have to decide what counts as useful
output or results — the product P in Equation 1. We
then need to figure out how to measure the cost C
in terms of resources consumed. Finally, we need
to come up with relevant ways of relating P to C
in different contexts of research, development and
deployment, as well as aggregating the results into
a life-cycle analysis. We will begin by discussing
the last question, because it has a bearing on how
we approach the other two.

3.1 The Life-Cycle of an NLP Model

It is natural to divide the life-span of an NLP model
into two phases: development and deployment. In
the development phase, the model is created, op-
timized and validated for use. In the deployment
phase, it is being used to process new text data in
one or more applications. The development phase
of an NLP model today typically includes several
stages of training, some or all of which may be re-
peated multiple times in order to optimize various
hyperparameters, as well as validation on held-out
data to estimate model performance. The deploy-
ment phase is more homogeneous in that it mainly
consists in using the model for inference on new
data, although this may be interrupted by brief de-
velopment phases to keep the model up to date.
As researchers, we naturally tend to focus on
the development of new models and many models
developed in a research context may never enter
the deployment phase at all. Since the development
phase is typically also more computationally in-
tensive than the deployment phase, it is therefore
not surprising that early papers concerned with the
increasing energy consumption of NLP research,
such as Strubell et al. (2019) and Schwartz et al.
(2020), mainly focused on the development phase.
Nevertheless, for models that are actually put to
use in large-scale applications, resources consumed
during the deployment phase may in the long run be
much more important, and efficiency in the deploy-
ment phase is therefore an equally valid concern.
This is also the focus of the recently proposed eval-

137

uation framework ELUE (Liu et al., 2022).

As will be discussed in the following sections,
some proposed efficiency metrics are better suited
for one of the two phases, although they can often
be adapted to the other phase as well. However, the
question is whether there is also a need for metrics
that capture the combined resource usage at devel-
opment and deployment, and how such metrics can
be constructed. One reason for being interested in
combined metrics is that there may be trade-offs
between resources spent during development and
deployment, respectively, so that spending more re-
sources in development may lead to more efficient
deployment (or vice versa). To arrive at a more
holistic assessment of efficiency, we need to define
efficiency metrics for deployment that also incor-
porate development costs. Before we propose such
a metric, we need to discuss how to conceptualize
products and costs of NLP models.

3.2 The Products of an NLP Model

What is the output that we want to produce at the
lowest possible cost in NLP? Is it simply a model
capable of processing natural language (as input
or output or both)? Is it the performance of such
a model on one or more NLP tasks? Or is it the
actual output of such a model when processing
natural language at a certain performance level?
All of these answers are potentially relevant, and
have been considered in the literature, but they give
rise to different notions of efficiency and require
different metrics and measurement procedures.
Regarding the model itself as the product is of
limited interest in most circumstances, since it does
not take performance into account and only makes
sense for the development phase. It is therefore
more common to take model performance, as mea-
sured on some standard benchmark, as a relevant
product quantity, which can be plotted as a function
of some relevant cost to obtain a so-called Pareto
front (with corresponding concepts of Pareto im-
provement and Pareto state of the art), as illustrated
in Figure 1, reproduced from Liu et al. (2022).
One advantage of the product-as-performance
model is that it can be applied to the deployment
phase as well as the development phase, although
the cost measurements are different in the two cases.
For the development phase, we want to measure
the total cost incurred to produce a model with a
given performance, which depends on a multitude
of factors, such as the size of the model, the num-

10 Rbsolute SOTA
Previous Pareto SOTA |

L O New Pareto SOTA |
] None SOTA Models

Performance

Pareto Improvement Pareto Front
Pareto Improvement X ,
P (NOT Significant)
(Significant 1) ;7

2

FLOPs

Figure 1: Pareto front with model performance as
the product and cost measured in FLOPs (Liu et al.,
2022).

ber of hyperparameters that need to be tuned, and
the data efficiency of the learning algorithm. For
the deployment phase, we instead focus on the av-
erage cost of processing a typical input instance,
such as a natural language sentence or a text doc-
ument, independently of the development cost of
the model. Separating the two phases in this way
is perfectly adequate in many circumstances, but
the fact that we measure total cost in one case and
average cost in the other makes it impossible to
combine the measurements into a global life-cycle
analysis. To overcome this limitation, we need a
notion of product that is not defined (only) in terms
of model performance but also considers the actual
output produced by a model.

If we take the product to be the amount of data
processed by a model in the deployment phase,
then we can integrate the development cost in the
efficiency metric as a debt that is amortized dur-
ing deployment. Under this model, the average
cost of processing an input instance is not constant
but decreases over the life-time of a model, which
allows us to capture possible trade-offs between de-
velopment and deployment costs. For example, it
may sometimes be worth investing more resources
into the development phase if this leads to a lower
development cost in the long run. Moreover, this
model allows us to reason about how long a model
needs to be in use to “break even” in this respect.

An important argument against the product-as-
output model is that it is trivial (but uninteresting)
to produce a maximally efficient model that pro-
duces random output. It thus seems that a relevant
life-cycle analysis requires us to incorporate both
model performance and model output into the no-
tion of product. There are two obvious ways to do
this, each with its own advantages and drawbacks.
The first is to stipulate a minimum performance

138

level that a model must reach to be considered
valid and to treat all models reaching this threshold
as ceteris paribus equivalent. The second way is to
use the performance level as a weighting function
when calculating the product of a model. We will
stick to the first and simpler approach in our case
study later, but first we need to discuss the other
quantity in the efficiency equation — the cost.

3.3 The Costs of an NLP Model

Schwartz et al. (2020) propose the following for-
mula for estimating the computational cost of pro-
ducing a result R:

Cost(R)x E-D-H ()
where E is the cost of executing the model on a
single example, D is the size of the training set
(which controls how many times the model is exe-
cuted during a training run), and H is the number of
hyperparameter experiments (which controls how
many times the model is trained during model de-
velopment). How can we understand this in the
light of the previous discussion?

First, it should be noted that this is not an exact
equality. The claim is only that the cost is propor-
tional to the product of factors on the right hand
side, but the exact cost may depend on other factors
that may be hard to control. Depending on what
type of cost is considered — a question that we will
return to below — the estimate may be more or less
exact. Second, the notion of a result is not really
specified, but seems to correspond to our notion of
product and is therefore open to the same variable
interpretations as discussed in the previous section.
Third, as stated above, the formula applies only to
the development phase, where the result/product is
naturally understood as the performance of the final
model. To clarify this, we replace R (for result)
with Pp (for product-as-performance) and add the
subscript T' (for training) to the factors £ and D:

DevCost(Pp) < Ep - Dp - H 3)
Schwartz et al. (2020) go on to observe that a for-
mula appropriate for inference during the deploy-
ment phase can be obtained by simply removing
the factors D and H (and, in our new notation,
changing Er to E} since the cost of processing a
single input instance is typically not the same at
training and inference time):

DepCost(Pp) x Ey 4)

This corresponds to the product-as-performance
model for the deployment phase discussed in the
previous section, based on the average cost of pro-
cessing a typical input instance, and has the same
limitations. It ignores the quantity of data pro-
cessed by a model, and it is insensitive to the initial
investment in terms of development cost. To over-
come the first limitation, we can add back the factor
D, now representing the amount of data processed
during deployment (instead of the amount of train-
ing data), and replace product-as-performance (Pp)
by product-as-output (Pp):

DepCost(Pp) x Er - Dy 5

To overcome the second limitation, we have to add
the development cost to the equation:

DepCost(Pp) < Er - Dy - H + Er- Dy (6)

This allows us to quantify the product and cost as
they develop over the lifetime of a model, and this
is what we propose to call amortized efficiency
based on total deployment cost, treating develop-
ment cost as a debt that is amortized during the
deployment phase. Our notion of amortized effi-
ciency is inspired by the notion of amortized analy-
sis from complexity theory (Tarjan, 1985), which
averages costs over a sequence of operations. Here
we instead average costs over different life-cycle
phases.

As already noted, the product-as-output view is
only meaningful if we also take model performance
into account, either by stipulating a threshold of
minimal acceptable performance or by using per-
formance as a weight function when calculating
the output produced by the model. Note, however,
that we can also use the notion of total deploy-
ment cost to compare the Pareto efficiency of dif-
ferent models at different points of time (under a
product-as-performance model) by computing av-
erage deployment cost in a way that is sensitive to
development cost and lifetime usage of a model.

The discussion so far has focused on how to un-
derstand the notion of efficiency in NLP by relating
different notions of product to an abstract notion of
cost incurred over the different phases of lifetime
of a model. However, as noted in the introduction,
this abstract notion of cost can be instantiated in
many different ways, often in terms of a specific
resource being consumed, and it may be more or
less straightforward to obtain precise measures of
the resource consumption. Before illustrating the

139

different efficiency metrics with some real data, we
will therefore discuss costs and resources that have
been prominent in the recent literature and motivate
the selection of costs included in our case study.

Time and Space The classical notion of efficient
computation from complexity theory is based on
the resources of time and space. Measuring cost
in terms of time and space (or memory) is impor-
tant for time-critical applications and/or memory-
constrained settings, but in this context we are more
interested in execution time and memory consump-
tion than in asymptotic time and space complexity.
For this reason, execution time remains one of the
most often reported cost measures in the literature,
even though it can be hard to compare across exper-
imental settings because it is influenced by factors
such as the underlying hardware, other jobs run-
ning on the same machine, and the number of cores
used (Schwartz et al., 2020). We include execution
time as one of the measured costs in our case study.

Power and CO; Electrical power consumption
and the ensuing CO2 emission are costs that have
been highlighted in the recent literature on resource-
efficient NLP and Al. For example, Strubell et al.
(2019) estimate the total power consumption for
training NLP models based on available informa-
tion about total training time, average power draw
of different hardware components (GPUs, CPUs,
main memory), and average power usage effective-
ness (PUE) for data centers. They also discuss the
corresponding CO5 emission based on information
about average CO5 produced for power consumed
in different countries and for different cloud ser-
vices. Hershcovich et al. (2022) propose that cli-
mate performance model cards for NLP models
should minimally include information about total
energy consumption and location for the computa-
tion, ideally also information about the energy mix
at the location and the CO5 emission associated
with different phases of model development and
use. Against this, Schwartz et al. (2020) observe
that, while both power consumption and carbon
emission are highly relevant costs, they are difficult
to compare across settings because they depend on
hardware and local electricity infrastructure in a
way that may vary over time even at the same loca-
tion. In our case study, we include measurements
of power consumption, but not carbon emission.

Abstract Cost Measures Given the practical dif-
ficulties to obtain exact and comparable measure-

ments of relevant costs like time, power consump-
tion, and carbon emission, several researchers have
advocated more abstract cost measures, which are
easier to obtain and compare across settings while
being sufficiently correlated with other costs that
we care about. One such measure is model size,
often expressed as number of parameters, which is
independent of underlying hardware but correlates
with memory consumption. However, as observed
by Schwartz et al. (2020), since different models
and algorithms make different use of their parame-
ters, model size is not always strongly correlated
with costs like execution time, power consump-
tion, and carbon emission. They therefore advocate
number of floating point operations (FLOPs) as the
best abstract cost measure, arguing that it has the
following advantages compared to other measures:
(a) it directly computes the amount of work done
by the running machine when executing a specific
instance of a model and is thus tied to the amount of
energy consumed; (b) it is agnostic to the hardware
on which the model is run, which facilitates fair
comparison between different approaches; (c) un-
like asymptotic time complexity, it also considers
the amount of work done at each time step. They
acknowledge that it also has limitations, such as
ignoring memory consumption and model imple-
mentation. Using FLOPs to measure computation
cost has emerged as perhaps the most popular ap-
proach in the community, and it has been shown
empirically to correlate well with energy consump-
tion (Axberg, 2022); we therefore include it in our
case study.

Data The amount of data (labeled or unlabeled)
needed to train a given model and/or reach a certain
performance is a relevant cost measure for several
reasons. In Al in general, if we can make models
and algorithms more data-efficient, then they will
ceteris paribus be more time- and energy-efficient.
In NLP specifically, it will in addition benefit low-
resource languages, for which both data and com-
putation are scarce resources.

In conclusion, no single cost metric captures all we
care about, and any single metric can therefore be
misleading on its own. In our case study, we show
how different cost metrics can be combined with
different notions of product to analyze resource-
efficiency for NLP models. We include three of
the most important metrics: execution time, power
consumption, and FLOPs.

4 Case Study

To illustrate the different conceptualizations of
resource-efficiency discussed in previous sections,
we present a case study on developing and deploy-
ing a language model for a specific NLP task using
different combinations of fine-tuning and knowl-
edge distillation. The point of the study is not to
advance the state of the art in resource-efficient
NLP, but to show how different conceptualizations
support the comparison of models of different sizes,
at different performance levels, and with different
development and deployment costs.

4.1 Overall Experimental Design

We apply the Swedish pre-trained language model
KB-BERT (Malmsten et al., 2020) to Named Entity
Recognition (NER), using data from SUCX 3.0
(Sprakbanken, 2022) for fine-tuning and evaluation.
We consider three scenarios:

* Fine-tuning (FT): The standard fine-tuning
approach is followed, with a linear layer added
on top of KB-BERT. The model is trained on
the SUCX 3.0 training set until the validation
loss no longer decreases for up to 10 epochs.

¢ Task-specific distillation (TS): We distill
the fine-tuned KB-BERT model to a 6-layer
BERT student model. The student model
is initialized with the 6 lower layers of the
teacher and then trained on the SUCX 3.0
training set using the teacher predictions on
this set as ground truth.

» Task-agnostic distillation (TA): We distill
KB-BERT to a 6-layer BERT student model
using the task-agnostic distillation objective
proposed by Sanh et al. (2020). Following
their approach, we initialize the student with
every other layer of the teacher and train on
deduplicated Swedish Wikipedia data by ave-
raging three kinds of losses for masked lan-
guage modelling, knowledge distillation and
cosine-distance between student and teacher
hidden states. The student model is subse-
quently fine-tuned on the SUCX 3.0 training
set with the method used in the FT experi-
ment.

All three fine-tuned models are evaluated on the
SUCX 3.0 test set. Model performance is measured
using the F1 score, which is the standard evaluation
metric for NER, and model output in number of

140

Distillation Stage Fine-Tuning Stage Evaluation Stage
Time | Power FLOPs Time | Power FLOPs Time | Power FLOPs| F1
FT — - — 0:35:17] 141.1]2.48x10'6[[0:01:32] 5.2|2.59x10™ | 87.3
TS|l 0:18:30| 77.1[1.64x10'6{[0:35:17| 141.1|2.48x10'6/0:01:09| 3.1|1.71x10'°|[84.9
TA || 13:06:59 | 6848.93.65x 107 ||0:18:53 | 74.4|1.69x 10| 0:01:15 3.3/1.71x 10" || 77.6

Table 1: Performance (F1) and cost measurements (Time: hh:mm:ss, Power: Wh, FLOPs) for different
stages (Distillation, Fine-tuning, Evaluation) and different development scenarios (Fine-tuning: FT, Task-
specific distillation: TS, Task-agnostic distillation: TA).

tokens. We measure three different types of cost
during development and deployment: execution
time, power consumption and FLOPs. Based on
these basic measures, we derive different efficiency
metrics for model comparison, as discussed in Sec-
tion 4.4.

4.2 Setup Details

The TextBrewer framework (Yang et al., 2020)
is used for the distillation experiments, while the
Huggingface Transformers* library is used for fine-
tuning and inference. More information on hyper-
parameters and data set sizes can be found in Ap-
pendix A. All experiments are executed on an
Nvidia DGX-1 server with 8 Tesla V100 SXM2
32GB. In order to get measurements under realistic
conditions, we run different stages in parallel on dif-
ferent GPUs, while blocking other processes from
the system to avoid external interference. Each ex-
perimental stage is repeated 3 times and measure-
ments of execution time and power consumption
are averaged.

The different cost types are measured as follows:

* Execution time: We average the duration of
the individual Python jobs for each experimen-
tal stage.

Power consumption: We measure power con-
sumption for all 4 PSUs of the server as well
as individual GPU power consumption, fol-
lowing Gustafsson et al. (2018). Based on
snapshots of measured effect at individual
points in time, we calculate the area under
the curve to get the power consumption in
Wh. Since we run the task-agnostic distilla-
tion using distributed data parallelism on two

*https://huggingface.co/docs/transformers/index

3Since we repeat stages 3 times for every model instance,
task-specific distillation, fine-tuning of the distilled model,
and evaluation of FT are repeated 9 times, while evaluation of
TS and TA is repeated 27 times.

141

GPUs, we sum the consumption of both GPUs
for each TA run.

FLOPs: We estimate the number of FLOPs
required for each stage using the estimation
formulas proposed by Kaplan et al. (2020),
for training (7) and inference (8):

FLOPr=6-n-N-S-B
FLOP;=2-n-N-S-B

(N
®)

where n is the sequence length, N is the num-
ber of model parameters, S is the number of
training/inference steps, and B is the batch
size. The cost for fine-tuning a model is
given by FLOP7, while the evaluation cost
is FLOP;. For distillation, we need to sum
FLOP7 for the student model and FLOP;
for the teacher model (whose predictions are
used to train the student model).

4.3 Basic Results

Table 1 shows basic measurements of performance
and costs for different scenarios and stages. We see
that the fine-tuned KB-BERT model (FT) reaches
an F1 score of 87.3; task-specific distillation to
a smaller model (TS) gives a score of 84.9, while
fine-tuning after task-agnostic distillation (TA) only
reaches 77.6 in this experiment. When comparing
costs, we see that task-agnostic distillation is by
far the most expensive stage. Compared to task-
specific distillation, the execution time is more than
40 times longer, the power consumption almost 100
times greater, and the number of FLOPs more than
20 times greater. Although the fine-tuning costs are
smaller for the distilled TA model, the reduction
is only about 50% for execution time and power
consumption and about 30% for FLOPs.

We also investigate whether power consumption
can be predicted from the number of FLOPs, as this
is a common argument in the literature for prefer-
ring the simpler FLOPs calculations over the more

Total development cost

87.3 @ 87.3 P g73de
e FT e FT e FT
o TS o TS o TS
e ¥ x TA | g %] x TA | g x TA
Q [L8]
(v} (v} [¥)
c c =
m m m
E E E
[=] [=] o
T © i~
[il] i) [
=8 =% o
77.6 4 X 77.6 - X 7764 X
: T T
0.00 13.43 0 6923 0e+00 4e417
Total Time(h) Total Power(Wh) Total FLOPs
Deployment cost per token
87.3 ° 87.3 ° 87.3 °
FT e T FT
o TS o TS b TS
¥ x ™ ¥ x ™ £ 9 A
[H] u 5
(v} (v} [¥)
[= [= =
m m m
E E E
o o o
T © ©
[il] i) [
=% =% o
77.6 4 X 77.6 1 X 77.6 X
T . T T T T
0e+00 2e-10 3e-10 0e+00 9-07 2e-06 0e+00 5e+08 7e+08
Time(h)/token Power(Wh)/token FLOPs/token

Figure 2: Pareto efficiency for the development phase (top) and the deployment phase (down) based on
three different cost measures: execution time (left), power consumption (center), and FLOPs (right).

involved measurements of actual power consump-
tion. We find an extremely strong and significant
linear correlation between the two costs (Pearson
r = 0.997, p = 0). Our experiments thus corrobo-
rate earlier claims that FLOPs is a convenient cost
measure that correlates well with power consump-
tion (Schwartz et al., 2020; Axberg, 2022). How-
ever, it is worth noting that the GPU power con-
sumption, which is reported in Table 1 and which
can thus be estimated from the FLOPs count, is
only 71.7% of the total power consumption of the
server including all 4 PSUs.

4.4 Measuring and Comparing Efficiency

So how do our three models compare with respect
to resource-efficiency? The answer is that this de-
pends on what concept of efficiency we apply and
which part of the life-cycle we consider. Figure 2
plots product-as-performance as a function of cost
separately for the development phase and the de-
ployment phase, corresponding to Equations (3)
and (4), which allows us to compare Pareto effi-
ciency. Considering only the development phase,
the FT model is clearly optimal, since it has both
the highest performance and the lowest cost of all
models. Considering instead the deployment phase,
the FT model still has the best performance, but the

142

other two models have lower (average) inference
cost. The TA model is still suboptimal, since it
gives lower performance at the same cost as the
TS model.® However, FT and TS are both opti-
mal with respect to Pareto efficiency, since they
are both at the Pareto front given the data we have
so far (meaning that neither is outperformed by a
model at the same cost level nor has higher deploy-
ment cost than any model at the same performance
level). In order to choose between them, we there-
fore have to judge whether a 2.4 point improvement
in F1 score in the long run is worth the increase in
execution time and power consumption, which in
this case amounts to 0.077 nano-seconds and 0.607
micro-watts per token, respectively.

For a more holistic perspective on life-time effi-
ciency, we can switch to a product-as-output model
and plot deployment efficiency as a function of
both the initial development cost and the average
inference cost for processing new data over life-
time, corresponding to Equation (6) and our newly
proposed notion of amortized efficiency. This is
depicted in Figure 3, which compares the FT and

81t is worth noting, however, that the TA model can be
fine-tuned for any number of specific tasks, which could make
it competitive in a more complex scenario where we can dis-
tribute the initial distillation cost over a large number of fine-
tuned models.

Total deployment cost

8.01e+09 4 2.54e+08

— FT
TS

4.00e+09 4 1.27e+08

Output tokens
Output tokens

0.00e+00 + 0.00e+00
T T T

— FT

1.29e+08 4
— FT

TS TS

6.442407 4

Output tokens

0.00e+00 4

0.6 18 31
Total Time(h)

1411

T
332.0 5229 25e+16 7.3e+16 12e+17
Total Power(Wh) Total FLOPs

Figure 3: Amortized efficiency of the deployment phase over lifetime, based on three different cost
measures: execution time (left), power consumption (center), and FLOPs (right).

TS model (disregarding the suboptimal TA model).
We see that, although the FT model has an initial
advantage because it has not incurred the cost for
distillation, the T'S model eventually catches up and
becomes more time-efficient after processing about
4B tokens and more energy-efficient after process-
ing about 127M tokens. It is however important
to keep in mind that this comparison does not take
performance into account, so we again need to de-
cide what increase in cost we are willing to pay
for a given improvement in performance, although
the increase in this case is sensitive to the expected
lifetime of the models. Alternatively, as mentioned
earlier, we could weight the output by performance
level, which in this case would mean that the TS
model would take longer to catch up with the FT
model.

Needless to say, it is often hard to estimate in
advance how long a model will be in use after it
has been deployed, and many models explored in a
research context may never be deployed at all (over
and above the evaluation phase). In this sense,
the notion of life-time efficiency admittedly often
remains hypothetical. However, with the increasing
deployment of NLP models in real applications, we
believe that this perspective on resource-efficiency
will become more important.

5 Conclusion

In this paper, we have discussed the concept of
resource-efficiency in NLP, arguing that it cannot
be reduced to a single definition and that we need
a richer conceptual framework to reason about dif-
ferent aspects of efficiency. As a complement to
the established notion of Pareto efficiency, which
separates development and deployment under a
product-as-performance model, we have proposed

the notion of amortized efficiency, which enables a
life-cycle analysis including both development and
deployment under a product-as-output model. We
have illustrated both notions in a simple case study,
which we hope can serve as inspiration for further
discussions of resource-efficiency in NLP. Future
work should investigate more sophisticated ways
of incorporating performance level into the notion
of amortized efficiency.

Acknowledgments

We would like to thank Jonas Gustafsson and Ste-
fan Alatalo from the ICE data center at RISE for
their help with the experimental setup of the case
study. Our sincere gratitude goes also to Petter
Ky®6sti and Amaru Cuba Gyllensten for their in-
sightful comments during the development of this
work. Finally, we wish to thank the conference
reviewers for their constructive feedback.

References

Tom Axberg. 2022. Deriving a natural language pro-
cessing inference cost model with greenhouse gas
accounting: Towards a sustainable usage of machine
learning. Master’s thesis, KTH Royal Institue of
Technology.

Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish
Vaswani, and Yi Tay. 2022. The efficiency misnomer.
In Proceedings of the Tenth International Conference
on Learning Representations (ICLR).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies.

143

Jonas Gustafsson, Sebastian Fredriksson, Magnus
Nilsson-Miki, Daniel Olsson, Jeffrey Sarkinen, Hen-
rik Niska, Nicolas Seyvet, Tor Bjorn Minde, and
Jonathan Summers. 2018. A demonstration of mon-
itoring and measuring data centers for energy effi-
ciency using opensource tools. In Proceedings of
the Ninth International Conference on Future Energy
Systems, pages 506-512.

Daniel Hershcovich, Nicolas Webersinke, Mathias
Kraus, Julia Anna Bingler, and Markus Leippold.
2022. Towards climate awareness in nlp research.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2480-2494.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arxiv:2011.08361.

Xiangyang Liu, Tianxiang Sun, Junliang He, Jiawen Wu,
Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao,
Xuanjing Huang, and Xipeng Qiu. 2022. Towards
efficient NLP: A standard evaluation and a strong
baseline. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3288-3303.

Martin Malmsten, Love Borjeson, and Chris Haf-
fenden. 2020. Playing with words at the National
Library of Sweden — Making a Swedish BERT.
arXiv:2007.01658.

Carl Mitcham. 1994. Thinking through Technology:
The Path between Engineering and Philosophy. The
University of Chicago Press.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227-2237.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal report, OpenAl.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. DistilBERT, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2020. Green Al. Communications of the
ACM, 63(12):54-63.

Sprakbanken. 2022. SUCX 3.0: Stockholm-Umea cor-
pus 3.0 scrambled. https://spraakbanken.gu.se/en/
resources/sucx3.

144

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645-3650.

Robert Endre Tarjan. 1985. Amortized computational
complexity. SIAM Journal on Algebraic and Discrete
Methods, 6(2):306-318.

Marcos Treviso, Tianchu Ji, Ji-Ung Lee, Betty van Aken,
Qingqging Cao, Manuel R. Ciosici, Michael Hassid,
Kenneth Heafield, Sara Hooker, Pedro H. Martins,
André F. T. Martins, Peter Milder, Colin Raffel, Ed-
win Simpson, Noam Slonim, Niranjan Balasubra-
manian, Leon Derczynski, and Roy Schwartz. 2022.
Efficient methods for natural language processing: A
survey. arXiv:2209.00099.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

Ziqing Yang, Yiming Cui, Zhipeng Chen, Wanxiang
Che, Ting Liu, Shijin Wang, and Guoping Hu. 2020.
TextBrewer: An Open-Source Knowledge Distilla-
tion Toolkit for Natural Language Processing. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics: System Demon-
strations, pages 9—16.

A Experimental Details

A.1 Data Sets

The SUCX 3.0 dataset (simple_lower_mix ver-
sion)’ is used for fine-tuning, task-specific distil-
lation and evaluation. The dataset splits are are
the following: 43126 examples in the training set,
10772 in the validation set and 13504 examples in
the test set.

For task-agnostic distillation, we are using a
deduplicated version of Swedish Wikipedia, with
the following dataset split: 2, 552, 479 sentences in
the training set and 25, 783 sentences in the valida-
tion set.

A.2 Models and Hyperparameters

The base model in our experiments is KB-BERT-
cased.® The hyperparameters used for fine-tuning
and distillation are presented in Table 2. In the
fine-tuning experiments, early stopping is used and
the best performing model in the validation set is
saved. The task-agnostic distillation experiments
are performed on two GPUs, using the distributed

"https://huggingface.co/datasets/KBLab/sucx3_ner
8https://huggingface.co/KB/bert-base-swedish-cased

data parallel functionality of pytorch, while gradi-
ent accumulation steps are set to 2.

FT TS TA|Eval
Batch size 32 32 8| 32
Training epochs 10 2| 0.75 -
Sequence length 256 256| 256| 256
Learning rate [0.00003|0.00005|0.0001| —
Warm-up steps 404 260 3750 -

Table 2: Hyperparameters for FT, TS, TA and Eval.

145

