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Abstract

Saliency maps can explain a neural model’s pre-
dictions by identifying important input features.
They are difficult to interpret for laypeople, es-
pecially for instances with many features. In
order to make them more accessible, we for-
malize the underexplored task of translating
saliency maps into natural language and com-
pare methods that address two key challenges
of this approach – what and how to verbalize.
In both automatic and human evaluation setups,
using token-level attributions from text clas-
sification tasks, we compare two novel meth-
ods (search-based and instruction-based verbal-
izations) against conventional feature impor-
tance representations (heatmap visualizations
and extractive rationales), measuring simulata-
bility, faithfulness, helpfulness and ease of un-
derstanding. Instructing GPT-3.5 to generate
saliency map verbalizations yields plausible ex-
planations which include associations, abstrac-
tive summarization and commonsense reason-
ing, achieving by far the highest human ratings,
but they are not faithfully capturing numeric
information and are inconsistent in their inter-
pretation of the task. In comparison, our search-
based, model-free verbalization approach effi-
ciently completes templated verbalizations, is
faithful by design, but falls short in helpful-
ness and simulatability. Our results suggest
that saliency map verbalization makes feature
attribution explanations more comprehensible
and less cognitively challenging to humans than
conventional representations. 1

1 Introduction

Feature attribution methods, or (input) saliency
methods, such as attention- or gradient-based attri-
bution, are the most prominent class of methods
for generating explanations of NLP model behavior
(Wallace et al., 2020; Madsen et al., 2022) and can
be used to produce word-level importance scores

1Code and data at https://github.com/DFKI-NLP/SMV.

without human supervision (Wallace et al., 2019;
Sarti et al., 2023). A major limitation of saliency
maps is that they require expert knowledge to inter-
pret (Alvarez-Melis et al., 2019; Colin et al., 2022).
Furthermore, Schuff et al. (2022) revealed visual
perception and belief biases which may influence
the recipient’s interpretation.

Natural language explanations (NLEs), on the
other hand, exceed other explainability methods in
plausibility (Lei et al., 2016; Wiegreffe and Pin-
ter, 2019; Jacovi and Goldberg, 2020), accessibil-
ity (Ehsan and Riedl, 2020), and flexibility (Brah-
man et al., 2021; Chen et al., 2023), i.e. they can
be adapted to both different target tasks and dif-
ferent audiences. Most previous approaches in
generating NLEs depend on datasets of human-
annotated text highlights (Zaidan et al., 2007; Lei
et al., 2016; Wiegreffe and Marasović, 2021) or
carefully constructed gold rationales for super-
vised training (Camburu et al., 2020; Wiegreffe
et al., 2022), which are costly to obtain and task-
specific. Alignment of model rationales with very
few human-acceptable gold rationales may raise
issues of trust (Jacovi et al., 2021) and the mod-
els trained on them may suffer from hallucinations
(Maynez et al., 2020).

In this work, we revisit and formalize the task
of verbalizing saliency maps, i.e. translating the
output of feature attribution methods into natural
language (Forrest et al., 2018; Mariotti et al., 2020;
Slack et al., 2022). Verbalizations can describe
relations between words and phrases and their as-
sociated saliency scores. Contrary to conventional
heatmap visualizations, we can adjust the compre-
hensiveness of an explanation more precisely and
infuse it with additional semantics such as word
meanings, concepts, and context about the task.

We find that verbalization also comes with a
few caveats: Similar to human explainers, who
communicate only the most relevant explanations
to avoid cognitive overload of the recipient (Hilton,
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Figure 1: Heatmap visualizations generated by the Integrated Gradients feature attribution method explaining the
predictions of a BERT model: Correct classifications of an instance from AG News (top) as Business and an instance
from IMDb (bottom) as Negative sentiment. Tokens with red backgrounds have higher importance scores, while
blue backgrounds indicate the contrast case. Two verbalizations (SMVs) are depicted in the center of the figure: The
left (yellow) is produced by our model-free approach, while the right (blue) is produced by GPT-3.5. The predicted
labels are highlighted in cyan and italic. The model-generated verbalization conveys semantic information such as
associations with the target label (Business) and reasoning that is disconnected from the underlying model. GPT-3.5
wrongly deems two of the least attributed tokens salient (“group” and “growth”, highlighted in red).

2017; Miller, 2019), verbalization methods need to
address the problem of deciding “what” to say, i.e.
selecting the most informative and useful aspects
of the saliency maps and communicating them in
a concise manner. We therefore compare different
methods for verbalizing saliency maps: Supervised
rationales, prompting LLMs, and model/training-
free templates.

We address the problem of saliency map verbal-
ization (SMV) with the following contributions:
• We formalize the underexplored task of SMV and

establish desiderata, i.e. simulatability, explainer-
faithfulness, plausibility, and conciseness (§2.1);

• We conduct a comparative study on various rep-
resentations of feature attribution in two text clas-
sification setups, measuring the effects of verbal-
izations methods on both automated (explainer-
faithfulness) and human evaluation metrics (sim-
ulatability, helpfulness, ease of understanding)
(§3, §5).

• We propose a novel, model-free, template-based
SMV approach, and design instructions for
GPT-3.5-generated SMVs (§4) (examples from
our two setups are depicted in Fig. 1);

• We show that model-free SMVs perform slightly
better than heatmaps and extractive rationales on

ease of understanding and are faithful by design,
while instruction-based SMVs achieve the high-
est average simulation accuracy and are preferred
in subjective ratings (§6);

• We publish a large dataset of model-free and
GPT-generated SMVs alongside extractive ratio-
nales and results from both evaluations, and open-
source code to produce all kinds of SMVs.

2 Verbalizing saliency maps

2.1 Formalization
The setup of the saliency map verbalization
task consists of an underlying (to-be-explained)
model m whose prediction ŷ ⊂ Y on source to-
kens W = w1 . . . wn we want to explain (against
the set of possible outcomes Y ).
m is equipped with a feature explanation

method (or short: explainer) e which produces
a saliency map S = s1 . . . sn:

e(W,m) = S (1)

Here, we call token wi salient towards out-
come y if its associated saliency score si > 0 and
salient against y for si < 0. e can have many
sources, e.g. gradient-based methods such as Inte-
grated Gradients (Sundararajan et al., 2017) which
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we employ in our experiments (§5), or even human
experts assigning relevance scores.

A verbalized saliency map SV is produced by
some verbalizer v that receives the output of e:

v(W,S) = SV (2)

v can be any function that discretizes attribution
scores and constructs a natural language represen-
tation SV. This is connected to the concept of hard
selection in DeYoung et al. (2020) and heuristics
for discretizing rationales (Jain et al., 2020). In the
taxonomy of Wiegreffe and Marasović (2021), ver-
balized saliency maps can be categorized as free-
text rationales with varying degrees of structure
imposed through templates. Moreover, verbalized
explanations are procedural and deterministic by
nature, i.e. they function as instructions that one
can directly follow (Tan, 2022) to understand a
model’s decision, similar to compositional expla-
nations (Hancock et al., 2018; Yao et al., 2021).

2.2 Desiderata

In the following, we outline the common evalua-
tion paradigms for explanations (faithfulness, sim-
ulatability, plausibility) and how we adapt them to
saliency map verbalizations.

Faithfulness Saliency maps express that “cer-
tain parts of the input are more important to the
model reasoning than others” (linearity assumption
in Jacovi and Goldberg (2020)). For verbalizations,
explainer e and verbalizer v are two separate pro-
cesses, so the saliency map S can be seen as static.
Therefore, the faithfulness of e to the model m is
extrinsic to the verbalization. Instead, it is essen-
tial to faithfully translate S into natural language,
which we coin explainer-faithfulness. The verbal-
izer breaks faithfulness, e.g. if words are referenced
as salient in SV that are made up (do not appear in
W ) or if the polarity of any si is falsely interpreted.

Simulatability Another type of faithfulness is
the model assumption which requires two mod-
els to “make the same predictions [iff] they use
the same reasoning process” (Jacovi and Goldberg,
2020). By extension this means a model has to
be simulatable (Doshi-Velez and Kim, 2017; Hase
and Bansal, 2020), i.e. a human or another model
should be able to predict a model’s behaviour on
unseen examples while exposed only to the expla-
nation and not the model’s prediction.

Plausibility The plausibility of explanations is
commonly measured by correlation with ground-
truth explanations (DeYoung et al., 2020; Jacovi
and Goldberg, 2020), since gold rationales are in-
fluenced by human priors on what a model should
do.

Conciseness In addition to these paradigms, ver-
bosity is also an important aspect. A full translation
into natural language is nonsensical, however, be-
cause all relations between the continuous-valued
saliency scores and the associated tokens would
normally overload human cognitive abilities. We
want SV to be concise, yet still contain the key
information, similar to sufficiency and comprehen-
siveness measures from DeYoung et al. (2020).
Thus, we define a coverage measure to indicate
how much information is retained going from S
to SV, i.e. how much of the total attribution in
S = s1 . . . sn is referenced by the tokens men-
tioned in SV = v1 . . . vm:

Coverage(SV) =

∑ |vi|
||S|| (3)

The goal here is not to achieve a coverage of 1
with all of S, but depending on the use case, SV
should mention the most influential tokens, so a
trivial solution for k = 5 would be to include the
top k tokens with the highest attribution in S.

3 Study setup

3.1 Human Evaluation

Inspired by previous crowd studies in explainabil-
ity (Chandrasekaran et al., 2018; Strout et al., 2019;
Hase and Bansal, 2020; Sen et al., 2020; González
et al., 2021; Arora et al., 2022; Joshi et al., 2023),
we propose to measure simulatability as well as
ratings for helpfulness and ease of understanding
(plausibility). We evaluate the quality of differ-
ent verbalization methods in a study involving 10
human participants. All participants have a com-
putational linguistics background, with at least a
Bachelor’s degree, limited to no prior exposure to
explainability methods, and are proficient in En-
glish (non-native speakers). After an introduction
to the goal of the study and a brief tutorial, anno-
tators are to complete the tasks described below.
For each task, we present text instances along with
their explanations, using a simple Excel interface.2

2See Appendix C, Figure 7
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Task A: Simulation In the first task, participants
are asked to simulate the model, i.e. predict the
model’s outcome, based only on one type of expla-
nation plus the input text (“What does the model
predict?”). They are given the possible class labels
and were given an example for each dataset in the
tutorial before starting the session. If the explana-
tion does not provide any sensible clues about the
predicted label, they still have to select a label, but
may indicate this in the following question B1.

Task B: Rating In the second task, participants
have to provide a rating on a seven-point Likert
scale about (B1) “how helpful they found the ex-
planation for guessing the model prediction” and
(B2) “how easy they found the explanation to under-
stand”. A higher rating indicates a higher quality
of the explanation.

Task C: Questionnaire Finally, participants are
asked to complete a post-annotation questionnaire
to obtain overall judgements for each verbaliza-
tion method. They are prompted for Likert scale
ratings about time consumption, coherence, consis-
tency and qualitative aspects of each verbalization
method, as listed in Table 1.

3.2 Automated Evaluation

We expect hallucinations (synthesized, factually
incorrect text due to learned patterns and statistical
cues) from GPT-type models and thus devise the
following tests measuring explainer-faithfulness
and conciseness:
1. Have the referred words been accurately cited

from the input text?
2. How often do the referred words represent the

top k most important tokens? (Eq. 3)
We obtain the results by simple counting and

automated set intersection.

4 Methods

To complement heatmap visualizations and extrac-
tive rationales, we propose and analyze two ad-
ditional verbalization methods: Model-free (§4.1,
Fig. 2) and instruction-based (§4.2, Fig. 3) saliency
map verbalization.

4.1 Model-free verbalization

For our model-free approach we employ hand-
crafted templates for surface realization, different
binary filter algorithms as search methods (§4.1.1)

and scoring metrics (§4.1.2) to select tokens for fill-
ing the templates. This approach does not require
architectural changes to the underlying model or
modifications to an existing saliency method. The
most similar approach to our selection heuristics,
to our knowledge, are the discretization strategies
in Jain et al. (2020, §5.2).

In the following, we will present two distinct can-
didate generation methods that can both be com-
bined with one of two scoring metrics. A final
candidate selection (§4.1.3) will collect the results
from both searches, concatenate them to possibly
larger spans and filter the top scoring candidates
once more while maximizing coverage (Eq. 3).
These salient subsets are then used to complete
hand-crafted templates (App. E). We argue that this
is more human-interpretable than simple top k sin-
gle token selection, at the cost of a lower coverage.
Our methodology allows to set parameters in accor-
dance to how faithful the verbalization should be
to the underlying explainer.

4.1.1 Explanation search

To acquire potentially salient snippets from a given
text, we perform a binary selection on a window of
attributions from the input of size c and then com-
pare the sum of our selection to one of our scoring
methods, performing basic statistical analysis on
the window and the input.

Convolution Search Inspired by the convolu-
tions of neural networks, we compare tokens that
are located close to each other but are not necessar-
ily direct neighbors. Coherence between pairs of
tokens is solely determined by looking at their attri-
butions with the following binary filters. In short,
the following method firstly generates template-
vectors that we then permute and keep as our binary
filters. After computing all valid and sensible per-
mutations, we can start calculating possibly salient
or coherent snippets of our input. We choose b ∈ N
vectors with a length of c ∈ N. We describe these
b vectors vi as follows:

vi = [11,i, 01,c−i], vi ∈ Z1,c. (4)

e.g., for i = 3, c = 5, vi = (1 1 1 0 0)

We only keep those vi where
∑

vi /∈ {0, 1, c} in
order to perform sensible permutations. For each
vi, we define a filter fi,j , where each distinct entry
in fi is a unique permutation of vi. Let A be our
attribution input, with A ∈ R1,k, where k is the

33



Figure 2: Model-free saliency map verbalizations (SMVTempl) as generated from three different search methods
(Top k single tokens, Convolution Search, Span Search) and two scoring metrics (Quantile, Weighted Average).

length of our input k > c, then we multiply a
subset of our input with every binary filter

ri,j,l = fi,j ·Al+c
l ,

l ∈ L,L = {l ∈ Z|1 ≤ l ≤ k − c}.
(5)

From this, we receive result vectors containing
possibly coherent attributions and tokens.

Span Search Instead of looking for token pairs
in a local neighborhood, we can also look for con-
tiguous spans of tokens by adapting our proposed
convolutional search.
We generate b vectors of length of c with c be-
ing odd. We describe these b vectors as follows:
Choose i ∈ N with i being odd, which ensures
symmetry of our filters.3

vi = [01,⌊ c−i
2

⌋, 11,i, 01,⌊ c−i
2

⌋], vi ∈ Z1,c (6)

We calculate attribution vectors ri,l as such:

ri,l = vi ·Al+c
l ,

l ∈ L,L = {l ∈ Z|1 ≤ l ≤ k − c}
(7)

4.1.2 Candidate scoring metrics
We score and filter the snippets r so that we can
present the most salient samples. As a threshold,
we calculate the average of the n% most salient

3In contrast to our proposed Convolution Search, we don’t
need permutations of vi to generate filters f , so we directly
use vi. Thus, the result vector r has only two indices.

tokens of the given input sample A. This simple
method does not filter for saliency, but it reduces
the likelihood of presenting non-salient sample
snippets. We call this our baseline β.

Weighted average The weighted average sums
up the attribution values of r and divides the re-
sulting scalar by the length of r, calculating the
"saliency per word" of r. Then the result gets
compared to β. Is the result larger than β, r is
considered salient and will be a candidate for the
verbalization.

Quantile The quantile method relies on the stan-
dard deviation within our current sample A. Given
a quantile n, n ∈ R+

0 , we calculate the correspond-
ing standard deviation value σ and compare it to
the average of the values of our snippet. If the
score is greater than σ and β, it will be marked for
verbalization.

4.1.3 Summarized explanation
On top of the two search methods in §4.1.1, we
construct a summarized explanation to be used in
our human evaluation (§3.1) by considering the k
single tokens with the highest attribution scores.
After generating k candidates from each search
method, we concatenate neighboring token indices
to (possibly) longer sequences and recalculate their
coverage. We compute the q-th quantile of the re-
maining candidates according to their coverage to
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Figure 3: Instruction-based verbalizations SMVGPT us-
ing GPT-3.5 of a negative sentiment instance from
IMDb that was wrongly classified by BERT.

select the final input(s) to our templates. If no can-
didate is within the q-th quantile, the top-scoring
span will be chosen.

4.2 Instruction-based Verbalizations

In light of very recent advances in instructing large
language models to perform increasingly complex
tasks (Wei et al., 2022), we additionally construct
“rationale-augmented” verbalizations (Fig. 3) next
to template-based and search-based ones. The in-
struction contains an overview of the saliency map
verbalization task and the associated caveats, e.g.
“The classifier cannot base its prediction on the
scores, only on the input text itself.”. Our most
consistently accurate result was achieved by then
representing S as bracketed scores rounded to two
digits put behind each word, e.g. “definitely (0.75)
a (0.14) girl (-0.31) movie (0.15)”.

In practice, we manually engineered task-
agnostic instruction templates to work with
GPT-3.5 (March ’23) aka ChatGPT.4 To our knowl-
edge, there are no datasets with gold verbalizations
available and we do not want to enforce any spe-
cific format of the explanation, so we use the API
in a zero-shot setting. We post-process all outputs
by removing all occurrences of the predicted label
and semantically very similar words (App. G).

4We describe the task-specific instructions in App. F and
document the edits to mitigate label leakage in App. G.

Explanations... Templ GPT

were concise & not time-consuming. 4.00 2.38
were not too complex. 3.63 3.88

were not inconsistent/contradictory. - 3
helped me detect wrong predictions. 2.63 3

with more diverse sentences are useful. 4.25* -
with numeric scores are useful. 2.63* 2.38

with associations/context are useful. 4.00* 4.50
summarizing the input are useful. - 4.75

Table 1: Questionnaire asking participants about their
overall impressions on both types of verbalizations. All
aspects were rated based on a 5-point Likert scale (1:
“strongly disagree”; 5: “strongly agree”). Starred values:
SMVTempl do not have this property, so we asked if the
participants would have liked them to have it.

5 Data

We choose datasets that cover a selection of
English-language text classification tasks. In par-
ticular, we select IMDb (Maas et al., 2011) for
sentiment analysis, and AG News (Zhang et al.,
2015) for topic classification.

We retrieve predictions from BERT models on
the test partitions of IMDb and AG News made
available through TextAttack (Morris et al., 2020)
and their Integrated Gradients (Sundararajan et al.,
2017) explanations with 25 samples exactly as they
appear in Thermostat (Feldhus et al., 2021).

We then take subsets (IMDb: n = 80, AG News:
n = 120) of each dataset according to multiple
heuristics (App. D) that make the tasks more man-
ageable for annotators. Each annotator was shown
340 explanations consisting of equal amounts of
each type of representation or rationale. We ran-
domize the order in which they are presented to the
annotators. Every instance was evaluated by seven
different annotators.

6 Results

Human evaluation Tab. 2 shows that both kinds
of SMVs are generally easier to understand (B2)
than heatmaps or extractive rationales. In a post-
annotation questionnaire, we asked 8 out of 10 par-
ticipants 14 questions about both types of SMVs.
Tab. 1 lists the results. While template-based expla-
nations are preferred in being less time-consuming,
we can see that GPT-generated verbalizations out-
perform them in all other aspects. Unsurprisingly,
associations and summarizations are the preferred
characteristics of verbalizations.

Downstream tasks According to Jacovi et al.
(2023a), a feature attribution explanation aggre-
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A: Simulation Accuracy B1: Helpfulness B2: Ease of understanding

HM
Vis

Rat
Extr

SMV
Templ

SMV
GPT

HM
Vis

Rat
Extr

SMV
Templ

SMV
GPT

HM
Vis

Rat
Extr

SMV
Templ

SMV
GPT

All 90.75 85.94 87.5 94.06 4.73 4.19 4.46 5.80 4.35 4.00 4.67 5.88
IMDb Cov(SVT)

↗ 94.38 89.45 92.19 96.09 4.98 4.50 4.91 5.94 4.47 4.34 4.99 5.99
IAA y ̸= ŷ 74.49 58.43 63.90 84.65 3.67 3.09 3.21 5.01 3.48 2.92 3.61 5.25

κ = 0.731 ŷ ̸= ysim n.a. (0.00) 3.40 3.10 2.85 3.94 3.48 3.18 3.35 4.33

All 79.83 - 79.50 77.60 5.26 - 4.65 5.63 5.02 - 4.90 5.77
AG News Cov(SVT)

↗ 85.31 - 84.57 81.13 5.41 - 4.98 5.80 5.18 - 5.13 5.89
IAA y ̸= ŷ 70.17 - 69.37 64.53 5.02 - 4.52 5.36 4.84 - 4.84 5.61

κ = 0.721 ŷ ̸= ysim n.a. (0.00) 4.14 - 3.34 4.40 4.08 - 3.89 5.10

Table 2: Results of the human evaluation. Task A: Simulation accuracy (annotators guessing the label predicted by
the underlying BERT correctly). Task B: Average rating of annotators (1 “bad” - 7 “good”) for helpfulness (B1) and
ease of understanding (B2). HM-Vis = Heatmap visualization. Rat-Extr = Extractive rationalizer of Treviso and
Martins (2020). SMV-Templ = Template-based saliency map verbalization. SMV-GPT = GPT-3.5-based saliency
map verbalization. All: Overall result. Cov(SVT)

↗: Coverage above average. y ̸= ŷ: Explained BERT model made
a false prediction. ŷ ̸= ysim: False human simulation. Inter-annotator agreement in Fleiss κ below the dataset names.

gates counterfactual contexts. This becomes appar-
ent in our overall results on the AG News dataset
where more than one potential alternative (multi-
class classification with |C| = 4) outcome ex-
ists. Annotators’ simulation accuracy drops from
as high as 94 % (IMDb) to 78 %. SMVGPT beats
all other representations across all three measures
in IMDb, but surprisingly underperforms in AG
News.

Coverage of the verbalization Fig. 4 and App. A
show that SMVGPT focuses less on the actual most
important tokens that might not be intuitive for re-
cipients, such as function words. The subset of
instances with higher-than-average coverage ac-
cording to SMVTempl (Cov(SVT)

↗) is substantially
easier to simulate (IMDb) and elicits the highest
ratings and accuracies from annotators. We utilize
this as a proxy for (low) complexity of S, because
usually only a single or few tokens that are very
salient make these explanations easy to decipher in
most representations.

Therefore, we conducted an automated simulata-
bility evaluation on all SMV types, documented in
Appendix B, confirming the suspicions about the
faithfulness of GPT verbalizations.

Model predictions Lastly, we investigate the sub-
sets of wrong model predictions: The drop in sim-
ulation accuracy and ratings when we filter the
instances where the model predicts something dif-
ferent from the true label (y ̸= ŷ) is more severe
for IMDb throughout all types of explanations. In
AG News, the simulatability and the ease of un-
derstanding turn out to be higher for SMVs. Our

consistently worse results in this subset reveal the
belief bias (González et al., 2021), i.e. explanations
have a hard time convincing humans about a model
behavior when they already have prior assumptions
about the true label of an instance. For instances
where the human simulation mismatched with the
predicted label (ŷ ̸= ysim), the drop in scores is
even harsher: Only SMVGPT still achieves ratings
that are slightly above average.

6.1 Evaluating instruction-based
verbalizations

While there are no invented words in the hu-
man evaluation subset, our automated mapping be-
tween explanation and input text still detected cases
where words are auto-corrected and not accurately
copied, especially fixing capitalization and small
typos. We also found examples in which words
or spans are replaced with a synonym, e.g. “not
reliable” → “unreliable”, but most strikingly, in an
IMDb example, “good premise” was replaced with
“bad premise” which entirely changed the meaning
and the polarity of the sentiment.

In Tab. 3, we manually count what type of task-
related information and semantics SMVGPT pro-
vides on top of the translation of the importance
scores. We can see that the “negative sentiment” in
IMDb is often a confounder for the correct inter-
pretation of the negative saliency scores. Without
explicit instructions, GPT still questioned some
of the wrong prediction the underlying BERT has
made, particularly for IMDb. In terms of linguis-
tic aspects of the verbalizations, associations are
frequently included, while summarizations of the
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Figure 4: Coverage+@k of SMVTempl and SMVGPT. Top
k tokens is the upper bound for explainer-faithfulness.

input or the decision are rare.

6.2 Discussion

By choosing parameters that prefer longer spans to
be selected, we show that SMVTempl can be more
plausible to humans than single token selection.
We acknowledge that SMVTempl are repetitive and,
while the results show that they can guarantee a
minimum degree of understandability (Ehsan et al.,
2019), sufficiency and conciseness, they will not be
satisfying enough for lay recipients on their own.

For SMVGPT, the choice of instruction can
greatly impact the faithfulness to the explainer.
Plausible explanations driven by world knowledge
and semantics allow laypeople to contextualize the
prediction w.r.t. the input text, but reliable and gen-
eralizable methods for auditing these rationales for
faithfulness have yet to be discovered.

7 Related Work

To our knowledge, the only previous saliency map
verbalization approach is by Forrest et al. (2018)
who used LIME explanations and a template-based
NLG pipeline on a credit dataset. While they
mostly included numerical values in explanations,
we focus on most important features and free-text
rationales, because humans are more interested in
reasoning than in numerical values (Reiter, 2019).
Ampomah et al. (2022) created a dataset of tables
summarizing the performance metrics of a text clas-
sifier and trained a neural module to automatically
generate accompanying texts. The HCI commu-
nity highlighted the advantages of verbalization as
a complementary medium to visual explanations
(Sevastjanova et al., 2018; Hohman et al., 2019;
Szymanski et al., 2021; Chromik, 2021). Zhang
and Lim (2022) advocated for adding concepts and
associations to make explanations more understand-
able, particularly in contrastive setups.

IMDb AG News
Saliency-related 100.00 99.17

“because of the high importance scores
of words such as ’oil’, ’supply’, [...]”

Correct interpretation of neg. saliency 72.50 100.00
“[...] predicted this movie review as
’negative sentiment’ because of the

high negative importance scores [...]”
Suspecting a wrong prediction 55.00 23.21

“[...] it is unclear why the classifier FP: 0.00 FP: 0.83
predicted this article as ’Business’.”

Associations 47.50 90.00
“These words are associated with

positive emotions and experiences.”
Summarizations 10.00 27.50

“[...] the reviewer enjoyed these
aspects of the movie.”

Table 3: Occurrences of semantics and accuracies of
task comprehension (both in %) in GPT-3.5-generated
verbalizations for both datasets. FP = False positives.

Hsu and Tan (2021) introduced the task of
decision-focused summarization. While there
are overlaps in the selection of important subsets
of the input, the textual nature of the output and the
employment of saliency methods, our work is con-
cerned with summarizing the token-level informa-
tion provided by a saliency map from an arbitrary
source for a single instance. Okeson et al. (2021)
found in their study that global feature attributions
obtained by ranking features by different summary
statistics helped users to communicate what the
model had learned and to identify next steps for
debugging it. Rönnqvist et al. (2022) aggregated
attribution scores from multiple documents to find
top-ranked keywords for classes.

In early explainability literature, van Lent et al.
(2004) already used template filling. Templates
in NLE frameworks were engineered by Camburu
et al. (2020) to find inconsistencies in generated ex-
planations. While their templates were designed to
mimic commonsense logic patterns present in the e-
SNLI dataset (Camburu et al., 2018), our templates
are a means to verbalize arbitrary saliency maps.
Paranjape et al. (2021) crafted templates and used a
mask-infilling approach to produce contrastive ex-
planations from pre-trained language models. Don-
adello and Dragoni (2021) utilized a template sys-
tem to render explanation graph structures as text.
Recently, Tursun et al. (2023) used templates to-
gether with ChatGPT prompts to generate captions
containing verbalized saliency map explanations
in the computer vision domain. However, they did
not conduct an automated or human evaluation.
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8 Conclusion

We conducted a comparative study on explanation
representations. We formalized the task of translat-
ing feature attributions into natural language and
proposed two kinds of saliency map verbalization
methods. Instruction-based verbalizations outper-
formed all other saliency map representations on
human ratings, indicating their summarization and
contextualization capabilities are a necessary com-
ponent in making saliency maps more accessible to
humans, but they are still unreliable in terms of en-
suring faithfulness and are dependant on a closed-
source black-box model. We find that template-
based saliency map verbalizations reduce the cog-
nitive load for humans and are a viable option to
improve on the ease of understanding of heatmaps
without the need for additional resources.

Limitations

Our experimental setup excludes free-text ratio-
nales explaining the decisions of a model (Wiegr-
effe et al., 2022; Camburu et al., 2018), because
their output is not based on attribution scores or
highlighted spans of the input text, so we argue
that they are not trivially comparable. However,
there are end-to-end rationalization frameworks
that can accommodate arbitrary saliency methods
(Jain et al., 2020; Chrysostomou and Aletras, 2021;
Ismail et al., 2021; Atanasova et al., 2022; Ma-
jumder et al., 2022), but require large language
models that are expensive to train and perform in-
ference with, so this is out of scope for this study.
However, we also see that high-quality free-text
rationales can be more easily generated with LLMs
(Wang et al., 2023; Ho et al., 2023), and a compari-
son between them and our attribution-based expla-
nations is an interesting avenue for future work.

Inferring high-quality explanations from large
language models necessitates excessive amounts of
compute and storage. Although GPT verbalizations
are most promising, we urge the research commu-
nity to look into more efficient ways to achieve
similar results. In the future, we will explore if
training a smaller model on top of the collected
rationale-augmented verbalizations is feasible.

Emphasizing the concerns of Rogers (2023), we
do not recommend the black-box model GPT-3.5
as a baseline for interpretability, because the
model’s training data or internal parameters can
not be accessed and the dangers of deprecation as
well as the lack of reproducibility are serious con-

cerns. However, we do think it has revealed great
potential as a surface realization and contextualiza-
tion tool for the task of saliency map verbalization.

The causality problem explained in Jacovi et al.
(2023a) is not solved by our verbalizations, as it is
an inherent problem with feature attribution and ra-
tionalization. Future work includes verbalizations
alongside counterfactuals, e.g. in interactive setups
(Feldhus et al., 2022; Shen et al., 2023).

Although multiple models and explanation-
generating methods are available, we specifically
focus on one pair for both datasets (BERT and Inte-
grated Gradients), because the focus of our investi-
gation is on the quality of the representation rather
than the model.

Finally, explicitly modelling expected highlights
to mitigate misalignments as reported on in Schuff
et al. (2022), Jacovi et al. (2023b) and Prasad et al.
(2021) is still unexplored.
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A Token ranks

Figures 5 and 6 show the coverage of the verbal-
izations, which makes up one aspect of explainer-
faithfulness.
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Figure 5: Number of SMVs mentioning top k attributed
tokens in IMDb.
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Figure 6: Number of SMVs mentioning top k attributed
tokens in AG News.

AG News IMDb
SV W + SV SV W + SV

Conv. Search 91.73 94.10 86.08 96.00
Span Search 87.16 94.39 89.08 95.90

Top k = 5 tokens 92.54 93.93 92.38 95.60
SMVTempl 91.94 94.10 94.26 94.90

SMVGPT 69.16 70.00 81.25 81.25

Table 4: Automated simulatability evaluation (Accuracy
in %) using a T5-large model (Accuracy on original
input: AG News – 92.58%; IMDb – 97.62%) to repro-
duce the underlying BERT model’s prediction based on
only seeing one of the verbalizations SV (prepended by
the original input W ).

B Automated simulatability evaluation

We follow Wiegreffe et al. (2021) and Hase et al.
(2020) and train a second language model to simu-
late the behavior of the explained BERT model. Ta-
ble 4 shows the simulation accuracy of a T5-large
receiving various types of verbalizations (plus the
original input). We can see for both datasets that
SMVGPT induces the most noise and thus results in
the lowest accuracy, while the raw output of the
search methods (Conv/Span) are most faithful in
combination with the original input.

C Efficiency

First, we measure a runtime of less than two min-
utes on a CPU (i5-12600k) to generate template-
based verbalizations for all 25k instances of IMDb.
Given pre-computed saliency maps from any ex-
plainer, this is considerably faster than using an
end-to-end model for extractive rationales, e.g. Tre-
viso and Martins (2020), which takes several hours
for training and then more than 10 minutes for in-
ference on an RTX 3080 GPU. GPT-3.5 with at
least 175B parameters, which obliterates the other
two setups. This means that there is a considerable
carbon footprint associated with using it. Future
work has to look into training considerably smaller
models on the generated verbalizations.

D Subset selection heuristics

• We restrict our experiments to explaining a sin-
gle outcome – the predicted label ŷ – and thus
modify our metric (Eq. 3): Cov+ only considers
the positive attributions si > 0.

• We select instances achieving at least a Cov+
score of 15% (indicating the attribution mass is
not too evenly distributed, making interpretations
of saliency maps challenging).
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Figure 7: Annotation spreadsheet including one instance from every type of explanation representation in IMDb and
AG News, as used in the human evaluation described in §3.1.

• We find values for q (§4.1.3) of 0.5 ≤ q ≤ 0.75
to produce the right amount of candidates in the
end, s.t. there almost always is at least one candi-
date in the q-th quantile and the resulting verbal-
ization is not longer than most text inputs.

• We only consider instances with a maximum to-
ken length of 80, s.t. the human evaluation is
more manageable for annotators.

• We select equal amounts of instances for every
true label y (IMDb: 40 positive + 40 negative
sentiment; AG News: 30 World + 30 Sports +
30 Business + 30 Sci/Tech) in each dataset.

• We select 25% of IMDb and 46.67 % of AG
News to be false predictions by the BERT model
(y ̸= ŷ).

We apply the weighted average for IMDb-BERT-
IG (β = 0.4) and the quantile scoring metric for AG
News-BERT-IG (n = 3). We chose the number
of candidates to be k = 5 in all cases and the
threshold q to be .75 for IMDb and AG News as
the average length of the input is lower for the latter
which results in too few candidates with higher qs.

E Templates for Verbalizing Explanations

We design our templates as atomic expressions
with constraints and blanks that can be filled with
words from W . In the most basic cases, we refer
to spans, phrases, words and characters as salient
or important for some prediction. We design the
templates to express saliency information concisely
and enable users to reproduce the model’s decision
process (simulatability). The set of templates is
depicted in Table 8.

Our template-based methodology is task- and
model-invariant by design, because no task-specific
model or NLG component is involved. Achieving
sufficiency (measured by coverage) is harder, be-
cause a full translation of any saliency map is too
verbose and thus not helpful.

F List of LLM prompts

At first, we treated this as table-to-text task – which
has recently been tackled with prompt-based large
language models (Chen, 2023; Xiang et al., 2022) –
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Examples for leading sentence
The words {w1}, {. . . }, and {wn} are most important. Most important is {. . . }

The most salient features are {. . . } The model predicted this label, because {. . . }
. . . is the span that was most important.

Features or linguistic units More than one unit
feature(s) The two phrases {. . . } and {. . . }

word(s) Both phrases {. . . } and {. . . }
token(s) . . . are both salient.

phrase(s) The (top) three most important tokens . . .
punctuation . . . words such as {. . . } and {. . . }

Synonyms for important Conjunctions & Adverbs
salient {. . . }, while {. . . }

influential {. . . }, whereas {. . . }
key . . . also salient

impactful with the word {. . . } also being salient.

Additions for important {. . . } Variations of important
. . . for (the/this) prediction. . . . focused on the most for this prediction.

. . . (to the model) in (making/predicting . . . used by the model to make its prediction.
choosing/producing/shaping) this outcome. . . . caused the model to predict this outcome.

. . . with respect to the outcome. indicate the model’s predicted label.
. . . in this text. . . . shaped the model’s outcome (the most).

Synonyms for prediction Polarity
outcome {. . . } is least important.

model(’s) prediction {. . . } is more salient than {. . . }.
model’s judgment {. . . } is less influential than {. . . }.

model(’s) behavior
prediction of the classifier
(model’s) predicted label

decision

Dataset-specific
IMDb AG News

{. . . } for the sentiment label. {. . . } indicative of the model’s topic classification.
{. . . } most indicative of the sentiment. {. . . } in this article.

{. . . } most indicative for the sentiment analysis. The most salient words in this article are {. . . }.
{. . . } used by the model to predict this sentiment label. {. . . }, because {. . . } appeared in the article.

Figure 8: Templates for model-free saliency map verbalization.

where we provided a list of attribution scores and,
separate from that, a list of tokens. However, we
registered less hallucinations (the model incorrectly
mapping between words and their scores) when
we provided the input as a joint representation as
shown in Fig. 3.

For the two datasets, we then used the to-
ken+score representation as {sample} and a
{label_str} being the predicted label (IMDb: pos-
itive or negative; AG News: Worlds, Sports, Busi-
ness, or Sci/Tech) and wrote the instructions in
Fig. 9.

G Post-processing of GPT outputs

AG News In order to prevent label leakage, we
employed the string replacements listed in Tab. 5.
In our human evaluation, they were replaced with
"{placeholder}", so annotators could perform the
simulatability task without cheating.
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IMDb Movie review with importance scores: {sample}.
A sentiment analyzer has predicted this text as ’{label_str} sentiment’. The scores behind
each word indicate how important it was for the analyzer to predict ’{label_str} sentiment’.
The scores have been determined after the sentiment analyzer has already made its prediction.
The sentiment analyzer cannot base its prediction on the scores, only on the movie review itself.
Based on the importance scores, briefly explain why the sentiment analyzer has predicted this
movie review as ’{label_str} sentiment’:

AG News (Figure 1, r.)
News article with importance scores: {sample}.
A topic classifier has predicted this text as ’{label_str}’. The scores behind each word
indicate how important it was for the classifier to predict ’{label_str}’. The scores have been
determined after the topic classifier has already made its prediction. The topic classifier cannot
base its prediction on the scores, only on the news article itself.
Based on the importance scores, briefly explain why the topic classifier has predicted this news
article as ’{label_str}’:

Figure 9: Task instructions applied to IMDb and AG News used by GPT-3.5 (see App. F for details).

IMDb AG News
Classes Sports Business World Sci/Tech

positivity (+) sport businesses global science
negativity (-) the world of sports business and economics global politics science and technology

business and finance international scientific
economics all over the world tech

finance global issues technical
financial global affairs technology

the business world international relations technological
the economy a global issue or event the tech industry

corporate finance the technology industry

Table 5: Post-processing of GPT-3.5 verbalizations for human evaluation.
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