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Abstract

Large Language Models (LLMs) are capable
of performing zero-shot closed-book question
answering tasks, based on their internal knowl-
edge stored in parameters during pre-training.
However, such internalized knowledge might
be insufficient and incorrect, which could lead
LLMs to generate factually wrong answers.
Furthermore, fine-tuning LLMs to update their
knowledge is expensive. To this end, we pro-
pose to augment the knowledge directly in the
input of LLMs. Specifically, we first retrieve
the relevant facts to the input question from
the knowledge graph based on semantic simi-
larities between the question and its associated
facts. After that, we prepend the retrieved facts
to the input question in the form of the prompt,
which is then forwarded to LLMs to gener-
ate the answer. Our framework, Knowledge-
Augmented language model PromptING (KAP-
ING), requires no model training, thus com-
pletely zero-shot. We validate the performance
of our KAPING framework on the knowledge
graph question answering task, that aims to an-
swer the user’s question based on facts over a
knowledge graph, on which ours outperforms
relevant zero-shot baselines by up to 48% in
average, across multiple LLMs of various sizes.

1 Introduction

Pre-trained Language Models (LMs) (Devlin et al.,
2019; Raffel et al., 2020), which are trained on a
large amount of text corpora with self-supervised
learning, can perform closed-book Question An-
swering (QA) tasks that aim to answer the user’s
question based only on their internal knowledge
in parameters, without using any external knowl-
edge (Petroni et al., 2019; Roberts et al., 2020).
Also, when we increase the LM sizes, Large Lan-
guage Models (LLMs) can generate the answer
for the question without any additional fine-tuning
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[Prompt]
Question: Which member of Black Eyed Peas appeared in Poseidon?
Answer:

(a) Language Model Prompting w/o Knowledge Augmentation

[Generated Answer]
Tariq Ali

[Prompt]
Below are the facts that might be relevant to answer the question:
(Black Eyed Peas, has part, Fergie), (Black Eyed Peas, has part, Kim Hill),
(Poseidon, cast member, Fergie)
Question: Which member of Black Eyed Peas appeared in Poseidon?
Answer:

(b) Knowledge-Augmented Language Model Prompting

[Generated Answer]
Fergie

Knowledge Graph
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Figure 1: (a) For the input question in the prompt, the large
language model, GPT-3 (Brown et al., 2020), can generate
the answer based on its internal knowledge in parameters,
but hallucinates it which is highlighted in yellow. (b) Our
Knowledge-Augmented language model PrompTING (KAP-
ING) framework first retrieves the relevant facts in the knowl-
edge graph from the entities in the question, and then augments
them to the prompt, to generate the factually correct answer.

steps, called LM prompting (Brown et al., 2020;
Liu et al., 2021). However, since the knowledge
in LLMs might be incomplete, incorrect, and out-
dated, they often generate factually wrong answers,
known as hallucination (Rohrbach et al., 2018)
(See Figure 1a). Also, refining the knowledge in
LLMs with parameter updates is costly, especially
when knowledge is constantly changing (e.g., ex-
change rates of money). Lastly, whether LLMs are
fetching the correct knowledge for QA is unclear.

To overcome those limitations, we propose to re-
trieve and inject the relevant knowledge directly as
an input, called a prompt, to LLMs (Figure 1b). As
a knowledge source, we use a Knowledge Graph
(KG) consisting of symbolic knowledge in the form
of a triple: (head entity, relation, tail entity). There-
fore, to extract the relevant facts to the input ques-
tion, we first match entities in the question with
entities in the KG. After that, triples associated to

78



entities in the KG are verbalized (i.e., transforming
the symbolic relational knowledge to the textual
string) and prepended to the input question, which
are then forwarded to LLMs to generate the answer.
Consequently, LLMs conditioned on the factual
knowledge are able to generate the factual answers,
alleviating the hallucination issue, while keeping
LLMs’ parameters unchanged: fine-tuning is not
required for knowledge updates. We refer to our
overall framework as Knowledge-Augmented lan-
guage model PromptING (KAPING), which is
completely zero-shot and can be done with any
off-the-shelf LLMs, without additional training.

While the above scheme looks simple yet effec-
tive, there is a couple of challenges. First, most
retrieved triples associated with the question enti-
ties are unrelated to answer the given question. For
example, when we retrieve the associated triples for
the question entity (e.g., Poseidon) in Figure 1 in
the Wikidata KG (Vrandecic and Krötzsch, 2014),
there exist 60 triples, and most of them (e.g., genre,
publication date, to name a few) are irrelevant to
answer the question. Therefore, they might mis-
lead the model into generating incorrect answers.
On the other hand, the number of triples for the
question entities is occasionally large (e.g., 27%
samples for the WebQSP dataset (Yih et al., 2016)
have more than 1,000 triples), thereby encoding
all triples including unnecessary ones yields high
computational costs, especially on LLMs.

To overcome such challenges, we further pro-
pose to filter out unnecessary triples based on their
semantic similarities to the input question, inspired
by the information retrieval (Bast et al., 2016). To
be specific, we first represent the question and
its associated verbalized triples in the embedding
space. Then, we retrieve the small number of triples
whose embeddings are more close to the input ques-
tion’s embedding than others. By doing so, we can
prepend only the more relevant triples to the given
question, which can effectively prevent LLMs from
generating irrelevant answers with high computa-
tional efficiencies, unlike the one that augments all
triples. Note that, our filtering approach uses off-
the-shelf sentence embedding models (Song et al.,
2020; Hofstätter et al., 2021); thus no additional
training is required in every part of our pipeline.

We then validate our KAPING framework on
Knowledge Graph Question Answering (KGQA)
tasks. The results show that our KAPING signif-
icantly outperforms relevant zero-shot baselines.

Also, the detailed analyses support the importance
of knowledge retrieval and augmentation schemes.

Our contributions in this work are threefold:
• We present a new knowledge-augmented LM

prompting framework that leverages the fac-
tual knowledge from KGs, for zero-shot QA.

• We propose to retrieve and augment relevant
facts from KGs, based on semantic similarities
between the question and its associated triples.

• We validate our KAPING on KGQA bench-
mark datasets, on which ours impressively
outperforms relevant zero-shot baselines.

2 Related Work

Language Model Prompting Language model
pre-training, which trains Transformers (Vaswani
et al., 2017) on unannotated text corpora with auto-
encoding (Devlin et al., 2019; Liu et al., 2019) or
auto-regressive (Yang et al., 2019; Radford et al.,
2018) objectives, becomes an essential approach
for natural language tasks. Also, Large Language
Models (LLMs) (Brown et al., 2020; Raffel et al.,
2020; Chowdhery et al., 2022; Soltan et al., 2022)
are able to perform zero-shot learning, for example,
generating the answer for the input textual prompt,
based on the knowledge stored in pre-trained pa-
rameters (Petroni et al., 2019; Roberts et al., 2020;
Sung et al., 2021), without additional parameter
updates as well as labeled datasets. To further im-
prove their performances, some work (Rubin et al.,
2022; Liu et al., 2022a) proposes retrieving rele-
vant samples to the input question from the training
dataset and prepending them in the prompt under
few-show learning. Recent few work (Sanh et al.,
2022; Wei et al., 2022a) further shows that, when
LLMs are fine-tuned on a collection of instruc-
tions phrased from natural language tasks, they can
have strong generalization performance on unseen
zero-shot tasks. However, the knowledge inside
LMs might be insufficient to tackle factual ques-
tions, which gives rise to knowledge-augmented
LMs. Notably, our LM prompting is different from
prompt-tuning literature (Lester et al., 2021a; Chen
et al., 2022a) that additionally tunes LMs with
model training (See Appendix C for discussions).

Knowledge-Augmented LMs Recent work pro-
poses to integrate the knowledge, such as docu-
ments from unstructured corpora (e.g., Wikipedia)
and facts from Knowledge Graphs (KGs), into LMs.
To mention a few, REALM (Guu et al., 2020) and
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RAG (Lewis et al., 2020) learn to retrieve docu-
ments and augment LMs with them. In addition,
KGs could be another knowledge source, where
the knowledge is succinctly encoded in the most
compact form, and some methods augment such
facts in KGs into LMs (Galetzka et al., 2021; Rony
et al., 2022; Kang et al., 2022). However, all afore-
mentioned approaches require massive amount of
training data and model updates for downstream
tasks. While more recent work (Izacard et al., 2022)
shows retrieval-augmented LM can have strong per-
formance with few-shot learning, it still requires
extra training steps, which is different from ours
focusing on LM prompting for entirely zero-shot.

Recently, there are few studies augmenting the
knowledge in the LM prompting scheme. At first,
some work proposes to extract the knowledge in
the parameters of LLMs themselves via prompting,
and then use the extracted knowledge to answer
the question (Kojima et al., 2022; Liu et al., 2022b;
Wei et al., 2022b; Wang et al., 2022). However,
since LLMs’ parameters might be insufficient to
store all the world knowledge, the extracted knowl-
edge and generated answers might be inaccurate.
On the other hand, most recently, Lazaridou et al.
(2022) propose to use the Google Search to retrieve
documents on the Web, and then prepend the re-
trieved documents to the input question along with
few-shot demonstrations, to answer the question
under few-shot LLM prompting schemes. How-
ever, our focus on zero-shot prompting with KGs is
orthogonal to the previous study working on doc-
uments with few-shot prompting, and leveraging
KGs can bring additional advantages. Specifically,
since KGs can succinctly encode the knowledge in
the compact triple form, for QA tasks, ours makes
LLM prompting more efficient (i.e., reducing the
input sequence length compared to the document
case), as well as more effective on the zero-shot QA
scheme: LLMs need to select one triple containing
the answer entity in the prompt, instead of looking
through lengthy documents having various entities.

Knowledge Graph Question Answering The
goal of our target Knowledge Graph Question An-
swering (KGQA) tasks is to answer the input ques-
tion based on a set of facts over KGs (Chakraborty
et al., 2019; Fu et al., 2020). Previous approaches
are broadly classified into neural semantic parsing-
based methods (Yih et al., 2015; Bao et al., 2016;
Luo et al., 2018), information retrieval-based meth-
ods (Sun et al., 2018; Saxena et al., 2020; Yasunaga

et al., 2021), and differentiable KG-based meth-
ods (Cohen et al., 2020; Saffari et al., 2021; Sen
et al., 2021), which, however, require annotated
data with additional model training. While Zhou
et al. (2021) aim to transfer the KGQA model to the
target language domains without any training data
on them, this work indeed needs the labeled data
to train the model on data-rich source domains first
before transferring the model to the target domains.
In contrast to all the aforementioned methods, we
explore the novel zero-shot KGQA mechanism,
which does not require any annotated QA pairs and
additional training, leveraging LM prompting.

3 Method

We now describe our Knowledge-Augmented lan-
guage model PromptING (KAPING) framework.

3.1 LM Prompting for Zero-Shot QA
We begin with the zero-shot question answering,
and then explain the language model prompting.

Zero-Shot Question Answering Given an input
question x, the Question Answering (QA) system
returns an answer y, where x and y consist of se-
quences of tokens: x = [w1, w2, . . . , w|x|]. Let P
be a QA model based on the generative Language
Model (LM) (Raffel et al., 2020; Brown et al.,
2020), which generates the conditional probability
of answer y for question x as follows: P (y|x).
Then, in contrast to supervised learning that trains
model P with a set of annotated (x, y) pairs, zero-
shot learning does not use any labeled samples and
model training. Notably, we are interested in this
zero-shot QA, since collecting the dataset and then
fine-tuning the existing LMs for every new domain
are known to be expensive and sometimes infeasi-
ble (Houlsby et al., 2019; Lester et al., 2021b).

LM Prompting LMs are often pre-trained by
predicting the next token based on previous tokens,
which is known as auto-regressive language mod-
eling (Radford et al., 2018; Raffel et al., 2020).
Then, thanks to this pre-training objective, LLMs
can perform zero-shot instruction learning. Specif-
ically, when we provide a question as well as an
instruction (e.g., "Please answer the question: Who
is the author of Lady Susan?") to the LLM (i.e.,
P ), such the LLM, conditioned by the input text,
can sequentially generate the probability of output
tokens, which might be an answer, "Jane Austen".

To be more formal, for every input question x,
we first modify it with a particular instruction tem-
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plate T into a textual string x′ called a prompt, as
follows: T : x 7→ x′. For example, if we have the
previous question x = "Who is the author of Lady
Susan?" along with the previous instruction tem-
plate "Please answer the question:", the resulting
prompt x′ would be T (x) = "Please answer the
question: Who is the author of Lady Susan?". Then,
we forward the prompt x′ to the LLM (i.e., P ),
which then generates the answer (i.e., y) through
P (y|x′). Note that this LM prompting scheme
does not require any additional model parameter
updates (i.e., fine-tuning) on the labeled data, thus
appropriate for the target zero-shot QA task.

However, there are multiple challenges in this
naive zero-shot prompting for QA. First, LLMs,
which rely on the knowledge in parameters, are
vulnerable from generating the factually incorrect
answer, since the knowledge in LLMs might be in-
accurate, and outdated: knowledge can be emerged
and changed over time. Also, refining the internal-
ized knowledge with additional parameter updates
is expensive, while it is necessary to reflect the
wrong and ever growing knowledge. Lastly, which
knowledge LLMs memorize and utilize when gen-
erating the answer to the question prompt is unclear,
which limits their explainability on the outputs.

3.2 Knowledge-Augmented LM Prompting

In order to tackle the aforementioned limitations
of the existing LM prompting scheme, we propose
to inject the relevant knowledge to the input ques-
tion from the Knowledge Graph (KG), which we
refer to as Knowledge-Augmented language model
PromptING (KAPING). In this subsection, we first
define the main objective of our KAPING frame-
work, and then introduce the ingredients for aug-
menting the knowledge over KGs to LM prompts.

LM Prompting with Knowledge Graphs In-
stead of relying on the knowledge internalized in
parameters, we propose to additionally access and
inject the knowledge from the external KG, which
contains accurate and up-to-date facts helpful to an-
swer the question. Formally, a knowledge graph G
consists of a set of factual triples {(s, r, o)}, where
s and o denote subject and object entities, and r
is a specific type of a relation between them. For
example, one relational knowledge "Lady Susan
was written by Jane Austen" can be represented as
a triple consisting of two entities s = "Lady Su-
san" and o = "Jane Austen" along with a relation
r = "written by". Then, for the question prompt x′

transformed from the example question x = "Who
is the author of Lady Susan?" via the template T ,
we additionally augment its relevant triple: (Lady
Susan, written by, Jane Austen), to the LM prompt-
ing scheme. By doing so, LLMs can generate the
correct answer with regard to the augmented knowl-
edge from KGs, formalized as follows: P (y|x′,G).
Note that, since we can provide specific and valid
facts in KGs to LLMs whenever they exist, our
framework can alleviate hallucination issue, origi-
nated from inaccurate and outdated knowledge in
LLMs, without costly updating their model param-
eters. Furthermore, we can confirm whether LLMs
generate answers based on augmented facts, thus
improving the explainability of LM prompting.

The remaining questions are then how to access
the relational symbolic facts over the KG from
the input question, verbalize the symbolic knowl-
edge to the textual string, and inject the verbalized
knowledge into the LM prompting scheme. We ex-
plain them one by one in the following paragraphs.

Knowledge Access In order to utilize the related
facts to the input question, we first extract the enti-
ties in the question. For example, for the question
"Who is the author of Lady Susan?", we extract the
entity "Lady Susan". Then, based on the extracted
entity, we find its corresponding entity over the KG,
whose incident triples then become associated facts
to the input question. Note that entity matching can
be done by existing entity linking techniques (Wu
et al., 2020; Li et al., 2020; Ayoola et al., 2022).

Knowledge Verbalization LLMs are working
on textual inputs, whereas factual triples are repre-
sented over the symbolic graph. Therefore, before
injecting the symbolic fact from KGs to LLMs,
we first transform the triple consisting of (s, r, o)
into its textual string, called verbalization. While
there exists recent methods (Oguz et al., 2022; Ma
et al., 2022) that particularly design or even learn
the graph-to-text transformation, in this work, we
use the linear verbalization: concatenating the sub-
ject, relation, and object texts in the triple, which
we observe works well in LM prompting (See Ap-
pendix B.5). For instance, one triple (Lady Susan,
written by, Jane Austen) is used as is: "(Lady Susan,
written by, Jane Austen)", for an LLM’s input.

Knowledge Injection Based on verbalized facts
associated with the input question, the remaining
step is to realize the knowledge injection mecha-
nism, which allows LLMs to be grounded on the
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external knowledge, useful to generate the answer.
Let assume we have a set of N associated triples
k = {(si, ri, oi)}Ni=1 for question x. Then, simi-
lar to instruction template T : x 7→ x′ described
in Section 3.1, we modify N verbalized triples k
along with the instruction for the knowledge in-
jection into the knowledge prompt k′, as follows:
T : k 7→ k′. One particular template we use for
constructing the prompt is that, we first enumer-
ate N verbalized triples line-by-line and then add
the specific instruction: "Below are facts in the
form of the triple meaningful to answer the ques-
tion.", at the top of the prompt. After that, such
the knowledge prompt string, k′, is prepended to
the question prompt x′, and LLMs conditioned by
knowledge and question prompts then sequentially
generate the answer tokens, formalized as follows:
P (y|[k′,x′]), where [·] denotes concatenation.

3.3 Question-Relevant Knowledge Retrieval

The proposed KAPING framework in Section 3.2,
allows LLMs to leverage the knowledge from KGs
for zero-shot QA. However, there are critical chal-
lenges that the number of triples associated to ques-
tions is often too large to forward in LLMs. Also,
most of them are unrelated to the question, mislead-
ing LLMs into generating the irrelevant answer.

Knowledge Retriever To overcome those limita-
tions, we further propose to retrieve and augment
only the relevant triples to the question. Note that
there exists a document-retrieval scheme (Lin et al.,
2021), whose goal is to retrieve relevant documents
for the given query based on their embedding simi-
larities, which motivates us to retrieve, in our case,
the triples for the user’s question. In particular,
thanks to the verbalizer defined in Section 3.2, we
can play with triples, obtained from symbolic KGs,
over the text space. Therefore, for the verbalized
triple and the question, we first embed them onto
the representation space with off-the-shelf sentence
embedding models for text retrieval (Song et al.,
2020; Karpukhin et al., 2020; Xiong et al., 2021),
and then calculate their similarities. After that, we
use only the top-K similar triples, instead of using
all N triples, associated to the given question. Note
that, unlike few recent studies (Oguz et al., 2022;
Ma et al., 2022; Kang et al., 2022) that aim at im-
proving KG retrievers themselves under supervised
training, we focus on zero-shot LM prompting with
KGs, thus we use any off-the-shelf retrievers as a
tool to filter out unnecessary triples for questions.

4 Experimental Setups
We explain datasets, models, metrics, and imple-
mentations. For additional details, see Appendix A.

4.1 Datasets
We evaluate our Knowledge-Augmented language
model PromptING (KAPING) framework on two
Knowledge Graph Question Answering (KGQA)
datasets, namely WebQuestionsSP and Mintaka.

WebQuestionsSP (WebQSP) This dataset (Be-
rant et al., 2013; Yih et al., 2016) is designed with a
Freebase KG (Bollacker et al., 2008). It consists of
1,639 test samples, which we use for zero-shot eval-
uation. Additionally, since Freebase is outdated,
we further use the Wikidata KG (Vrandecic and
Krötzsch, 2014) by using available mappings from
Freebase ids to Wikidata (Diefenbach et al., 2017).
This additional dataset consists of 1,466 samples.

Mintaka This dataset (Sen et al., 2022) is re-
cently designed with the Wikidata KG for complex
KGQA tasks. Among 8 different languages, we
use English test sets consisting of 4,000 samples.

4.2 Large Language Models
To verify the performance of our KAPING frame-
work on Large Language Models (LLMs), as well
as benchmarking them on zero-shot KGQA, we
use various LLMs with different sizes. Specifically,
we use T5 (Raffel et al., 2020) (0.8B, 3B, 11B),
T0 (Sanh et al., 2022) (3B, 11B), OPT (Zhang et al.,
2022) (2.7B, 6.7B) and GPT-3 (Brown et al., 2020)
(6.7B, 175B). We provide details in Appendix A.2.

4.3 Baselines and Our Model
In this subsection, we explain four zero-shot LM
prompting baselines and our KAPING framework.

No Knowledge This is a naive LM prompting
baseline, which generates answers from input ques-
tions without knowledge augmentation from KGs.

Random Knowledge This is an LM prompt-
ing baseline, which additionally augments the ran-
domly sampled K triples, associated to the entities
appeared in the question, to the prompt.

Popular Knowledge This is an LM prompting
baseline, which augments K popular triples among
all triples from the question entities, based on rela-
tions that appear the most frequently in the KG.

Generated Knowledge This is an LM prompting
baseline, which first extracts the knowledge from
LLMs themselves based on prompting, and then
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Table 1: Main results of language model prompting, where we report the generation accuracy. The number inside the
parentheses in the first row denotes the parameter size of language models, and best scores are emphasized in bold.

Datasets Methods T5 (0.8B) T5 (3B) T5 (11B) OPT (2.7B) OPT (6.7B) OPT (13B) T0 (3B) T0 (11B) GPT-3 (6.7B) GPT-3 (175B) AlexaTM (20B) Average

WebQSP
w/ Freebase

No Knowledge 6.95 13.40 9.48 19.85 29.77 28.38 21.43 40.77 44.63 63.59 46.79 29.55
Random Knowledge 21.55 19.15 17.57 28.07 31.73 33.31 32.62 51.20 51.01 65.87 57.37 37.22
Popular Knowledge 15.30 16.88 18.39 28.32 28.13 24.21 27.05 47.22 45.58 62.26 54.91 33.48
Generated Knowledge 6.19 7.84 6.76 7.46 11.50 8.22 19.41 38.81 45.89 62.14 35.13 22.67

KAPING (Ours) 34.70 25.41 24.91 41.09 43.93 40.20 52.28 62.85 60.37 73.89 67.67 47.94

WebQSP
w/ Wikidata

No Knowledge 10.30 18.42 15.21 23.94 33.77 32.40 24.56 44.20 48.50 67.60 42.41 32.85
Random Knowledge 17.94 22.78 24.28 37.24 35.61 38.27 28.85 47.68 52.05 60.64 55.63 38.27
Popular Knowledge 15.35 20.80 20.74 30.83 30.01 27.83 24.83 48.02 47.41 63.37 53.92 34.83
Generated Knowledge 11.94 13.30 12.28 11.26 17.53 14.19 22.92 41.34 48.77 65.89 31.16 26.42

KAPING (Ours) 23.67 40.38 35.47 49.52 53.34 51.57 49.86 58.73 60.44 69.58 65.04 50.69

Mintaka
w/ Wikidata

No Knowledge 11.23 14.25 17.06 19.76 27.19 26.83 14.75 23.74 34.65 56.33 41.97 26.16
Random Knowledge 17.59 18.19 18.83 28.11 26.58 28.36 16.10 26.15 32.98 51.56 46.02 28.22
Popular Knowledge 17.56 18.09 18.73 26.97 27.08 23.10 16.74 27.15 32.48 53.16 46.41 27.95
Generated Knowledge 13.61 14.61 14.29 11.87 14.96 16.24 14.46 23.13 33.12 55.65 34.58 22.41

KAPING (Ours) 19.72 22.00 22.85 32.94 32.37 33.37 20.68 29.50 35.61 56.86 49.08 32.27

1-Hop Retrieval 2-Hop Retrieval
Datasets Retrievers MRR Top-1 Top-10 Top-30 MRR Top-1 Top-10 Top-30

WebQSP
w/ Freebase

Random 12.50 7.21 25.09 34.64 1.50 0.70 2.65 5.37
Popular 8.58 5.31 15.93 24.53 1.59 0.95 2.72 4.68
MPNet 47.27 40.27 60.56 64.48 41.64 33.12 58.47 65.23

WebQSP
w/ Wikidata

Random 9.50 3.62 22.58 40.72 1.31 0.00 2.80 8.59
Popular 8.52 4.57 15.89 35.47 4.63 4.02 5.53 6.62
MPNet 43.46 33.36 64.39 70.67 40.42 30.56 62.62 71.56

Mintaka
w/ Wikidata

Random 4.80 1.85 11.48 22.03 0.91 0.14 1.78 5.15
Popular 6.09 3.09 12.51 20.47 0.24 0.04 0.28 1.24
MPNet 13.01 7.50 25.44 35.43 13.00 6.82 26.65 40.01

Table 2: Retriever results. We compare random model, popular
model, and MPNet (Song et al., 2020), on 1- and 2-hop retrievals.
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Figure 2: Comparisons of retrieval and LM prompting. Re-
trieval is the Top-1 result of the MPNet (Song et al., 2020).

augments them as the form of the prompt (Liu et al.,
2022b), which is similar to Kojima et al. (2022).

KAPING (Ours) This is our Knowledge Aug-
mented language model PromptING (KAPING)
framework, which first retrieves the top-K similar
triples to the question with the knowledge retriever,
and then augments them as the form of the prompt.

4.4 Evaluation Metrics
Generation Following the evaluation protocol
of generative KGQA (Yin et al., 2016; Sen et al.,
2022; Mavi et al., 2022), we use accuracy, which
measures whether the generated tokens from the
given prompt include one of the answer entities.
Note that we further consider aliases – a set of
alternative names – of answer entities available in
Freebase and Wikidata KGs, for evaluation.

Retrieval We also measure the retriever perfor-
mance, to see how much the retrieved triples are
helpful for answer generation. As metrics, we use
Mean Reciprocal Rank (MRR) and Top-K accuracy
(Top-K), which are calculated by ranks of correctly
retrieved triples containing answer entities among
all triples associated to question entities.

4.5 Implementation Details
For the knowledge injection, we set the number of
retrieved facts as 10 (K = 10), and the hop for
triple retrieval as one. For the text-based retriever,
we experiment with MPNet (Song et al., 2020) that
uses the same encoder for embedding question and
triples. See Appendix A.4 for additional details.

5 Experimental Results and Analyses
We provide the overall results of our KAPING
framework along with its comprehensive analyses.

Main Results As shown in Table 1, our KAP-
ING framework significantly outperforms all LM
prompting baselines, on zero-shot KGQA tasks. In
particular, the generated knowledge model mostly
degenerates the performance compared to the no
knowledge model, since the extracted knowledge
from LLMs themselves might be inaccurate. On
the other hand, the random and popular knowledge
baselines bring performance improvements, since
the augmented knowledge from KGs are sometimes
useful to answer the question. However, ours out-
performs them, which suggests that, for zero-shot
LM prompting for QA, the knowledge internalized
in LLMs is insufficient to generate factual answers,
and it is important to use only the relevant facts.

In addition, we also observe larger performance
improvements when LMs are relatively small. In
other words, since smaller models have insufficient
parameter spaces to memorize the knowledge dur-
ing pre-training, they are more likely to generate
factually incorrect answers. However, when the ap-
propriate knowledge is given to them, their perfor-
mances sometimes become similar to larger models
(e.g., different sizes of OPT have similar perfor-
mances by our KAPING). Therefore, for tasks that
require factual knowledge under low-resource se-
tups (e.g., production), augmenting the knowledge
would be beneficial, instead of increasing model
sizes to handle the huge volume of knowledge.
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Figure 3: Comparisons of correct and incorrect retrieval
for the generation performance on the GPT-3 (6.7B) model.
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Figure 4: Performances with varying the knowledge order,
where we change the location – top, bottom, or random – of
more relevant triples for the question in the prompt of LLMs.

Retriever Results To see how relevant the aug-
mented knowledge is, we further measure the re-
trieval performances. As shown in Table 2, the
existing retrieval model (i.e., MPNet) shows supe-
rior performances against naive models: random
and popular retrievers. This result suggests that
our simple graph-to-text verbalization works well
with the existing retriever, which further confirms
that our KAPING augments useful facts in the LM
prompt. Regarding the number of hops for the can-
didate triples to retrieve, we observe that, when we
increase the hop-size from one to two, the retriever
is more likely to retrieve irrelevant triples that does
not include answer entities, as shown in Table 2.
Therefore, in our experiments, we retrieve knowl-
edge among 1-hop triples of question entities.

Additionally, since we can alternatively answer
the input question based on entities in the Top-1
triple from the retriever, we compare the generation
performance of LLMs to the retrieval performance.
As shown in Figure 2, LM prompting schemes even
without knowledge augmentation (i.e., no knowl-
edge) are superior than simply answering with the
entity in the retrieved triple, except for the We-
bQSP w/ Freebase dataset. Also, we observe huge
gaps between our KAPING framework and the sim-
ple retrieval scheme on all datasets. These results
suggest that, for zero-shot KGQA, it would be help-
ful to leverage LLMs to generate answers based
on their internalized and external facts, instead of
directly searching answer entities over KGs.

Impact of Correct & Incorrect Retrievals We
conduct analyses on how much the correctly re-
trieved triples, having answer entities, bring perfor-
mance improvements, and how performances are
affected by the incorrectly retrieved triples, which

Figure 5: Performances with varying knowledge amount,
where we change the number of retrieved triples to augment.
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OPT (2.7B) OPT (6.7B) T0 (3B) T0 (11B) GPT-3 (6.7B)

Relative Time
Models # of Retrieved Facts T0 (3B) OPT (2.7B)
No Knowledge 0 1.00 1.00

KAPING (Ours)
1 0.49 1.12
5 0.73 1.48

10 1.07 1.89
15 1.54 2.36
30 2.49 3.77

Table 3: Efficiencies with varying the knowledge amount,
where we measure the wall-clock time of every model for
generating the answer on the WebQSP w/ Wikidata dataset.

do not include answer entities. As shown in Fig-
ure 3, when retrieved triples contain answer entities,
performances of LLMs are significantly improved,
compared to models without knowledge augmenta-
tion. However, when retrievers fail, performances
are lower than models of no knowledge augmenta-
tion. These results suggest, when relevant knowl-
edge is augmented, LLMs can contextualize and
generate answers accurately. Meanwhile, incor-
rectly retrieved knowledge makes LLMs condition
on irrelevant facts, and generate wrong answers.

Varying the Amount of Knowledge We change
the number of facts, to see which triple amounts
are optimal to augment in the prompt, by compar-
ing trade-off between the generation performance
and the wall-clock time. First of all, as shown in
Figure 5, most LLMs reach the somewhat highest
performance, when the number of triples is 5 or
10. Also, when we further increase the augmented
triple size to 15 and 30, performances of OPT mod-
els are largely decreasing. This result suggests that
some LMs might be distracted by irrelevant triples
when their volumes are high, therefore, failing to
select and generate the answer entity.

We then measure the wall-clock time of the an-
swer generation, for the encoder-decoder (T0) and
decoder-only (OPT) models with varying the num-
ber of augmented triples in the prompt. As shown
in Table 3, regarding the encoder-decoder model,
our KAPING framework with less than 10 triples
is faster than the model without knowledge aug-
mentation. We observe this is because, when the
knowledge is augmented to the model, the model
tends to generate shorter answers, which can reduce
the decoding time. More specifically, the length of
generated tokens for the T0 model with 10 triples is

84



Table 4: Generation examples of the prompted GPT-3 for the input question with augmented triples from the retriever, where, in
the last row, we change the knowledge of augmented facts to see whether the model is able to adapt to the changed knowledge.

Question: Where did Alex Chilton die?
Retrieved triples: (Alex Chilton, place of death, New Orleans), (Alex Chilton, manner of death, natural causes), (Alex Chilton,
cause of death, myocardial infarction), (Alex Chilton, date of death, time: +2010-03-17), ...
Answer: New Orleans

Prompts Outputs

No Knowledge Question: Where did Alex Chilton die? Answer: Alex Chilton died in a car accident on February 10, 1979.

KAPING (Ours)

Below are facts in the form of the triple meaningful to answer the
question. ... (Alex Chilton, date of death, time: +2010-03-17) (Alex
Chilton, cause of death, myocardial infarction) (Alex Chilton, manner
of death, natural causes) (Alex Chilton, place of death, New Orleans)
Question: Where did Alex Chilton die? Answer:

Alex Chilton died on March 17, 2010 in New Orleans,
Louisiana due to a myocardial infarction.

KAPING (Ours)
w/ Knowledge Change

Below are facts in the form of the triple meaningful to answer the
question. ... (Alex Chilton, date of death, time: +2000-09-01) (Alex
Chilton, cause of death, pancreatic cancer) (Alex Chilton, manner of
death, natural causes) (Alex Chilton, place of death, Los Angeles)
Question: Where did Alex Chilton die? Answer:

Alex Chilton died in Los Angeles, California on Septem-
ber 1, 2000 from pancreatic cancer.

Models T5 (3B) T5 (11B) OPT (2.7B) OPT (13B) T0 (3B) T0 (11B)

No Knowledge 14.25 17.06 19.76 26.83 14.75 23.74

Random Knowledge 18.19 18.83 28.11 28.36 16.10 26.15
Random Knowledge w/ EL 15.99 17.98 23.10 26.47 15.60 24.66

KAPING 22.00 22.85 32.94 33.37 20.68 29.50
KAPING w/ EL 18.94 20.58 26.87 28.39 18.51 27.11

Table 5: Results with entity linking, where the model w/ EL
uses entities extracted from the entity linking technique (Ay-
oola et al., 2022), instead of using labeled ones, on Mintaka.

15, whereas, the no knowledge model generates 32
tokens in average. However, for the decoder-only
model (OPT), the more knowledge we augment,
the slower the model becomes, because of its auto-
regressive characteristic for digesting the input.

Impact of Orders of Retrieved Triples In few-
shot LM prompting where LLMs additionally ob-
serve few examples in the prompt, they are known
to be sensitive to the order of examples (Lu et al.,
2022), and they tend to follow the answer in the last
example (Zhao et al., 2021). Based on those obser-
vations, we also conduct an analysis on whether the
order of retrieved triples affects the performance.
In particular, we vary the location of more similar
triples for the question, by locating them at the Top,
Bottom, or Random position of the prompt. As
shown in Figure 4, our KAPING is not sensitive to
the location of retrieved triples, except for the OPT
model on the WebQSP dataset. In other words, the
OPT model tends to generate the entity located at
the first part of the prompt input. Meanwhile, other
LLMs can contextualize the entire prompt input,
and generate the entity regardless of its position.

Effectiveness with Entity Linking Following
the conventional KGQA evaluation (Cohen et al.,
2020), we use question entities labeled in datasets,
to retrieve facts in KGs. However, to see the per-
formance with entities identified by Entity Linking
(EL) technique, we further conduct experiments

with the EL model, namely ReFinED (Ayoola et al.,
2022). As shown in Table 5, while the performance
of KAPING w/ EL is slightly decreasing from the
model with labeled entities due to the performance
of EL, we consistently observe meaningful perfor-
mance improvements from a No Knowledge model.

Case Study We conduct a case study in Table 4.
In particular, when the knowledge is not given to
the LM, it hallucinates the factually incorrect an-
swer. However, when related facts are retrieved
and augmented in the prompt, it can generate the
correct answer. In addition, we analyze whether
our KAPING can adapt to the updated knowledge,
motivated by that some knowledge can be changed
over time, while the knowledge in LMs remains
static. To do so, as shown in the last row of Table 4,
we replace object entities of triples, and then for-
ward the prompt with the modified facts to the LM.
Then, the result shows that the LM can generate
the output based on the updated facts, which sug-
gests the potential of adapting LMs without costly
updating their parameters.

Additional Results Note that we further provide
additional experimental results in Appendix B. In
particular, we compare the performance of retriev-
ers in Appendix B.1, conduct the sensitivity anal-
ysis on template texts in Appendix B.2, provide
the results with additional metrics including human
evaluation in Appendix B.3, validate our KAPING
under few-shot setups in Appendix B.4, provide
the analysis on verbalization in Appendix B.5, and
provide the efficiencies in Appendix B.6.

6 Conclusion
In this work, we focused on the limitation of ex-
isting LM prompting schemes, which rely on the
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static knowledge internalized in parameters; there-
fore, when such knowledge are incomplete, inaccu-
rate, and outdated, LLMs may generate factually
incorrect answers. To tackle this challenge, we in-
troduced a novel Knowledge-Augmented language
model PrompTING (KAPING) framework, which
augments the knowledge for the input question
from KGs directly in the input prompt of LLMs,
with the fact retriever to inject only the relevant
knowledge. The proposed framework is completely
zero-shot, and versatile with any LMs, without ad-
ditional parameter updates and training datasets.
We validated that our KAPING yields huge perfor-
mance gaps from the LM prompting model relying
on its internal knowledge, especially with smaller
LMs, on the KGQA tasks. We believe our new
mechanism for augmenting facts from KGs to the
LM prompt will bring substantial practical impacts
in generating knowledge-grounded answers.

Limitations

In this section, we faithfully discuss the current lim-
itations and potential avenues for future research.

First of all, the generation performance of our
knowledge-augmentation framework largely de-
pends on the efficacy of retrievers. In other words,
if the retriever fails to retrieve the relevant facts to
the input question, the prompted LLM, conditioned
on the irrelevant facts, is likely to generate the in-
correct answer (See Figure 3). Similarly, if the re-
triever is not designed to retrieve the facts in 2-hop
neighborhoods of the question entities, LLMs are
less likely to generate the answer requiring 2-hop
knowledge. Note that, for the Mintaka dataset (Sen
et al., 2022), the number of answerable questions
with 1-hop facts is only 40% of total samples. How-
ever, when we include 2-hop triples, the number
of answerable questions becomes 62%, which sug-
gests the necessity of 2-hop retrievals, which is yet
challenging (See Table 2). Thus, future work may
improve the retrieval scheme itself to provide more
accurate facts including multi-hops to the LLM, or
may develop the mechanism to prevent the LLM
from being misled by unrelated facts.

On the other hand, the evaluation metric for the
generation performance of prompted LLMs may be
further improved. Specifically, regarding our target
KGQA tasks, the answer for the question is the en-
tity in KGs. However, the prompted LLMs without
additional training (i.e., zero-shot) tend to gener-
ate the answer as the sentence. For instance, the

label entity for the question (e.g., Where did Alex
Chilton die?) in Table 4 is "New Orleans", how-
ever, the LLMs often generate the sentence-level
output: "Alex Chilton died on March 17, 2010
in New Orleans, Louisiana due to a myocardial
infarction". We currently evaluate the model per-
formance by measuring whether generated tokens
contain the answer entity or not; however, it would
be worthwhile to develop the additional metric to
compare the sentence-level output from LLMs to
the word-level answer in KGs in a more effective
way. Note that we also try other available metrics
(See Appendix B.3), such as F1 and Exact Match
(EM) scores (Rajpurkar et al., 2016), however, they
largely penalize the longer sentences (e.g., EM of
correct examples in Table 4 are 0), thus may not be
appropriate for evaluating LM prompting schemes.

Lastly, since we focus on the improvement of
knowledge injection in LM prompting, we use the
labeled entities in KGQA datasets when evaluating
models, following the existing KGQA evaluation
setups (Cohen et al., 2020; Sen et al., 2021). How-
ever, in real-world applications where the entities
in the question are mostly not provided, we first
need to extract entities in the question with exist-
ing entity linking techniques; therefore, our model
performance depends on the efficacy of entity link-
ing. In particular, regarding the result with entity
linking in Table 5, the portion of answerable ques-
tions from labeled entities in the dataset is 40%,
however, the portion of them with entities from the
entity linking model (Ayoola et al., 2022) is 22%.
Therefore, since the improved entity linking perfor-
mance would contribute to the performance gain of
our KAPING framework, for KGQA tasks, future
work may advance such the entity linking scheme.

Ethics Statement
For a user’s question, our knowledge-augmentation
scheme can allow prompted LMs generate a fac-
tually correct answer, grounded by the provided
knowledge, for KGQA tasks. However, the per-
formance of our KAPING framework is still far
from perfect, due to potential failures in entity link-
ing, fact retrieval, and knowledge generation itself.
Thus, we should be aware whether LMs generate
correct answers, especially on high-risk domains.
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A Additional Experimental Setups

Here we provide additional experimental setups.

A.1 Datasets

We provide the additional details for two Knowl-
edge Graph Question Answering (KGQA) datasets,
namely WebQuestionsSP and Mintaka, which we
use for evaluating baselines and our model.

WebQuestionsSP (WebQSP) A question and its
corresponding answer are annotated with Freebase
entities (Bollacker et al., 2008), and refined with
additional cleaning steps (Yih et al., 2016): filter-
ing out samples with invalid annotations, from the
original WebQuestions dataset (Berant et al., 2013).

Mintaka This dataset (Sen et al., 2022) is de-
signed for complex KGQA tasks including superla-
tive and comparative questions, where question-
answer pairs are collected from crowdsourcing with
Wikidata entities (Vrandecic and Krötzsch, 2014).

A.2 Large Language Models

We describe the specific details of Large Language
Models (LLMs) that we use for LM prompting.

T5 This model (Raffel et al., 2020) is an encoder-
decoder model, and, among different variants, we
use the LM-adapted version1, which is additionally
pre-trained with auto-regressive language modeling
objective (Radford et al., 2018) for LM prompting.

T0 This model (Sanh et al., 2022) is further fine-
tuned from T5 (Raffel et al., 2020) over prompted
text-to-text tasks, for improved zero-shot general-
ization performance with LM prompting.

GPT-3 This model (Brown et al., 2020) is a de-
coder only model, which we access via API2.

OPT This model (Zhang et al., 2022) is a decoder
only model, freely available for researchers.

AlexaTM This model (Soltan et al., 2022) is an
encoder-decoder model, pre-trained with denoising,
which reconstructs the context of 15% dropped
tokens, and auto-regressive, which predicts the next
tokens based on their previous tokens, objectives.

A.3 Evaluation Metrics

We provide more details for evaluation metrics.
1https://github.com/google-research/text-to-text-transfer-

transformer/blob/main/released_checkpoints.md
2https://openai.com/api/

Aliases For generative question answering tasks,
there can be alternative names of entities, called
aliases, and we consider them for evaluation. For
example, one Wikidata entity, "William Shake-
speare" (Q692), has alternative names, such as
"Shakespeare" and "The Bard", and we consider
them when measuring the generation performance.

Filtering Unnamed Entities For evaluating gen-
erative models, the name of entities are required.
However, we sometime cannot find the name of the
answer entities from their ids on Freebase and Wiki-
data KGs. This is because the annotated answer
entities are sometimes not entities but categories,
and the entity ids in KGs could be changed but we
cannot find the KG dumps that are used to anno-
tate datasets. Therefore, we filter out samples that
do not have literal name texts for the answer enti-
ties. This filtering step results in 1,582 test samples
for the WebQSP w/ Freebase dataset, 1,466 test
samples for the WebQSP w/ Wikidata dataset, and
2,814 test samples for the Mintaka dataset.

A.4 Implementation Details
In this subsection, we provide additional details for
implementing our KAPING framework.

Knowledge Injection Schemes There are differ-
ent choices in knowledge injection schemes, from
the number of facts to retrieve, to the number of
hops for candidate triples, to the order of retrieved
facts in the prompt (i.e., where the most relevant
knowledge should be located in the prompt), to
the template of prompts including their instruction
texts. While search spaces of them are extremely
huge, we aim to to find the optimal one (See analy-
ses in Section 5). Specifically, as reported in Sec-
tion 4.5, the best settings we find are the number
of retrieved facts of 10, and the number of hops
for the triples to retrieve from the question enti-
ties of one. Also, we locate more relevant triples
to the input question closer to the question text in
the prompt, inspired by the observation that the
model tends to rewrite answers that appeared at the
end of the prompt (Zhao et al., 2021). Further, we
examine different instruction templates for gener-
ating answers, such as "Question: {x} Answer: "
or "Please answer the following question: {x}",
where x is the literal question. Regarding instruc-
tion templates, we observe that the performances
of LLMs are sensitive across different instructions
(See Appendix B.2), therefore, we try both of them
and then report the best result.
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1-Hop Retrieval 2-Hop Retrieval

Datasets Retrievers MRR Top-1 Top-10 Top-30 MRR Top-1 Top-10 Top-30

WebQSP
w/ Freebase

MPNet 47.27 40.27 60.56 64.48 41.64 33.12 58.47 65.23
TAS-B 51.62 45.76 61.76 64.41 37.08 25.85 58.66 64.48

WebQSP
w/ Wikidata

MPNet 43.46 33.36 64.39 70.67 40.42 30.56 62.62 71.56
TAS-B 46.68 37.65 65.08 70.67 41.92 32.20 62.21 72.17

Mintaka
w/ Wikidata

MPNet 13.01 7.50 25.44 35.43 13.00 6.82 26.65 40.01
TAS-B 13.21 7.57 25.20 35.04 12.36 6.79 24.13 36.07

Table 6: Results of two different retrievers, namely MP-
Net (Song et al., 2020) and TAS-B (Hofstätter et al., 2021).

Retrieval Models To augment only the relevant
triples to the input question under the zero-shot
setup, we use off-the-shelf text-based retriever mod-
els. Specifically, we experiment with two different
types of retrievers: symmetric retriever that uses
the same encoder for question and triples; asymmet-
ric one that uses individual encoders for them. For
the symmetric retriever, we use MPNet (Song et al.,
2020), which is trained on 1B sentence pairs3. Also,
for the asymmetric retriever, we use TAS-B (Hof-
stätter et al., 2021), which is trained on the MS-
MARCO dataset (Nguyen et al., 2016). We mainly
report the results with MPNet, unless noted, since
there performances are similar (See Appendix B.1).

A.5 Hyperparameters and Resources

We evaluate all models with PyTorch (Paszke et al.,
2019) and Transformers (Wolf et al., 2020) li-
braries. We set the maximum number of input
token lengths of LMs as 1,024 and the maximum
number of output token lengths as 128, for encoder-
decoder models. For decoder-only models, we set
the maximum token lengths as 1,152 (1,024 + 128).
For computing resources, we run all models with
8 V100 GPUs, having 8 × 32GB GPU memory,
in which every model is runnable within one day.
Note that, due to the expensive computational costs
for model prompting with LLMs, we run every
model one time, and then report the results, with-
out additional hyperparameter tuning unless noted.

B Additional Experiment Results

In this section, we provide additional experimental
results, on the comparisons of available text-based
retrieval models in Section B.1, the sensitive analy-
ses on template texts of the prompt in Section B.2,
and the extra evaluation metrics in Section B.3.

B.1 Performance Comparisons of Retrievers

In Table 6, we compare existing symmetric and
asymmetric retrievers named MPNet (Song et al.,

3https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

Datasets Models Templates T5 (11B) T0 (11B) OPT (6.7B) GPT-3 (6.7B)

WebQSP
w/ Freebase

No Knowledge
Default 9.48 34.70 29.77 44.63
Please 3.03 40.77 18.71 42.48

KAPING
Default 24.91 62.58 43.93 60.37
Please 17.45 61.19 34.07 60.43

WebQSP
w/ Wikidata

No Knowledge
Default 15.21 38.88 33.77 48.50
Please 5.12 44.20 22.71 48.29

KAPING
Default 35.47 58.73 53.34 60.44
Please 20.12 56.89 48.16 59.69

Mintaka
w/ Wikidata

No Knowledge
Default 17.06 22.60 27.19 35.00
Please 5.47 23.74 17.70 34.65

KAPING
Default 22.85 29.50 32.37 33.55
Please 14.68 29.18 28.18 35.61

Table 7: Results with varying instruction templates, for
various LLMs on the WebQSP and Mintaka datasets.

2020) and TAS-B (Hofstätter et al., 2021), ex-
plained in Section A.4, on 1- and 2-hop retrievals.
As shown in Table 6, we observe similar perfor-
mances between symmetric (MPNet) and asym-
metric (TAS-B) retrievers, which suggests that our
simple graph-to-text verbalization is robust across
different text-based retrieval schemes. Note that,
since retrieval performances of both are similar, we
conduct experiments mainly with MPNet, to reduce
expensive computational costs for GPU usages.

B.2 Sensitivity Analyses on Template Texts

Following the observation in Zhao et al. (2021),
the performances of LLMs vary across different
templates in the prompt. In our experiments, since
it is computationally infeasible to try all different
prompt templates on various LLMs, we consider
two types of question templates, described in Ap-
pendix A.4. In particular, for the question x, we
use either "Question: {x} Answer: ", which we
refer to as default template, or "Please answer the
following question: {x}", referred to as please tem-
plate. As shown in Table 7, for the T5 model, the
default template is superior than the please tem-
plate. Meanwhile, for the OPT model, the please
template is superior than the other. However, for
T0 and GPT-3 models, performance differences be-
tween default and please templates are marginal.
Therefore, these results suggest that we may need
to select instruction templates carefully across dif-
ferent LLMs for achieving optimal performances.

Additionally, regarding the knowledge-injection
template described in Section 3.2, we also observe
that the generation performance of GPT-3 depends
on the instruction text in the template. In particular,
we mainly conduct experiments with the template:
"Below are facts in the form of the triple meaning-
ful to answer the question."; however, we observe
the performance degeneration when the augmented
triples are irrelevant to the given question as shown

93



T5 (0.8B) T5 (3B) T5 (11B) OPT (2.7B) OPT (6.7B) OPT (13B)

Datasets Methods Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM

WebQSP
w/ Freebase

No Knowledge 6.95 5.20 0.00 13.40 8.11 0.00 9.48 8.25 0.06 19.85 7.20 0.38 29.77 10.60 0.06 28.38 7.92 0.70
Random Knowledge 21.55 9.74 0.00 19.15 8.08 0.00 17.57 7.50 0.19 28.07 13.33 0.06 31.73 13.01 0.00 33.31 12.41 0.00
Popular Knowledge 15.30 8.75 0.06 16.88 8.19 0.00 18.39 8.95 0.19 28.32 13.78 0.06 28.13 12.21 0.00 24.21 9.86 0.00
Generated Knowledge 6.19 7.96 0.00 7.84 7.56 0.06 6.76 6.51 0.00 7.46 4.59 0.00 11.50 4.95 0.00 8.22 4.59 0.00
KAPING (Ours) 34.70 15.39 0.00 25.41 8.31 0.06 24.91 11.02 0.32 41.09 16.32 0.00 43.93 15.15 0.00 40.20 13.32 0.00

WebQSP
w/ Wikidata

No Knowledge 10.30 5.60 0.00 18.42 8.48 0.00 15.21 8.94 0.07 23.94 7.90 0.48 33.77 11.41 0.07 32.40 8.45 0.75
Random Knowledge 17.94 7.81 0.00 22.78 7.74 0.07 24.28 9.41 0.34 37.24 16.78 0.00 35.61 12.54 0.00 38.27 14.61 0.07
Popular Knowledge 15.35 8.01 0.00 20.80 8.48 0.00 20.74 9.20 0.14 30.83 15.65 0.00 30.01 13.32 0.00 27.83 11.95 0.00
Generated Knowledge 11.94 8.64 0.00 13.30 8.19 0.07 12.28 7.11 0.00 11.26 5.06 0.00 17.53 5.60 0.00 14.19 4.94 0.00
KAPING (Ours) 23.67 10.46 0.00 40.38 13.25 0.00 35.47 11.50 0.34 49.52 20.17 0.00 53.34 16.62 0.00 51.57 16.73 0.14

Mintaka
w/ Wikidata

No Knowledge 11.23 6.77 0.00 14.25 9.81 0.00 17.06 10.28 0.00 19.76 6.63 0.28 27.19 10.60 0.04 26.83 9.82 0.43
Random Knowledge 17.59 10.48 0.18 18.19 9.24 0.00 18.83 9.82 0.57 28.11 14.47 0.00 26.58 12.80 0.00 28.36 14.02 0.11
Popular Knowledge 17.56 9.88 0.00 18.09 10.47 0.07 18.73 10.07 0.53 26.97 13.76 0.00 27.08 12.95 0.07 23.10 11.28 0.00
Generated Knowledge 13.61 9.23 0.00 14.61 8.85 0.00 14.29 7.51 0.04 11.87 6.34 0.00 14.96 5.81 0.04 16.24 7.14 0.00
KAPING (Ours) 19.72 11.36 0.04 22.00 11.17 0.00 22.85 10.91 0.43 32.94 14.99 0.00 32.37 14.37 0.04 33.37 14.65 0.11

T0 (3B) T0 (11B) AlexaTM (20B) GPT-3 (6.7B) GPT-3 (175B) Average

Datasets Methods Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM

WebQSP
w/ Freebase

No Knowledge 21.43 22.70 9.99 40.77 46.10 34.39 46.79 17.65 0.00 44.63 21.12 1.77 63.59 32.75 8.47 29.55 17.05 5.07
Random Knowledge 32.62 36.48 26.55 51.20 55.98 46.90 57.37 20.91 0.00 51.01 28.04 6.19 65.87 41.28 18.46 37.22 22.43 8.94
Popular Knowledge 27.05 31.38 20.23 47.22 52.44 42.04 54.91 20.45 0.00 45.58 25.94 4.87 62.26 38.84 17.00 33.48 20.98 7.68
Generated Knowledge 19.41 23.15 10.56 38.81 43.43 31.23 35.13 14.42 0.00 45.89 27.98 9.48 62.14 38.79 17.57 22.67 16.72 6.26
KAPING (Ours) 52.28 55.27 48.04 62.85 66.11 58.53 67.67 23.16 0.00 60.37 32.89 8.34 73.89 43.15 20.67 47.94 27.28 12.36

WebQSP
w/ Wikidata

No Knowledge 24.56 24.20 10.98 44.20 49.27 37.65 42.41 16.43 0.00 48.50 24.01 3.96 67.60 34.31 10.30 32.85 18.09 5.84
Random Knowledge 28.85 33.08 22.37 47.68 52.34 42.50 55.63 19.88 0.06 52.05 25.37 2.18 60.64 36.88 13.92 38.27 21.49 7.41
Popular Knowledge 24.83 27.89 16.03 48.02 52.84 41.88 53.92 19.77 0.00 47.41 24.36 3.75 63.37 37.08 14.73 34.83 20.78 6.96
Generated Knowledge 22.92 25.28 11.80 41.34 45.70 33.83 31.16 13.36 0.00 48.77 29.72 11.19 65.89 39.52 17.87 26.42 17.56 6.80
KAPING (Ours) 49.86 50.75 41.27 58.73 61.90 53.27 65.04 22.72 0.00 60.44 31.18 6.82 69.58 41.83 19.71 50.69 27.01 11.05

Mintaka
w/ Wikidata

No Knowledge 14.75 20.84 11.34 23.74 28.69 20.86 41.97 17.05 0.00 34.65 17.67 2.31 56.33 26.77 6.11 26.16 14.99 3.76
Random Knowledge 16.10 23.08 14.14 26.15 31.70 22.85 46.02 17.02 0.00 32.98 17.55 1.39 51.56 25.98 6.29 28.22 16.92 4.14
Popular Knowledge 16.74 23.13 14.53 27.15 32.17 23.45 46.41 17.31 0.00 32.48 20.07 4.41 53.16 27.44 6.86 27.95 17.14 4.54
Generated Knowledge 14.46 20.08 11.98 23.13 27.34 18.76 34.58 14.91 0.00 33.12 18.29 3.09 55.65 30.69 11.73 22.41 14.20 4.15
KAPING (Ours) 20.68 27.80 18.12 29.50 34.83 26.23 49.08 17.90 0.00 35.61 20.80 5.79 56.86 28.63 7.64 32.27 18.86 5.31

Table 8: LM prompting results with additional metrics: F1 and Exact Match (EM), along with accuracy (Acc.) scores.

in Figure 3. Therefore, to improve the performance
on incorrect retrievals, we further experiment with
the additional template: "Below are facts in the
form of the triple that might be meaningful to
answer the question.". Then, the GPT-3 (175B)
model with the previous template achieves 74.16
and 42.80 accuracies for correct and incorrect re-
trievals, respectively. Meanwhile, the same model
with the instruction template containing "might be"
achieves 72.91 and 51.38 accuracies for correct and
incorrect retrievals, respectively. Thus, these re-
sults suggest that the knowledge-injection template
with "might be" statement makes the model less
selective on the augmented triples while focusing
more on the internalized knowledge in parameters,
thus improving the incorrect retrieval performance
while degenerating the correct retrieval.

B.3 Additional Evaluation Metrics

As described in Section 4.4, we evaluate the perfor-
mance of LLMs based on whether generated tokens
for the input question contain answer entities or not.
This is because, as explained in Section 6 of the
limitation, pre-trained LLMs without further fine-
tuning tend to generate the answer as the sentence,
while the answer for the KGQA task is the entity
consisting of few tokens. In this subsection, we
further provide experiment results with additional
evaluation metrics (Rajpurkar et al., 2016), namely
F1 and Exact Match (EM) scores. Note that they
are frequently used for evaluating extractive QA

models, whose goal is to classify the answer span in
the given context, without generation. As shown in
Table 8, since the F1 score penalizes the longer sen-
tence too much, the performances of LLMs evalu-
ated by F1 scores are largely decreasing, except for
the T0 model that is further fine-tuned by prompted
text-to-text tasks, including QA, thus capable of
generating entity-level outputs. Similarly, except
for the T0, it is highly suboptimal to evaluate the
performance of prompted LMs with EM scores,
due to differences in output lengths. Thus, it would
be promising direction to further develop better
evaluation metrics for KGQA under LM prompting
schemes, which we leave as future work.

While such F1 and EM scores, used for extrac-
tive QA tasks, might be suboptimal to evaluate
generative LM prompting schemes, our KAPING
framework consistently outperforms all the other
baselines based on averaged F1 and EM scores as
well, by large margins. Note that the superior EM
and F1 scores of the generated knowledge base-
line with GPT-3 on few cases, even though they
are rarely happen, is because, for this baseline, the
GPT-3 model generates entity-level outputs, unlike
ours that generates sentence-level outputs. In other
words, the sentence-level outputs from our KAP-
ING is often longer than the answer entities, since
our model is grounded by retrieved facts from KGs
as shown in Table 15; however, longer sentences
penalize F1 and EM scores. More specifically, the
average number of output sequence lengths of the
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LLMs Models Correct Semi-Correct Incorrect

T0 (3B) No Knowledge 7 1 22
KAPING (Ours) 17 0 13

T0 (11B) No Knowledge 14 0 16
KAPING (Ours) 20 0 10

GPT-3 (6.7B) No Knowledge 12 4 14
KAPING (Ours) 19 4 17

GPT-3 (175B) No Knowledge 22 1 7
KAPING (Ours) 26 1 3

Table 9: Human evaluation results, where we randomly
sample 30 examples from the WebQSP w/ Freebase dataset.

Models Shots T5 (3B) OPT (6.7B) T0 (11B)

No Knowledge
Zero-Shot 18.42 33.77 44.20
One-Shot 18.28 36.90 41.13
Three-Shots 17.87 37.65 37.38

KAPING (Ours)
Zero-Shot 40.38 53.34 58.73
One-Shot 18.42 52.25 48.70
Three-Shots 10.16 50.34 43.45

Table 10: KGQA results with few-shot learning. We vary
the number of examples (i.e., shots) in the prompt, and report
the performances on the WebQSP w/ Wikidata dataset.

generated knowledge model is 67.77, meanwhile,
ours is 74.92. However, when we compare the gen-
erated knowledge baseline to our KAPING with
other LLMs but also with other metrics, our KAP-
ING significantly outperforms this baseline.

Human Evaluation Additionally, similar to the
previous generative QA work (Roberts et al., 2020),
we manually inspect 30 samples from the WebQSP
w/ Freebase dataset, to see whether the generated
sentence is factually correct to the input question.
For this experiment, we evaluate four LLMs: T0
(3B), T0 (11B), GPT-3 (6.7B), and GPT-3 (175B),
with no knowledge baseline and our KAPING.
Also, we use three different ratings for each genera-
tion example: 1) we label it as correct if all informa-
tion in the generated sentence is factually correct to
the question; 2) we label it as semi-correct if some
information in the generated sentence is factually
incorrect which yet contains at least one answer
entity; 3) we label it as incorrect for all the other
cases. As shown in Table 9, we observe that our
KAPING framework can generate the factually cor-
rect answer more, compared to the no knowledge
baseline, which are consistent with the results from
available evaluation metrics in Table 1 and Table 8.
We provide generated answers, which we use for
human evaluation in Table 9, for GPT-3 (175B) and
T0 (3B) models in Table 15 and Table 16.

B.4 Performances of Few-Shot Learning

While the focus of our work is zero-shot as outlined
in the main paper, in this subsection, we addition-
ally extend this zero-shot setting to the few-shot

Retrievers MRR Top-1 Top-10 Top-30

Random Retrieval 9.50 3.62 22.58 40.72
Popular Retrieval 8.52 4.57 15.89 35.47
Retrieval with Free-Form Texts 41.33 31.11 62.07 69.92
Retrieval with Triple-Form Texts 43.46 33.36 64.39 70.67

Table 11: Retrieval results with different verbalizers. We
use the graph-to-text transformation model proposed in Ma
et al. (2022) for obtaining free-form texts. For triple-form
texts, we use the verbalization technique described in Sec-
tion 3.2. MPNet (Song et al., 2020) is used as the retriever,
and the performance is reported on WebQSP w/ Wikidata.

Retrievers T5 (3B) OPT (6.7B) T0 (3B) T0 (11B)

No Knowledge 18.42 33.77 24.56 44.20
KAPING with Free-Form Texts 43.25 53.00 47.75 53.21
KAPING with Triple-Form Texts 40.38 53.34 49.86 58.73

Table 12: KGQA results with different verbalizers. We use
the graph-to-text transformation model proposed in Ma et al.
(2022) for obtaining free-form texts. For triple-form texts,
we use the verbalization technique described in Section 3.2.
We then inject the verbalized triples in the input prompt. We
report the generation accuracy on WebQSP w/ Wikidata.

setting, where we prepend the few examples about
the input-output pairs in the prompt of LLMs. As
shown in Table 10, for the KGQA task, the per-
formances are decreasing when we increase the
number of samples (i.e., shots) in the input prompt,
except for the OPT model. We suggest this might
be because, the injected examples in the prompt are
less relevant to the given factual question, mislead-
ing the model to focus on unrelated contexts on the
injected examples. This phenomenon is even more
severe in our KAPING framework; this is similarly
because our KAPING augments the retrieved facts,
and if the facts on the other few-shot examples are
further injected in the input prompt, the model is
more likely to be confused by those irrelevant facts.
For the OPT model, we observe a slight perfor-
mance improvement in the No Knowledge model,
since few injected examples provide a hint on how
the output format looks like. We leave further ex-
tending our zero-shot KAPING framework to the
few-shot learning mechanism as future work.

B.5 Analyses on Knowledge Verbalization
As described in the Knowledge Verbalization para-
graph of Section 3.2, we use the linear triple ver-
balization technique, which simply concatenates
the tokens of subject, relation, and object in the
triple, instead of using the sophisticated techniques
that use the particular graph-to-text transformation
methods (Oguz et al., 2022; Ma et al., 2022). This
is because, we observe that our simple verbaliza-
tion technique works well, and, in this subsection,
we concretely show performance differences be-
tween our and existing verbalization techniques in
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Relative Time
Models # of Augmented Knowledge T5 (0.8B) T5 (3B) T5 (11B) OPT (2.7B) OPT (6.7B) OPT (13B) T0 (3B) T0 (11B)
No Knowledge 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Document (Web)
Augmentation

1 1.20 1.45 2.13 1.43 1.65 1.63 1.60 2.29
5 2.78 4.16 6.80 3.42 3.90 3.66 2.98 9.01
10 OOL OOL OOL 6.44 7.36 6.67 OOL OOL
15 OOL OOL OOL 9.35 10.71 OOM OOL OOL
30 OOL OOL OOL OOL OOL OOL OOL OOL

KAPING (Ours)

1 1.08 0.97 1.35 1.12 1.21 1.19 0.49 1.28
5 1.22 1.50 2.13 1.48 1.65 1.60 0.73 2.18
10 1.53 2.10 3.11 1.89 2.20 2.10 1.07 3.83
15 1.84 2.74 4.02 2.36 2.76 2.58 1.54 4.59
30 2.82 4.42 6.05 3.77 4.28 4.06 2.49 7.76

Table 13: Efficiencies results, where we measure the wall-clock time of every model for generating answers on the WebQSP
w/ Wikidata dataset. The document augmentation model (Lazaridou et al., 2022) augments documents listed in their paper,
meanwhile, ours augments relevant triples to the question retrieved from KGs. We set the maximum number of input sequences
for T5 and T0 models as 1,024, and for OPT as 2,048. OOL denotes the out-of-length errors, where the input prompt length
exceeds the maximum input token lengths. OOM denotes the out-of-memory error on the machine having eight V100 GPUs.

both the knowledge retrieval and injection steps.
Note that, for the comparison, we use the trained
knowledge verbalizer proposed in Ma et al. (2022).

We first provide the fact retrieval performances
across the different knowledge verbalization meth-
ods in Table 11. As shown in Table 11, we observe
that our simple triple-form text verbalization is su-
perior to the free-form text verbalization in the fact
retrieval. This might be because the free-form ver-
balization model, transforming the graph to the text,
might generate the incorrect output that is semanti-
cally different from the original triple, leading to
the degenerated retrieval performances.

On the other hand, we also report the genera-
tion results of KGQA with two different knowl-
edge verbalizers on our KAPING framework in Ta-
ble 12. As shown in Table 12, we observe that the
performances between the free-form texts and the
triple-form texts are comparable when augmented
to LLMs with our KAPING framework. More
specifically, for the T5 model, which is pre-trained
on the unlabeled corpus without additional instruc-
tion tuning, the free-form text works well. Mean-
while, for the T0 model, which is further fine-tuned
with natural language instruction tasks, it is benefi-
cial to use our linear triple verbalizaton scheme.

B.6 Additional Efficiency Comparisons

In this subsection, we further provide efficiency
results of all LLMs that we use in our main ex-
periments across three different models: no knowl-
edge model, document augmentation (i.e., web aug-
mentation) model (Lazaridou et al., 2022), and our
KAPING framework. We note that, as discussed
in the Knowledge-Augmented LMs paragraph of
Section 2, the web augmentation method augments
documents searched from Google with the few-
shot learning setup. However, as we discuss there,
this web augmentation is orthogonal to ours, since
we use the completely different knowledge source

(i.e., KGs) and our work is under the zero-shot
learning setup; from which our core mechanisms
of how to retrieve and augment relevant knowledge
with LM prompting is clearly different and novel.
Furthermore, as discussed in Section 2, this web
augmentation method is infeasible to experimen-
tally compare as well, since individual researches
cannot freely access the Google Search API to re-
trieve documents for every question in the world.
Also, it is computationally expensive to augment
documents consisting of hundreds to thousands to-
kens (Lazaridou et al., 2022) in LLMs, unlike our
triple cases consisting of few tokens. In this sub-
section, to experimentally validate the latter issue,
we further make the comparisons of computational
costs between document augmentation and our fact
augmentation. In particular, as shown in Table 13,
the answer generation speed of the web augmen-
tation mechanism is significantly slower than our
triple augmentation mechanism, since it requires
more time to encode and condition documents in
the input prompt compared to triples. Also, fol-
lowing the original paper (Lazaridou et al., 2022),
the suggested number of documents to augment is
15, however, in the most cases, we observe out-of-
length (OOL) errors, since the length of the input
prompt with 15 documents is longer than the maxi-
mum input sequence length of LLMs. While our
fact augmentation scheme is slower than the model
without augmentation, we believe that, given the
substantially improved performance in Table 1 and
the high efficiency compared to document augmen-
tation in Table 13, KAPING is highly beneficial.

B.7 Result Analyses Across Question Types

For the Mintaka dataset (Sen et al., 2022), each
question is belong to one of the following cate-
gories: Generic, Multihop, Intersection, Differ-
ence, Comparative, Superlative, Ordinal, Count,
and Yes/No, which defines the complexity of ques-
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tions. Therefore, to see which complexity category
our knowledge-augmentation framework is helpful,
and which category we should further improve on,
we breakdown the performance of LLMs according
to question types in Table 14. Note that, following
the evaluation protocol in Section A.3 where we
filter out questions that do not have answer names,
the Yes/No type questions are not considered.

As shown in the last row of Table 14 where we
average the performance of all LLMs per category,
our KAPING framework brings significant perfor-
mance improvements on all categories except for
the Comparative type. One particular comparative-
type question is "Who has won more NBA Season
MVPs, LeBron James or Steph Curry", and, since it
is hard to retrieve and associate relevant triples for
such the comparative-type question, our KAPING
underperforms simple knowledge-injection base-
lines: random knowledge and popular knowledge.
However, the KG-augmented models (e.g., random
knowledge, popular knowledge, and our KAPING)
outperform other baselines, which suggests that
knowledge-augmentation mechanism is meaning-
ful to tackle comparative questions, and one might
further improve the retrieval scheme or the input
prompt itself, which we leave as future work.

On the other point we would like to mention
is that, for the Count category, performances of
T0 models are significantly low compared to other
LLMs. This is surprising, since T0 models are fur-
ther fine-tuned on the prompted text-to-text tasks,
and they have strong performances on the other cat-
egories, thanks to fine-tuning. We believe such
the low performance on the Count category is
because, in the fine-tuning of T0 models, there
are no prompted tasks related to counting, which
makes T0 models hard to count particular instances.
Therefore, to further improve the generalization
performance of T0 models, one may additionally
include more diverse prompted tasks, including the
counting one, during the fine-tuning process.

B.8 Generation Examples

We provide generation examples for comparisons
between the no knowledge baseline and our KAP-
ING framework in Table 15 and Table 16 for GPT-
3 and T0 language models, respectively. We also
provide retrieved and generation examples of our
KAPING framework with four different LLMs: T5
(11B), OPT (13B), T0 (11B), and GPT-3 (175B)
on the WebQSP w/ Wikidata dataset in Table 17.

C Discussions on Prompt Design/Tuning

We discuss differences between prompt design and
prompt tuning, along with additional relevant work
in the prompt tuning literature. As described in
Section 3.1, given an input question, the large lan-
guage model can generate the answer text, which is
called LM prompting (Brown et al., 2020; Liu et al.,
2021). However, to further enhance the perfor-
mance of models under the LM prompting scheme,
prior work particularly designs the content in the
prompt, which is called prompt design (Shin et al.,
2020; Lu et al., 2022). More specifically, Shin et al.
(2020) additionally include the particular trigger
tokens, meaningful to the down-stream tasks, in the
prompt, and Lu et al. (2022) change the order of
demonstrations in the prompt under the few-shot
LM prompting setup. Our method is in line with
such the prompt design literature, and we introduce
the method of knowledge augmentation in the in-
put prompt with facts from KGs, to allow LLMs
condition on factual knowledge for zero-shot QA.

On the other hand, there exists prompt tuning
literature (Lester et al., 2021a), which additionally
trains the prompt-relevant parameters with super-
vised learning objectives, while keeping the pa-
rameters of LLMs unchanged. While this prompt
tuning approach can be beneficial in few-shot learn-
ing scenarios where the model is additionally tuned
with few training examples, it is not suitable for our
zero-shot learning. Also, unlike the prompt design
approach, it is difficult to interpret and manipulate
the prompt represented in the embedding space.

Note that, recently, there are few knowledge-
aware prompt tuning work (Chen et al., 2022b; Hu
et al., 2022; Chen et al., 2022a), and, while they are
fundamentally different from our LM prompting
(i.e., prompt design), we additionally discuss them.
First of all, Chen et al. (2022b) tackle the relation
extraction problem with prompt tuning, where they
propose to embed the particular words related to the
relation class in the embedding space. For example,
for the relation type to classify: "county of birth",
they embed person and country information in the
representation space with training signals from su-
pervised learning, for improved relation classifica-
tion performance. Also, Hu et al. (2022) tackle the
text classification task with prompt tuning, where
they propose to not only consider the classifica-
tion label word itself, but also the label word’s
related words. For example, for the sentence label
"science", they further consider its related words:
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"physics" and "mathematics", defined in particular
knowledge bases, such as WordNet (Pedersen et al.,
2004) and ConceptNet (Speer et al., 2017). Lastly,
Chen et al. (2022a) tackle the similar text classifica-
tion task with prompt tuning, where they propose
to retrieve the data instance (i.e., a sentence and its
label) in the training dataset based on the retriever
training with supervised classification objectives.

However, all the above knowledge-aware prompt
tuning methods are clearly different from our pro-
posed KAPING framework. At first, they are re-
stricted to cloze-style prediction, in which they
first include the particular mask token in the in-
put prompt, and then classify the label (e.g., senti-
ment of the sentence, or relation in the given sen-
tence) of the mask token, similar to the masked
language modeling objective (Devlin et al., 2019;
Liu et al., 2019). Therefore, their cloze-style pre-
diction schemes cannot be used for QA tasks, since
the answer of the user’s question is not the single
token, and it is unclear to convert the predicted
label token from the masked token to all differ-
ent answers in the world. In contrast to them, our
KAPING does not rely on the masked token clas-
sification scheme, thus ours is more flexible, and
not restricted to cloze-style classification; suitable
for answering any user’s questions. Furthermore,
some of them (Chen et al., 2022a,b) rely on training
signals from the training dataset with supervised
learning, meanwhile, ours is completely zero-shot.
While Chen et al. (2022a) show the model’s zero-
shot ability, they require the training dataset as
discussed in their paper, thus not suitable for our
zero-shot QA as well. Lastly, we augment the
factual knowledge by matching the entity in the
question to its associated triples in KGs, however,
prior work considers different knowledge source,
which might not be helpful for QA tasks, such as
relationships between words (Hu et al., 2022), rela-
tionships between the relation class and particular
words (Chen et al., 2022b), and a pair of sentence
and its label in training data (Chen et al., 2022a).
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LLMs Models Generic (557) Multihop (220) Intersection (396) Difference (349) Comparative (223) Superlative (384) Ordinal (307) Count (378)

T5 (0.8B)

No Knowledge 7.00 3.64 8.08 7.45 69.06 2.86 2.61 10.05
Random Knowledge 11.49 5.45 8.33 11.75 86.10 6.77 8.14 26.98
Popular Knowledge 13.82 5.91 11.62 8.60 87.00 8.33 5.86 22.22
Generated Knowledge 7.72 2.73 5.81 8.02 82.06 3.39 1.95 21.43
KAPING (Ours) 18.85 6.36 15.40 10.32 83.41 9.64 7.49 24.60

T5 (3B)

No Knowledge 10.41 4.09 9.60 9.74 71.30 5.47 4.56 17.99
Random Knowledge 17.41 6.82 13.64 14.61 55.16 8.59 7.82 30.42
Popular Knowledge 14.90 6.82 14.90 13.75 57.40 8.85 10.75 28.84
Generated Knowledge 7.90 3.64 8.33 8.31 82.51 4.69 3.91 21.96
KAPING (Ours) 25.31 12.27 20.96 15.76 47.98 10.68 9.77 35.71

T5 (11B)

No Knowledge 10.23 5.00 10.35 8.60 92.83 7.55 3.58 24.87
Random Knowledge 20.29 7.27 11.87 12.89 60.99 10.68 9.12 27.51
Popular Knowledge 16.88 7.27 12.88 13.18 72.20 9.11 10.42 24.34
Generated Knowledge 7.72 2.73 5.30 7.45 89.24 3.91 2.28 22.49
KAPING (Ours) 24.42 8.64 18.69 16.05 65.92 11.98 11.07 34.66

OPT (2.7B)

No Knowledge 24.06 10.00 16.67 10.32 54.26 20.05 14.98 14.29
Random Knowledge 29.44 13.18 23.74 18.34 93.27 15.62 14.01 34.13
Popular Knowledge 28.90 14.09 20.45 18.62 90.58 12.76 13.36 34.13
Generated Knowledge 7.90 6.82 10.35 8.02 44.84 4.19 4.56 20.11
KAPING (Ours) 33.75 15.91 34.85 20.63 93.27 15.89 19.54 43.65

OPT (6.7B)

No Knowledge 29.62 12.73 37.37 20.06 62.78 20.83 22.80 16.93
Random Knowledge 23.52 14.09 19.44 20.92 89.69 13.02 15.31 36.77
Popular Knowledge 24.42 13.18 24.24 22.92 83.86 14.84 17.26 32.80
Generated Knowledge 11.67 8.64 16.92 12.61 43.95 7.55 6.51 20.90
KAPING (Ours) 33.39 11.36 33.08 20.92 87.44 17.19 20.2 45.77

OPT (13B)

No Knowledge 33.57 16.82 34.85 18.91 48.43 19.27 19.22 22.75
Random Knowledge 31.60 17.27 26.77 23.78 59.19 16.93 20.85 35.45
Popular Knowledge 22.98 13.64 24.49 18.34 59.64 11.72 12.05 30.69
Generated Knowledge 17.95 10.00 19.44 12.03 47.98 8.07 9.77 12.70
KAPING (Ours) 40.04 17.27 35.61 23.50 56.05 19.53 27.36 45.24

T0 (3B)

No Knowledge 13.82 10.00 14.39 10.89 49.33 14.06 8.79 7.94
Random Knowledge 19.57 9.09 15.66 12.32 58.30 8.59 9.77 6.88
Popular Knowledge 19.21 10.00 18.69 12.03 60.09 8.33 8.79 8.73
Generated Knowledge 13.11 11.36 12.63 12.61 54.71 12.50 10.10 3.70
KAPING (Ours) 29.98 10.45 26.01 12.32 55.16 12.24 11.40 10.85

T0 (11B)

No Knowledge 33.93 18.18 33.08 18.05 54.71 19.53 13.68 1.59
Random Knowledge 36.98 22.27 34.60 21.78 58.74 18.75 19.22 1.59
Popular Knowledge 38.42 24.09 38.64 24.36 58.74 17.45 18.57 1.06
Generated Knowledge 33.21 17.73 34.09 17.48 51.12 18.23 14.33 0.79
KAPING (Ours) 45.60 27.27 41.16 22.35 56.05 18.75 23.45 1.59

GPT-3 (6.7B)

No Knowledge 40.39 28.18 34.34 24.36 74.44 26.04 24.76 33.07
Random Knowledge 39.68 26.82 30.05 23.78 77.13 19.53 23.13 33.86
Popular Knowledge 40.57 25.00 32.83 22.64 70.85 21.35 21.17 31.48
Generated Knowledge 40.75 23.64 33.59 28.08 71.75 20.83 22.15 30.16
KAPING (Ours) 46.14 24.09 33.33 24.36 77.58 19.53 24.76 35.71

GPT-3 (175B)

No Knowledge 71.10 52.73 64.90 49.00 80.72 42.45 50.81 38.62
Random Knowledge 62.30 46.82 56.31 43.55 86.10 38.54 48.21 36.51
Popular Knowledge 68.40 54.09 58.84 46.42 81.61 37.76 47.88 33.60
Generated Knowledge 70.56 56.82 64.14 48.14 85.65 44.79 49.19 29.63
KAPING (Ours) 69.48 56.36 63.89 48.14 82.96 45.57 49.84 41.01

Average

No Knowledge 27.41 16.14 26.36 17.74 65.79 17.81 16.58 18.81
Random Knowledge 29.23 16.91 24.04 20.37 72.47 15.70 17.56 27.01
Popular Knowledge 28.85 17.41 25.76 20.09 72.20 15.05 16.61 24.79
Generated Knowledge 21.85 14.41 21.06 16.28 65.38 12.82 12.48 18.39
KAPING (Ours) 36.70 19.00 32.30 21.44 70.58 18.10 20.49 31.88

Table 14: Results across question types – Generic, Multihop, Intersection, Difference, Comparative, Superlative, Ordinal, and
Count – in the Mintaka dataset with various LLMs, where we report the generation accuracy. The number inside the parentheses
in the first row denotes the number of data instances per category. We provide averaged results in the last row, namely Average.
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Table 15: Generation examples of GPT-3 (6.7B) on the WebQSP w/ Freebase dataset, where we randomly sample 30 examples.

Index Question Answer Entities No Knowledge KAPING

1 who is tatyana ali parents? [Sheriff Ali, Sonia Ali] Tatyana Ali’s parents are unknown. Tatyana Ali’s parents are Sheriff Ali

and Sonia Ali.

2 what language do most

australians speak?

[English Language, Esperanto

Language, Lojban]

Most Australians speak English. Most Australians speak English.

3 who played darth vader in

the first movie?

[David Prowse, James Earl

Jones]

James Earl Jones Mark Hamill

4 who does michael keaton

play in cars?

[Chick Hicks, Chick Hicks] Michael Keaton plays the role of Larry

"Lester" Fenton in Cars.

The role of Michael Keaton in Cars is

that of a voice actor.

5 what was pink floyd’s first

album?

[Psychedelic Session-

compilation album]

The first album released by Pink Floyd

was the self-titled "Pink Floyd" in 1965.

Pink Floyd’s first album was called

"Pink Floyd".

6 where is walton county

ga?

[Atlanta-Sandy Springs-

Marietta, GA Metropolitan

Statistical Area, Georgia]

Walton County is located in Georgia. According to the US Census 2000, Wal-

ton County is located in between 30641

and 30025, in Gratis, Georgia.

7 what kind government

does egypt have?

[Semi-presidential system, Pro-

visional government]

Egypt has a presidential system. Egpyt has a semi-presidential system of

government.

8 where is english spoken

around the world?

[Bahamas, Bangladesh, ...,

United Kingdom, United States

of America, Australia, New

Zealand, Canada]

English is spoken around the world. English is spoken in different countries

around the world. England, United

States of America, United Kingdom

9 who did steve spurrier

play pro football for?

[San Francisco 49ers, Tampa

Bay Buccaneers]

Steve Spurrier played professional foot-

ball for the Tampa Bay Buccaneers

from 1976 to 1978.

St. Louis Rams

10 what kind of music did

franz liszt compose?

[Opera, Romantic music, Art

song, Classical music, Cham-

ber music]

Franz Liszt composed a great deal of

classical music, including symphonies,

operas, and piano sonatas.

Franz Liszt composed both classical

and popular music. Some of his most

famous works include the opera Don

Giovanni, the symphonies Annabella

and Egmont, and the song Totentanz.

11 what was the currency

used in france before the

euro?

[Assignat, French franc] Until the late 1990s, France used the

franc as its official currency.

the currency used in France before the

euro was the French franc.

12 where is the riviera

casino?

[Las Vegas] The Riviera Casino is located in Las

Vegas, NV.

Riviera casino is located on the Las Ve-

gas strip in Nevada.

13 what does wh smith stand

for?

[WHSmith] Whit Smith is an American printing

and publishing company. It exclusively

publishes books for children and young

adults.

William Henry Smith

14 who will play mr gray in

the film?

[Jamie Dornan] Mr. Gray has not been announced, but

it is likely that the role will be played

by a younger actor.

The film will be based on the book

"Fifty Shades of Grey" by E.L. James,

and the character Mr. Grey will be

played by Jamie Dornan.

15 what religions are popular

in france?

[Catholicism] There are a number of religions popular

in France, some of which are Christian-

ity, Islam, Hinduism, and Judaism.

According to the 2016 census, 51.6%

of the population of France identify as

Christians, including 35.9% who iden-

tify as Catholic and 14.4% as Protes-

tant. The remaining 5.1% of the popu-

lation identify with other religions. Fur-

thermore, according to the 2012 census,

French is the language most commonly

spoken at home by the population of

France. It is also the language most

commonly spoken in the administrative

regions of metropolitan France, with

Italian second and French Creole third.

16 who did nasri play for be-

fore arsenal?

[Olympique de Marseille] he played for Universidad de Chile and

Monaco before joining Arsenal in 2011.

Samir Nasri played for different teams

before Arsenal, including Manchester

City and Marseille.

Continued on the next page
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Table 15 – Continued from the previous page

Index Question Answer Entities No Knowledge KAPING

17 who plays ziva david on

ncis?

[Cote de Pablo] Ziva David is played by Sandra Oh. Ziva David is played by actress Debra

Messing in the NBC television series

NCIS.

18 where did adolf hitler die? [Berlin] Adolf Hitler died in his home town of

Braunau am Inn, Austria on April 30,

1945, days before German forces un-

conditionally surrendered in World War

II.

Adolf Hitler committed suicide in

Berlin, Germany.

19 what was hitler the leader

of?

[Hitler Youth, Gestapo, 1st

SS Panzer Division Leibstan-

darte SS Adolf Hitler, Nazi

Party, Schutzstaffel, Waffen-SS,

Wehrmacht, Sturmabteilung]

Hitler was the leader of Nazi Germany,

which was a fascist dictatorship in Eu-

rope during the 1930s and 1940s.

The leader of Nazi Germany was Adolf

Hitler.

20 what types of art did andy

warhol do?

[Modern art, Pop art] Andy Warhol did a variety of art, includ-

ing paintings, sculptures, and prints.

visual_art.visual_artist.artworks, men

in her life

21 who owns the portland

press herald?

[Blethen Maine Newspapers,

Inc.]

The Portland Press Herald is not owned

by any specific individual or entity. It

is an independent, locally owned news-

paper.

The Portland Press Herald is owned by

the Blethen Maine Newspapers, Inc.

22 where was the vietnam

war location?

[Vietnam, Cambodia, Laos,

Southeast Asia, South Vietnam,

North Vietnam]

The Vietnam War was fought in Viet-

nam, Cambodia, and Laos

The Vietnam War was fought in Cam-

bodia, Laos, North Vietnam, and South

Vietnam.

23 who was isaac newton and

what did he do?

[Chemist, Philosopher, Math-

ematician, Physicist, Scientist,

Astronomer]

Isaac Newton was a physicist, mathe-

matician, astronomer, and author of the

Newtonian Theory of Motion. He is

most famous for his three laws of mo-

tion and his theory of universal gravita-

tion.

Isaac Newton was a scientist, mathe-

matician, and philosopher.

24 what standard time is

michigan?

[UTC-05:00, Central Time

Zone, Eastern Time Zone]

Daylight Saving Time is in effect in

Michigan from the first Sunday in April

to the last Sunday in October.

Michigan is in the Eastern Time Zone.

25 what is the kentucky state

bird?

[Cardinal] The Kentucky state bird is the cardinal. The kentucky state bird is the pigeon.

26 what do people in jamaica

speak?

[Jamaican English, Jamaican

Creole English Language, Ja-

maican English]

people in Jamaica speak English. Jamaican Creole English Language

27 who wrote the jana gana

mana?

[Ram Singh Thakur, Ra-

bindranath Tagore]

The author of the Jana Gana Mana is

unknown.

Jana Gana Mana was written by the

composer Ram Singh Thakur.

28 what is the currency of the

czech republic?

[Czech koruna] The Czech Republic currency is the

Czech koruna.

The currency of the Czech Republic is

the Czech koruna.

29 what highschool did

harper lee go to?

[Monroe County High School] Harper Lee attended the Monroeville,

Alabama high school.

Harper Lee attended Monroeville High

School.

30 what did michael crabtree

do?

[Wide receiver, Athlete, Amer-

ican football player, Wide re-

ceiver]

Michael Crabtree is a former football

player who played for the Baltimore

Ravens. Crabtree caught a pass in the

end zone to tie the game against the San

Francisco 49ers in the final seconds of

the game in 2013.

He is an American football player.
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Table 16: Generation examples of T0 (3B) on the WebQSP w/ Freebase dataset, where we randomly sample 30 examples.

Index Question Answer Entities No Knowledge KAPING

1 who is tatyana ali parents? [Sheriff Ali, Sonia Ali] ali is the daughter of ali khan and

tatyana ali

Sheriff Ali

2 what language do most

australians speak?

[English Language, Esperanto

Language, Lojban]

Australian English English Language

3 who played darth vader in

the first movie?

[David Prowse, James Earl

Jones]

Darth Vader George Lucas

4 who does michael keaton

play in cars?

[Chick Hicks, Chick Hicks] a narrator George A. Douglas

5 what was pink floyd’s first

album?

[Psychedelic Session-

compilation album]

The Pink Floyd album Pink Floyd

6 where is walton county

ga?

[Atlanta-Sandy Springs-

Marietta, GA Metropolitan

Statistical Area, Georgia]

Walton County is a county in the U.S.

state of Ohio.

Walton County, Georgia

7 what kind government

does egypt have?

[Semi-presidential system, Pro-

visional government]

government Semi-presidential system

8 where is english spoken

around the world?

[Bahamas, Bangladesh, ...,

United Kingdom, United States

of America, Australia, New

Zealand, Canada]

The English language is spoken by ap-

proximately 6.1 million people in the

United Kingdom, with the remainder

in the United States, Canada, Australia,

New Zealand, Canada, and the United

States Virgin Islands.

England

9 who did steve spurrier

play pro football for?

[San Francisco 49ers, Tampa

Bay Buccaneers]

the New York Giants the New York Giants

10 what kind of music did

franz liszt compose?

[Opera, Romantic music, Art

song, Classical music, Cham-

ber music]

classical Art song

11 what was the currency

used in france before the

euro?

[Assignat, French franc] The pound was used in France before

the euro.

French franc

12 where is the riviera

casino?

[Las Vegas] Riviera Maya, Mexico Las Vegas

13 what does wh smith stand

for?

[WHSmith] smith is a scottish slang word for a

smith

William Henry Smith

14 who will play mr gray in

the film?

[Jamie Dornan] Corey Haim Christian Grey

15 what religions are popular

in france?

[Catholicism] Roman Catholicism Protestantism

16 who did nasri play for be-

fore arsenal?

[Olympique de Marseille] Arsenal Arsenal

17 who plays ziva david on

ncis?

[Cote de Pablo] sarah savage Donald P. Bellisario

18 where did adolf hitler die? [Berlin] in a concentration camp Berlin

19 what was hitler the leader

of?

[Hitler Youth, Gestapo, 1st

SS Panzer Division Leibstan-

darte SS Adolf Hitler, Nazi

Party, Schutzstaffel, Waffen-SS,

Wehrmacht, Sturmabteilung]

the Nazi Party World War I

20 what types of art did andy

warhol do?

[Modern art, Pop art] art visual art.visual_artist.artworks, Men in

Her Life

21 who owns the portland

press herald?

[Blethen Maine Newspapers,

Inc.]

The Portland Press Herald is a local, in-

dependent newspaper based in Portland,

Oregon, United States.

Blethen Maine Newspapers

Continued on the next page
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Table 16 – Continued from the previous page

Index Question Answer Entities No Knowledge KAPING

22 where was the vietnam

war location?

[Vietnam, Cambodia, Laos,

Southeast Asia, South Vietnam,

North Vietnam]

Vietnam War Vietnam

23 who was isaac newton and

what did he do?

[Chemist, Philosopher, Math-

ematician, Physicist, Scientist,

Astronomer]

was a british physicist physicist

24 what standard time is

michigan?

[UTC-05:00, Central Time

Zone, Eastern Time Zone]

Standard time is local time in the United

States.

Midwestern United States

25 what is the kentucky state

bird?

[Cardinal] a red-winged blackbird Pigeon

26 what do people in jamaica

speak?

[Jamaican English, Jamaican

Creole English Language, Ja-

maican English]

People in Jamaica speak English Jamaican Creole English Language

27 who wrote the jana gana

mana?

[Ram Singh Thakur, Ra-

bindranath Tagore]

the author of the jana gana mana is a

poet

Rabindranath Tagore

28 what is the currency of the

czech republic?

[Czech koruna] the czech koruna Czech koruna

29 what highschool did

harper lee go to?

[Monroe County High School] Harper Lee High School Monroeville High School

30 what did michael crabtree

do?

[Wide receiver, Athlete, Amer-

ican football player, Wide re-

ceiver]

did not have a job American football player
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Table 17: Generation examples of our KAPING framework with four different models: T5 (11B), OPT (13B), T0 (11B), and
GPT-3 (175B) on the WebQSP w/ Wikidata dataset. Note that the answer entities are labeled entities in the test dataset.

Index Question Retrieved Triples Answer Entities Generated Answers

1

what is the name of

the currency used in

china?

(People’s Republic of China, currency, renminbi),

(People’s Republic of China, short name, text: Chine),

(People’s Republic of China, short name, text: Chiny),

(People’s Republic of China, language used, Chinese),

(People’s Republic of China, central bank, People’s

Bank of China), (People’s Republic of China, language

used, China Buriat), (People’s Republic of China,

demonym, text: Chinesin), (People’s Republic of

China, language used, Jingpho), (People’s Republic of

China, language used, Langnian Buyang), (People’s

Republic of China, language used, Then)

[Renminbi]

T5: Renminbi

OPT: Renminbi

T0: renminbi

GPT-3: The name of the currency used in

china is renminbi.

2

what does george

wilson do for a

living?

(George Wilson, country of citizenship, United States

of America), (George Wilson, occupation, American

football player), (George Wilson, sex or gender, male),

(George Wilson, given name, George), (George

Wilson, instance of, human), (George Wilson, place of

birth, Paducah), (George Wilson, member of sports

team, Arkansas Razorbacks football), (George Wilson,

member of sports team, Detroit Lions), (George

Wilson, member of sports team, Buffalo Bills),

(George Wilson, educated at, Paducah Tilghman High

School)

[American

football player]

T5: Wilson, George was born on August

10, 1972 in Paducah, Kentucky. He is an

American football player.

OPT: George Wilson is an American foot-

ball player.

T0: American football player

GPT-3: George Wilson is an American

football player.

3
what was augustus

caesar famous for?

(Augustus, Roman cognomen, Caesar), (Augustus,

father, Julius Caesar), (Augustus, occupation, Ancient

Roman politician), (Augustus, child, Lucius Caesar),

(Augustus, child, Gaius Caesar), (Augustus, Roman

cognomen, Caepias), (Augustus, relative, Julius

Caesar), (Augustus, Roman praenomen, Gaius),

(Augustus, father, Gaius Octavius), (Augustus, family,

Julii Caesares)

[Roman emperor,

Politician]

T5: Augustus was a Roman politician who

ruled from 14 BC to 14 AD. He was the

son of Gaius Octavius and Octavia. He

was the first emperor of the Roman Em-

pire.

OPT: Augustus Caesar was famous for

being the first Roman emperor.

T0: He was the first Roman Emperor

GPT-3: Augustus Caesar was famous for

being the first Roman Emperor.

4

what document did

james madison

write?

(James Madison, described by source, Obalky

knih.cz), (James Madison, described by source, The

Nuttall Encyclopædia), (James Madison, Commons

Creator page, text: James Madison), (James Madison,

writing language, English), (James Madison, described

by source, Brockhaus and Efron Encyclopedic

Dictionary), (James Madison, notable work, Federalist

Papers), (James Madison, occupation, statesperson),

(James Madison, occupation, writer), (James Madison,

described by source, Library of the World’s Best

Literature), (James Madison, position held, President

of the United States)

[Federalist

Papers]

T5: federalist papers

OPT: I think the answer is "The Federalist

Papers"

T0: Federalist Papers

GPT-3: the Federalist Papers

5

where did george

michael go to

school?

(George Michael, educated at, Bushey Meads School),

(George Michael, occupation, singer), (George

Michael, occupation, singer-songwriter), (George

Michael, place of birth, East Finchley), (George

Michael, occupation, record producer), (George

Michael, occupation, multi-instrumentalist), (George

Michael, occupation, recording artist), (George

Michael, occupation, composer), (George Michael,

occupation, songwriter), (George Michael, country of

citizenship, United Kingdom)

[Bushey Meads

School]

T5: . Question: where did george michael

go to school? Answer: bushey meads

school

OPT: Bushey Meads School

T0: Bushey Meads School

GPT-3: Bushey Meads School
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6
what college did

joakim noah?

(Joakim Noah, educated at, University of Florida),

(Joakim Noah, educated at, Lawrenceville School),

(Joakim Noah, educated at, United Nations

International School), (Joakim Noah, educated at, Poly

Prep Country Day School), (Joakim Noah, sport,

basketball), (Joakim Noah, league, National Basketball

Association), (Joakim Noah, league, NCAA Division I

men’s basketball), (Joakim Noah, member of sports

team, Florida Gators men’s basketball), (Joakim Noah,

member of sports team, Florida Gators men’s

basketball), (Joakim Noah, league, NBA G League)

[University of

Florida]

T5: Joakim Noah, college, University of

Florida

OPT: University of Florida Question:

what sport did joakim noah? Answer: bas-

ketball Question: what league did joakim

noah? Answer: NBA

T0: University of Florida

GPT-3: Joakim Noah attended the Univer-

sity of Florida.

7
where does tim

cook work?

(Tim Cook, occupation, businessperson), (Tim Cook,

occupation, engineer), (Tim Cook, occupation,

computer scientist), (Tim Cook, place of birth,

Mobile), (Tim Cook, occupation, chief executive

officer), (Tim Cook, described by source, Lentapedia),

(Tim Cook, country of citizenship, United States of

America), (Tim Cook, employer, Apple Inc.), (Tim

Cook, residence, Palo Alto), (Tim Cook, educated at,

Fuqua School of Business)

[Apple Inc.]

T5: Tim Cook, educated at, Fuqua School

of Business Question: where does tim

cook work? Answer: Tim Cook, resi-

dence, Palo Alto Question: where does

tim cook work? Answer: Tim Cook, em-

ployer, Apple Inc.

OPT: I think the answer is "Apple Inc."

T0: Apple Inc.

GPT-3: Tim Cook works at Apple Inc.

8

what is the political

system of south

africa?

(South Africa, basic form of government,

representative democracy), (South Africa, basic form

of government, parliamentary republic), (South Africa,

Democracy Index, quantity: +7.05 - unit: 1), (South

Africa, Democracy Index, quantity: +7.24 - unit: 1),

(South Africa, Democracy Index, quantity: +7.24 -

unit: 1), (South Africa, Democracy Index, quantity:

+7.24 - unit: 1), (South Africa, legislative body,

Parliament of South Africa), (South Africa, executive

body, Government of South Africa), (South Africa,

office held by head of government, State President of

South Africa), (South Africa, member of, Southern

African Development Community)

[Constitutional

republic,

Parliamentary

republic]

T5: Question: what is the political system

of south africa? Answer: Answer: parlia-

mentary republic

OPT: South Africa is a parliamentary re-

public. Question: what is the capital of

south africa? Answer: Pretoria is the capi-

tal of South Africa. Question: what is the

currency of south africa? Answer: South

African Rand. Question: what is the pop-

ulation of south africa? Answer: South

Africa has a population of about 50 mil-

lion. Question: what is the official lan-

guage of south africa? Answer: Afrikaans

is the official language of South Africa.

T0: parliamentary republic

GPT-3: The political system of South

Africa is a parliamentary republic.

9

what record label is

kelly clarkson

signed with?

(Kelly Clarkson, record label, RCA Records), (Kelly

Clarkson, record label, Atlantic Records), (Kelly

Clarkson, record label, Syco Music), (Kelly Clarkson,

record label, 19 Recordings), (Kelly Clarkson,

occupation, record producer), (Kelly Clarkson,

occupation, recording artist), (Kelly Clarkson,

occupation, musician), (Kelly Clarkson, occupation,

singer), (Kelly Clarkson, genre, pop music), (Kelly

Clarkson, given name, Kelly)

[RCA Records,

Sony BMG, Sony

Music

Entertainment, 19

Recordings]

T5: Kelly Clarkson is a singer, song-

writer, and actress. She is signed to RCA

Records, a division of RCA Records.

OPT: 19 Recordings Question: what is

kelly clarkson’s first name? Answer: kelly

Question: what is kelly clarkson’s last

name? Answer: clarkson

T0: RCA Records

GPT-3: RCA Records
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10

what kind of

products does nike

sell?

(Nike, product or material produced, sports

equipment), (Nike, product or material produced,

clothing), (Nike, product or material produced,

footwear), (Nike, industry, retail), (Nike, industry,

clothing industry), (Nike, instance of, brand), (Nike,

subsidiary, Air Jordan product line), (Nike, industry,

industry), (Nike, Commons category, text: Nike, Inc.),

(Nike, subsidiary, Converse)

[Athletic Shoes

& Apparel,

Footwear

Manufacturing,

Fashion accessory,

Sports equipment,

Clothing,

Footwear]

T5: Nike, Inc. is a multinational corpora-

tion headquartered in Beaverton, Oregon,

United States. It is the world’s largest

manufacturer of athletic shoes and apparel,

and the second-largest manufacturer of

sports equipment. It is the world’s largest

sportswear manufacturer, and the world’s

largest manufacturer of footwear for men,

women and children.

OPT: shoes

T0: Footwear

GPT-3: Nike sells products in the cate-

gories of footwear, clothing, and sports

equipment.
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