A smashed glass cannot be full: Generation of Commonsense Explanations
through Prompt-based Few-shot Learning

Andrea Zaninello
Fondazione Bruno Kessler
Free University of Bolzano (Italy)
azaninello@fbk.eu

Abstract

We assume that providing explanations is a
process to elicit implicit knowledge in human
communication, and propose a general method-
ology to generate commonsense explanations
from pairs of semantically related sentences.
We take advantage of both prompting applied
to large, encoder-decoder pre-trained language
models, and few-shot learning techniques, such
as pattern-exploiting training. Experiments run
on the e-SNLI dataset show that the proposed
method achieves state-of-the-art results on the
explanation generation task, with a substantial
reduction of labelled data. The obtained results
open new perspective on a number of tasks in-
volving the elicitation of implicit knowledge.

1 Introduction

When exchanging information, it is typical to ex-
clude details that appear self-evident or insignifi-
cant, so that only part of the message is articulated
verbally while other details are implied (Becker
et al., 2020, 2021a). This is particularly true for
information involving commonsense knowledge,
which represents the backbone of everyday com-
munication and reasoning. For example, consider
the following sentences:

(1) The glass is broken into pieces.

(2) The glass is full.

We can intuitively assert that these two sentences
contradict each other, and if we were asked to ex-
plain why, our answer would most probably appeal
to some implicit knowledge about the world (“A
glass broken into pieces cannot contain any liquid”
and “A glass cannot be broken and full of a lig-
uid at the same time”, etc.) to various degrees of
depth. This implicit, shared knowledge can easily
be inferred by people, but represents a challenge
for computational systems. Crucially, a request
for explanation is often a request to make explicit

18

Bernardo Magnini
Fondazione Bruno Kessler
magnini@fbk.eu

something that is only implied or omitted in conver-
sation. While this is evident in everyday communi-
cation, it is also true for more specialised domains,
for example a doctor-patient scenario where the pa-
tient is given a diagnosis (“Your clinical case and
tests indicate that you have type 2 diabetes™) and
asks for explanations to the doctor (“Why do you
believe that?”).

Therefore, the underlying assumption of this pa-
per is that commonsense explanations are to some
extent based upon the notion of implicitness, and
that the information they rely on can not be fully
derived from their textual input alone. Being able
to elicit commonsense implicit knowledge is a rel-
evant step forward not only towards providing ex-
planations, but also towards better natural language
understanding.

In this work, we state the “implicit knowledge
problem” as the capacity to automatically generate
explanations regarding the semantic relations be-
tween two sentences. We define a general method-
ology to elicit implicit knowledge from pre-trained
large language models, motivated by the intuition
that they contain most of the knowledge needed,
and are able to generalize over unseen instances. In
fact, a fully-supervised fine-tuning would require
a large training set where each input-sentence pair
should be labeled with one or more explanations,
a setting which is unrealistic in an open-domain
scenario.

To achieve this, we propose a combination of
prompting and few-shot learning techniques, which
are well-suited to exploit the generative capabilities
of language models and, at the same time, make use
of limited supervision. Similar methods have been
applied to some popular NLP tasks such as text
classification, inference, summarization (Schick
and Schiitze, 2021a,b) and, more recently, to teach
language models to leverage external tools via APIs
(Schick et al., 2023). However, the generation
of implicit knowledge poses a further challenge

Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2023), pages 18-29
June 13, 2023 ©2023 Association for Computational Linguistics

to these techniques as it requires to generate text
based on information or reasoning structures that
are outside the input texts'.

For these reasons, in our experiments, we se-
lect the e-SNLI dataset Camburu et al. (2018),
where sentence pairs traditionally employed for
a textual inference task (pairs are labelled with en-
tail, contradict or neutral tags) were augmented
with explanations for the relation tag, collected
through crowd-sourcing. We compare three gen-
eration methods: unsupervised, fine-tuning and
ensembling, showing that the ensembling method
achieves the best results, en-par with state-of-the-
art while making use of limited supervision. More-
over, we find that this method mitigates the poten-
tial negative effects of “bad” prompts, which is a
desirable feature whenever prompt optimization
is not possible. However, we also underline that
evaluation and comparison with SOTA results is
still critical, as evaluation metrics are not usually
directly comparable on the explanation generation
task.

The innovative contributions of this paper are
the following:

* We propose a general methodology to elicit
implicit knowledge from language models
with very limited training data.

* We compare the effects of prompting, few-
shot fine-tuning and ensembling on a set of
different language models, indicating which
strategy suits best for each type.

* We show that one of our proposed methods
for implicit knowledge generation is able to
mitigate the negative impact of badly designed
prompts.

The paper is structured as follows: Section 2 pro-
vides relevant background on language modelling
and elicitation of implicit knowledge. Section 3
introduces the general approach to implicit knowl-
edge generation. Sections 4 and 5 report, respec-
tively, the experimental setting and the results we
have obtained on the e-SNLI dataset. Finally,
Section 6 provides relevant context of recent ap-
proaches to implicit knowledge elicitation.

'The code is available at github.com/
andreazaninello/explanationgeneration

19

2 Background

2.1 Language modelling and transfer learning

Recent advances in NLP, particularly in Natural
Language Generation (NLG), have been driven by
the success of transfer learning techniques applied
to neural language models, pre-trained on very
large textual corpora in a self-supervised fashion
(Howard and Ruder, 2018; Radford et al., 2019).
These general models can be trained on in-domain
datasets or on specific downstream tasks with much
less resource expense through fine-tuning.

Transformers (Vaswani et al., 2017), based on
the attention mechanism, currently represent the
state-of-the-art in most of NLP tasks. In our exper-
iments, we employ Transformers’ encoder-decoder
(sequence-to-sequence) models, like BART (Lewis
et al., 2020), TS (Raffel et al., 2020) or PEGASUS
(Zhang et al., 2020). In these models, encoder atten-
tion can access the whole initial sequence, while de-
coder attention can only attend to previous words;
these models perform best on language generation
tasks that depend on a sequential input, such as
machine translation or text summarization thus we
hypothesize that the encoder-decoder kind of mod-
els are particularly suited to the task of generating
explanations, because the sequence to be generated
(the explanans) has to be conditioned on a full input
sequence (the explanandum).

2.2 Prompting

The core technique that we use to elicit implicit
knowledge is prompting (see Liu et al. (2021) for
an extensive survey). Prompting consists in refram-
ing an NLP task as a language modelling task: from
a practical viewpoint, it corresponds to feeding a
very large language model an input prompt that de-
scribes the desired task in natural language (and/or
gives some examples of the desired output), and
constructing a function that maps the desired label
(e.g., positive in a sentiment analysis task) onto a
series of natural language verbalizers (e.g. good,
great, excellent). Given this prompt as an input, the
language model is let generate the output as if it
were a language modelling task such as next word
or masked word prediction.

This new trend, which is especially appealing
as it requires much less training signal compared
to regular fine-tuning, has led to a shift from ob-
Jective engineering to prompt engineering: this in-
cludes both the manual design of templates (Petroni
et al., 2019) and automatic prompt learning (Jiang

github.com/andreazaninello/explanationgeneration
github.com/andreazaninello/explanationgeneration

et al., 2020), as well as various options to ensemble
(Schick and Schiitze, 2021b) and compose (Han
et al., 2022) multiple prompts.

When using prompts, we can simply generate
with a language model with no parameter update,
giving the model some answered prompts as ex-
ample to direct generation, or we can update the
prompts’ parameters through the supervision given
by training examples (Liu et al., 2021); additionally,
some promising recent approaches have attempted
to apply few-shot training techniques based on
prompting to language generation, too. Schick and
Schiitze (2021c¢), for example, propose a method
called pattern-exploiting training (PET) and use
hand-crafted patterns as task instructions to train
intermediate models, in combination with a small
set of unlabeled gold training examples which they
use to ensemble those models. This technique has
proved successful in performing few-shot down-
stream NLG tasks on sequence-to-sequence models
(Zhang et al., 2020) with many fewer training ex-
amples than state-of-the-art benchmarks, especially
when the generated output is tightly connected to
the input (e.g. text summarization). While our
method is closely inspired by this line of work, to
the best of our knowledge this has not been ap-
plied to tasks where models need to use implicit
information outside the input text.

2.3 Evaluating generation

As we anticipated, we model the “implicit knowl-
edge problem” as the capacity to automatically gen-
erate explanations regarding the semantic relations
between two sentences, which brings up the issue
of evaluating the quality of the generated predic-
tions. Unlike classification and regression tasks,
the evaluation of generation is known to be critical,
and has often relied on human judgments (Wiegr-
effe et al., 2022), which is however expensive and
difficult to scale.

On the other hand, automatic assessment is usu-
ally done by measuring the overlap between at
least one reference generation and the system’s
output, as with popular metrics like ROUGE (Lin,
2004) and BLEU (Papineni et al., 2002). Other
metrics aim to measure the semantic similarity
between generations and references using contex-
tualised embeddings, for example BERT-Score
(Zhang et al., 2019) or Sentence-BERT (Reimers
and Gurevych, 2019), which consider word and,
respectively, sentence-embeddings.

20

Nevertheless, evaluating generation is a critical
aspect and there is still no consensus on what metric
is to be taken as a reference for system compari-
son, especially on explanation generation. In our
experiments, we align with our selected benchmark
to facilitate results’ comparison, and thus report
BLEU, ROUGE and BERT-Scores. However, we
are aware that results may not be fully conclusive
in terms of comparison with SOTA, and that met-
rics are rather to be taken as a relative indication of
systems’ performance.

3 Methodology

Our proposed methods belong to the “fixed-prompt
language model tuning” types (Liu et al., 2022):
the LM’s parameters are updated through few-shot
fine-tuning, after both training and test examples
have been modified by textual templates, meaning
that the prompts’ parameters are fixed while the
model’s parameters are updated.

While some recent studies aim at discovering the
best prompts or performing prompt optimization
(Lietal., 2021; Shin et al., 2020), our methods aim
to provide a general framework that may work well
even without prompting optimization, minimizing
the negative impact of “bad” prompts. Finding the
best patterns and prefixes would clearly contribute
to the task but falls outside the scope of this study,
and would be task dependent, while we aim to
provide a general framework potentially applicable
to different generation tasks.

Our method is closely related to Gao et al.
(2021)’s, who apply a similar procedure to clas-
sification and regression tasks, and is inspired by
Schick and Schiitze (2021b)’s GenPET, who ap-
ply it to a set of generation tasks close to summa-
rization, not involving the elicitation of implicit
external knowledge.

3.1 Problem formalization

We state the “implicit knowledge generation” prob-
lem as the task of automatically producing an ex-
planation for the semantic relation between a pair
of textual sentences t, and t,. We set M to be a
language model of vocabulary V, pre-trained on
a masked language modelling task. We define an
input z € X, an output sequence y €), a la-
bel [€ L, a label verbalizer v € V* that maps
the labels to a natural language sequences (for ex-
ample mapping a neutrality label to the se-
quence “does not entail”’), and the sequence result-

ing from applying a prompt p € P to input x as
z = fpmmpt(:n, p), with z containing one masked
sequence <mask>. The fpromp: function then sim-
ply takes the input texts ¢,, tp, and the verbalized
label [, and returns a modified, natural language
version of the input.

To obtain the prompts, we need to define (1)
a set of task prefixes (prefi, ..., prefy,) that intro-
duce the explanation y €), and are either pro-
cessed as final part of the input or pre-pended
to the reference explanation at training time (or
to the mask sequence at test time), and (2) a set
of patterns (patty, ..., patt,,), which we combine
with (prefi, ..., pref,), resulting in n X m prompts.
Prompts are used to rewrite each input example, by
sampling randomly across all labels. We refer to
this modified training set as 7', which is n X m
times the size of X. We summarize and give an
example of our prompting design in Section A.1.

3.2 Training objective

The models we use are pre-trained on masked lan-
guage modelling task, so their objective is calcu-
lating the probability of py; = (y|z). We have the
choice of (1) processing the task prefix pre f using
the decoder, as part of the generated sequence, or
(2) with the encoder, as part of the input. Thus, as-
suming some model M, some task prefix pre f; and
some pattern patt;, the model needs to compute
the probability of y as follows, respectively:

p(y[x) = pu(prefi;ylpatt;(x)) (1)

2

Schick and Schiitze (2021b) indicate that process-
ing it with the decoder has a stronger impact on
generations, and we apply it to BART and Pegasus,
as in (1). However, this is not possible with TS as
encoding it with the decoder pushes the model to
produce empty strings. With T5, we therefore en-
code it as part of the encoder (2). Modified training
and test instances are used in different zero- and
few-shot training configurations, namely UNSU-
PERVISED (3.3), FINE-TUNING (3.4) and ENSEM-
BLING (3.5). We synthesize the three methods in
Figure 1.

p(y[x) = pum (ylpatt;(z); pref;)

3.3

In a first zero-shot configuration, which we name
UNSUPERVISED and we take as our baseline, we
simply evaluate the model’s predictions without

Method 1: UNSUPERVISED

21

any training, so no parameter update is performed,
nor do we use any training instances. However,
to have the prompts influence the model’s gener-
ations at inference, we modify each test instance
with each one of the prompts, as explained in Sec-
tion 3.1. We evaluate the model’s predictions for
each prompt separately after modifying the test in-
stances with that prompt through function fp,ompt,
as detailed in Section 4.4. Moreover, we define a
null prompt py for which both pref and patt are
an empty string, resulting in the simple concatena-
tion of x and the <MASK> token, and evaluate its
generations.

3.4 Method 2: FINE-TUNING

In a second configuration, which we call FINE-
TUNING, at training time we apply all the prompts
p to every input through function fjomp¢ Obtaining
a dataset 7" of all training instances X (where X
can be empty). In addition, in order to avoid overfit-
ting and ensure regularization, we also take a set of
1000 unlabeled instances U (for which the explana-
tion y is not given), modify them with the patterns
p € P and have the untrained model M generate
an output for each of them. We therefore obtain a
synthetically generated dataset Tyng-runep, Which
we append to our training instances.

We use T’ to fine-tune M with teacher forcing, by
minimizing the cross-entropy between the model’s
prediction and the target sentences, obtaining a
fine-tuned model Mgns-Tunen- In @ zero-shot set-
ting, only U is used for fine-tuning. In few-shot
setting, we use training sets of increasing size. As
in method 1 (3.3), at test time we assess the predic-
tions of each pattern separately and of all patterns
together using py.

3.5 Method 3: ENSEMBLING

In the previous method we were able to assess each
prompt separately at inference time. However, it
may not always be possible to know which pattern
works better for a certain task and poor perfor-
mance of one prompt could hurt the overall per-
formance of the fine-tuned model®. Moreover, in
few-shot scenarios, models tend to overfit the train-
ing data or copy part of the original input, resulting

*We are aware that several methods for prompt search and
optimization have been recently proposed, and our method
would certainly benefit from better quality prompts. However,
our aim is to mitigate the potential impact of bad prompts,
while prompt search currently falls outside the scope of this
study.

in poor quality of the generations. In this configu-
ration, we then aim to generalize over all possible
patterns given at training time, without having to
choose a specific pattern at test time.

Therefore, we perform a form of knowledge dis-
tillation through prompt-ensembling by taking the
fine-tuned model Mgne-Tunep and the unlabeled
instances U = (uyq, ..., u,), and use the set of pat-
terns in P = (py, ..., pm) to generate a set of can-
didate outputs C' = (y1, ..., Ym) for each u € U.
Then, we modify the instances in U with the null
pattern pg and ask an untrained model M (that
did not see any of the training examples) to assign
a probability to each candidate generation in C
given the modified inputs from U. To assign a final
score to the generation, we take the exponentiated
average of all the log-likelihood assigned by the
untrained model across all patterns, and take the
best scoring generation as our prediction.

By doing so, we obtain a new dataset TgnsempLes
where inputs are u’s from U modified by pg and
y’s are the best ranking y’s from C' according to M.
The so obtained explanations should not be biased
towards one particular pattern. Moreover, we em-
pirically set a cutoff lower threshold at the bottom
20% of the instances ranked by their probability,
so that low quality explanations are discarded.

We use this final dataset TenspmpLe tO fine-tune
a final model MgysempLe With a procedure similar
to method 2, but we only evaluate it using the null
prompt as explained in Section 4.4.

4 Experiments

4.1 Pre-trained language models

We experiment on three different Transformer-
based encoder-decoder language models: BART,
Pegasus, and T5.

Bart (Lewis et al., 2020) uses a standard se-
quence to sequence architecture with a bidirec-
tional encoder and a left-to-right decoder. It is
pre-trained by firstly corrupting text with a noising
function, then learning a model able to reconstruct
the original text. BART was evaluated on several
benchmarks and proved particularly suitable for
generation tasks, a reason why we decided to em-
ploy it. In all experiments, we use the BART-large
model.

Pegasus (Zhang et al., 2020) has a similar archi-
tecture to BART and trained in a self-supervised
way by masking important sentences in text and
have the model generate them as a single output

w e W N

22

conditioned on the remaining sentences. Thus, its
training objective is similarl to a summarization
task. We use the PEGASUS-large implementation
in all our experiments.

T5 (Raffel et al., 2020) is also an encoder-
decoder model, however unlike the previous two it
was pre-trained on a mix of NLP tasks prompted
in a text-to-text format, where inputs and outputs
are text strings, as opposed to BERT-style models.
For this reason, it is particularly suitable for meth-
ods exploiting textual verbalizations to condition
generations.

4.2 Dataset

For all our experiments, we use the e-SNLI dataset
(Camburu et al., 2018), an extension of the Stanford
Natural Language Inference (SNLI) dataset (Bow-
man et al., 2015) enriched with crowd-sourced
natural language explanations. The SNLI dataset
is an influential dataset widely used for the task
of Recognizing Textual Entailment (RTE) (Dagan
et al., 2005): given two text fragments (called
premise and hypothesis), the aim of RTE is decid-
ing whether the premise entails, contradicts or nei-
ther entails nor contradicts the hypothesis, labelling
the relationship between the two texts with an en-
tailment, contradiction, or neutrality label. The
SNLI dataset contains 570K premise-hypothesis
pairs, evenly distributed across labels. E-SNLI con-
tains an extra layer of information, represented by
a crowd-sourced natural language explanations for
each instance for the training, testing and develop-
ment splits. An example is given below.

{"guid": "test-3",
"idX": "3",
"label": "NEUTRALITY"
"meta": {}
"explanations": ["the woman

could’ve been old rather
than young"]

"'A woman with a
blue shirt

rmw

"premise":
green headscarf,
and a very big grin.

"hypothesis": ’The woman is
young.'’ }

Few other datasets exist, such as the CoS-E dataset
(Rajani et al., 2019) (an expansion of the Common-
senseQA (Talmor et al., 2019) dataset) that provide
explanations based on commonsense. However,
CoS-E’s explanations mainly focus on one single
term or phrase as the given explanation refers to

one of the five possible answers to a commonsense
question. Moreover, many times the open-ended
explanations in this dataset are not formed as full
sentences, while we aim to generate self-contained,
linguistically complete explanations, so this dataset
is not suitable for our experiments.

On the other hand, the task of recognizing tex-
tual entailment involves general reasoning as well
as understanding some subtle facts about the lan-
guage and the referents, while heavily relying on
commonsense knowledge. For this reasons, many
studies which aim to investigate the ability of a
system to elicit implicit knowledge have turned
onto this dataset, and we choose to experiment our
methods on this challenging dataset enriched with
natural language explanations.

For each training instance x (and for each corre-
sponding output), we obtain a set of four patterns.
As can be seen from table in Section A.1, odd
patterns present the explanation after the two sen-
tences, while even patterns presents the explanation
before the sentences, which are then introduced by
the “Text :” string.

4.3 Experimental setup

For the FINE-TUNING and ENSEMBLING meth-
ods, we experiment with training sizes
(0,10, 100, 500), test and unlabeled sizes = 1000,
sampled uniformly across the original examples
and labels. For UNSUPERVISED, we set 7' = 0 and
do not perform any parameter update, we simply
let the model generate given the modified inputs.
For FINE-TUNING and ENSEMBLE we train on
a single NVIDIA GeForce RTX GPU with 10GB
RAM for 3 epochs, for about 15 hours. We opti-
mize with Adafactor with square root learning rate
decay, dropout rate = 0.1 and learning rate = 104,
following (Schick and Schiitze, 2021b). We train
each model with 8 gradient accumulation steps us-
ing a batch size of 2 as our computing resources
are limited, and generate using greedy decoding.
For all models, we use the Pytorch Transformers
library implementation (Wolf et al., 2019).

4.4 Evaluation

At test time, we evaluate each model on each pat-
tern separately, by modifying each testing instance
with one prompt at a time. Secondly, as in real-
world scenarios it is not always possible to know
in advance which patterns will perform better, we
also evaluate each model on the null pattern pg,
where the input precedes the masked sequence to-

23

ken and we use an empty task prefix. We evaluate
using common metrics for generation, comparing
the predicted output with the reference explanation,
and thus report BLEU-1, ROUGE-1 and BERT-
Score. Kayser et al. (2021) present the most ex-
tensive, current study on the correlation between
human judgments and generation, focusing in par-
ticular on the explanation generation task, and show
that BERT-Score is the one that best matches hu-
man judgments, as also confirmed by other studies
(Becker et al., 2021b). Therefore, we set BERT-
Score as our reference metric to assess the best
model and method.

5 Results and Discussion

In Table 1 we report the results of our experiments
for each of the considered models. T5 represents
the best scoring model, which most benefits from
the proposed methods, achieving a BERT-score
of 91.23 both for the Py-FINE-TUNING method
and for the ENSEMBLING method, as confirmed by
both BLEU and ROUGE scores. Similarly, Pegasus
benefits from the proposed methods, with a slight
decrease on the ENSEMBLING method, which may
be due to the error margin of the metrics.

Interestingly, both models have very low scores
in both zero-shot configurations, indicating that
the “fixed-prompt fine-tune” strategies may be par-
ticularly suitable for them, even without prompt
optimization, as indicated by the low figures of the
null prompt. On the other hand, BART displays a
stronger baseline and is more sensitive to prompt
design, as displayed by the decreasing values es-
pecially relevant on the pg-FINE-TUNING method.
This indicates that when using BART, which was
not specifically trained to accept prompts as in-
puts, prompt optimization may be a better strategy.
On the other hand, for all three models the EN-
SEMBLING method is able to mitigate the negative
effects of shallow prompt design.

While a clear benchmark for the explanation
generation task does not yet exist, in Table 2 we
report the results of related studies on the same task
and dataset. Specifically, we compare our methods
with studies using the same underlying model and
with comparable settings and show that our meth-
ods achieve better results but with a significant
reduction in training size. In particular, Maraso-
vic et al. (2022) use TS5 with 48 training exam-
ples and achieve a significantly lower Bert-Score
compared to our T5-Ensembling method with 10

training examples. Becker et al. (2021b) achieve a
slightly lower BERT-Score using BART, but with
18K training examples (which we compare with
our BART-Ensemble method with 500 training ex-
amples). We provide further details on the related
works in Section 6.

We also manually analyzed several generations
and compared the different models and methods.
We notice that in the unsupervised settings, models
tend to hallucinate, while with zero-shots BART
and PEGASUS tend to copy (part of) the input,
while TS5 often returns single words. In Table 3 we
report an example of the generations produced by
T5 under the different configurations. Notice that
generations under settings 77 and T are already
correct. However, the bigger the train size, the
closer the generation to the reference. Finally, man-
ual inspection also highlighted that in some cases
the model learns to reproduce some patterns, such
as the contradiction explanation pattern “X cannot
Y and Z at the same time”, where X is the com-
mon referent to the sentences and Y and Z are the
states described by the two sentences, respectively.
However, the pattern repetition also characterises
many human-generated sentences, a phenomenon
that deserves further attention in future investiga-
tions if we aim at general, better natural language
explanations.

6 Related work

Being a relatively recent area of interest, gener-
ation of free text explanations is not a well con-
solidated task. Particularly, evaluations metrics
are still being discussed (Golovneva et al., 2022)
(Wiegreffe et al., 2022), attempting both to capture
the explanation informativeness and to improve the
correlation toward human judgements. Here we
report related works which are most focused on the
e-SNLI dataset, being more comparable with our
work (see Table 2).

Generating explanation with implicit knowledge
has traditionally been addressed either by con-
straining generations with general knowledge paths
(Ribeiro et al., 2020), by fine-tuning on specific or
general knowledge datasets (Fatema Rajani et al.,
2019), or with a combination of both methods
(Becker et al., 2021a).

Camburu et al. (2018) train four different mod-
els with the aim to generate an explanation given
only the hypothesis, generate an explanation with-
out knowing the label, jointly predict a label and

24

generate an explanation for the predicted label, and
generate an explanation and then predict the la-
bel. Their work uses straightforward recurrent neu-
ral network architectures so it is does not achieve
state-of-the-art results, but it establishes a strong
baseline.

Becker et al. (2021a) generate implicit knowl-
edge connecting sentences in text, similarly to
Camburu et al. (2018). They perform fine-tuning
on corpora enriched with implicit information, by
constraining them with relevant concepts and con-
necting commonsense knowledge paths, combining
data augmentation and graph-to-text methods.

Marasovic et al. (2022) both present FEB, a
standardized collection of four existing English-
language datasets and associated metrics, and re-
sults based on template-based prompting. In our
work we show that specific prompting design for
the e-SNLI task results in significant improvements
with respect to more general purposes prompts.

Li et al. (2022), based on the intuition that ex-
planation generated through single-pass prompting
often lacks sufficiency and conciseness, propose a
two-step approach where the first-pass output from
the pretrained language model is polished, and then
regenerated retaining the information that supports
the contents being explained.

Ye et al. (2022) show that both the computation
trace (the way the explanation is decomposed) and
the natural language of the prompt, contribute to
the effectiveness of explanations. According to this
finding they propose automatic prompt selection
that focus on prompt diversity, rather than comple-
mentarity only.

7 Conclusion

In this work, we argued that providing explanations
is often a process of eliciting implicit knowledge.
We proposed a general methodology to generate
commonsense explanations from pairs of semanti-
cally related sentences, taking advantage of both
prompting applied to large pre-trained language
models and few-shot learning techniques. Exper-
iments run on the e-SNLI dataset show that the
proposed methods achieve SOTA results on the
explanation generation task, with a substantial re-
duction of labelled data. The obtained results open
new perspective for a number of tasks based on
eliciting implicit knowledge.

UNSUPERVISED (baseline) FINE-TUNING ENSEMBLING

Py Py - Py (best) Py Py - Py (best) P
11.1042.30 88.61 | 10.8642.0588.53 (1) | Ty 11.09 42.3 88.53 | 10.8642.0588.53 (1) | 11.1242.37 88.58
E Tio | 04.5022.8588.14 | 04.6023.09 88.18 (1) | 04.9423.4588.43
m Tigo | 10.8631.8777.09 | 12.27 35.82 86.88 (4) | 14.76 38.00 90.13
Ts00 | 08.0928.2366.57 | 11.8835.68 86.64 (3) | 15.06 39.45 90.27
£ | 01.6626.6785.00 | 03.24 30.85 87.66 (3) To | 05.4429.6987.05 | 10.06 35.00 88.58 (1) | 10.86 38.70 88.76
4 Tio | 10.5838.0688.38 | 10.5037.9388.42 (1) | 10.59 38.66 88.52
2 Thoo | 144240219042 | 14.58 40.3990.47 (4) | 15.60 41.90 90.69
A Ts00 | 16.8742.3090.79 | 16.7542.26 90.77 (4) | 16.39 41.58 90.67
05.4527.2985.59 | 04.7825.4184.68(3) | Tp | 05.4527.2985.59 | 04.7924.7284.76 (1) | 06.25 11.72 84.95
" Tio | 18.9142.4590.99 | 18.9542.6491.01 (2) | 20.4543.87 91.20
= Tigo | 17.6241.969091 | 17.6341.6790.91 (3) | 18.37 42.06 90.96
T500 | 20.1544.6791.23 | 19.84 44.5991.21 (1) | 20.18 44.00 91.23

Table 1: Results for the three sets of experiments for the considered language models in each training configuration
(To — Ts00). Py — P14 indicate the prompt used to modify the test input in that configuration. For prompts P1 — 4
we report the best scoring prompt, indicated in braket (1-4). For each experiment, we report the BLEU-1, ROUGE-1
and BERT-Scores in this order. Boldfaced, the best scoring configurations for each model, method and test prompt
according to BERT-score.

Reference BLEU ROUGE BERT-Score | Training size | Model
Becker et al. (2021b) 12.71 47 90 18K BART

Our method 15.06 39.45 90.27 500 BART
Marasovic et al. (2022) | n/a n/a 79.2 48 TS

Our method 20.45 43.87 91.20 10 T5

Li et al. (2022) 223 n/a 87.16 500K GPT2

Ye et al. (2022) n/a n/a 83.9 500K RoBERTa
Camburu et al. (2018) 27.58 n/a n/a 500K From scratch

Table 2: Benchmark for the task of generating explanations on the e-SNLI dataset.

TS-ENSEMBLING

Generated explanation on test set with P

Input ’A man with an afro and bandanna playing electric guitar.” contradicts "the guy
with the afro is eating spinach’
T False
Tio The guy is either playing electric guitar or eating spinach.
T100 the man is either playing electric guitar or eating spinach.
T500 A man cannot be playing electric guitar and eating spinach at the same time.
Reference The man can not very well be playing electric guitar and eating spinach at the
same time.
Baseline : A man with an afro and bandanna playing electric guitar’ : A man with an

afro and bandanna playing electric guitar’ contradicts "the guy with an afro is
eating spinach’. :”’ A man with an

Table 3: Example generations for the best scoring model and method TS-ENSEMBLING. We report the generated
explanation for each configuration, the reference explanation, and the T5-UNSUPERVISED’s prediction (baseline).

8 Limitations

Although we showed significant improvements in
explanation generation using prompt-based few-

shot learning, our work still has some limitations.
First, we experimented only on the e-SNLI dataset:
although e-SNLI is a reference for the task, it would
be interesting to extend the proposed methodology

25

to other datasets with natural language explana-
tions (see Wiegreffe and Marasovi¢ (2021) for an
extensive review).

Second, we did not attempt to automatic prompt
optimization: although this may bring further mi-
nor improvements, we decided to leave optimiza-
tion to a next step, as it does not change the core
contribution of our work.

Third, we believe there is an intrinsic limitation
in comparing our results with SOTA, as there is not
a clear consensus on which metric is to be taken
as the reference metric for benchmarking, along
with the fact that measures sometimes disagree on
scoring one system better than another. We hope
that in the future this task and its evaluation will
consolidate into a shared benchmark.

Finally, as for our our use of e-SNLI, we are
assuming that for all sentence pairs in the dataset
there is an implicit explanation of the semantic rela-
tion between the sentences. Under this assumption
we always generate an explanation, even when the
explanation is already explicit in one of the sen-
tences. We think that a better capacity to detect
those cases would bring relevant insight to our ap-
proach.

Acknowledgements

This work has been partially supported by the chist-
era ANTIDOTE Project.

References

Maria Becker, Katharina Korfhage, and Anette Frank.
2020. Implicit knowledge in argumentative texts: An
annotated corpus. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
2316-2324.

Maria Becker, Siting Liang, and Anette Frank. 2021a.
Reconstructing implicit knowledge with language
models. In Proceedings of Deep Learning Inside Out
(DeeLlO): The 2nd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 11-24.

Maria Becker, Siting Liang, and Anette Frank. 2021b.
Reconstructing implicit knowledge with language
models. In Proceedings of Deep Learning Inside Out
(DeeLlO): The 2nd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 11-24, Online. Association for Computational
Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.

26

In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Oana-Maria Camburu, Tim Rocktischel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language expla-
nations. Advances in Neural Information Processing
Systems, 31.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Proceedings of the PASCAL Challenges
Workshop on Recognising Textual Entailment.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. arXiv e-prints, pages arXiv—1906.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816-3830, Online. Association for Computa-
tional Linguistics.

Olga Golovneva, Moya Chen, Spencer Poff, Martin
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi,
and Asli Celikyilmaz. 2022. Roscoe: A suite of
metrics for scoring step-by-step reasoning.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2022. Ptr: Prompt tuning with rules
for text classification. Al Open, 3:182—192.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423-438.

Maxime Kayser, Oana-Maria Camburu, Leonard
Salewski, Cornelius Emde, Virginie Do, Zeynep
Akata, and Thomas Lukasiewicz. 2021. e-vil: A
dataset and benchmark for natural language explana-
tions in vision-language tasks. pages 1224—-1234.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871-7880.

Qintong Li, Zhiyong Wu, Lingpeng Kong, and Wei
Bi. 2022. Explanation regeneration via information
bottleneck. arXiv preprint arXiv:2212.09603.

https://doi.org/10.18653/v1/2021.deelio-1.2
https://doi.org/10.18653/v1/2021.deelio-1.2
http://www.cs.biu.ac.il/~glikmao/rte05/
http://www.cs.biu.ac.il/~glikmao/rte05/
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.48550/ARXIV.2212.07919
https://doi.org/10.48550/ARXIV.2212.07919
https://doi.org/10.1109/ICCV48922.2021.00128
https://doi.org/10.1109/ICCV48922.2021.00128
https://doi.org/10.1109/ICCV48922.2021.00128

Xiaotao Li, Shujuan You, Yawen Niu, and Wai Chen. Methods in Natural Language Processing and the 9th
2021. Learning embeddings for rare words leverag- International Joint Conference on Natural Language
ing Internet search engine and spatial location rela- Processing (EMNLP-1JCNLP), pages 3982—-3992.
tionships. In Proceedings of *SEM 2021: The Tenth
Joint Conference on Lexical and Computa[ional Se- Leonardo FR Ribeiro, Martin Schmitt, Hinrich Schiitze,
mantics, pages 278-287, Online. Association for and Iryna Gurevych. 2020. Investigating pretrained
Computational Linguistics. language models for graph-to-text generation. arXiv

preprint arXiv:2007.08426.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta

branches out, pages 74-81. Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
))))) Cancedda, and Thomas Scialom. 2023. Toolformer:
Fangchao Liu, Hongyu Lin, Xianpei Han, Boxi Cao, and Language models can teach themselves to use tools.

Le Sun. 2022. Pre-training to match for unified low-
shot relation extraction. In Proceedings of the 60th Timo Schick and Hinrich Schiitze. 2021a. Exploiting

Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5785—
5795, Dublin, Ireland. Association for Computational
Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,

Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys (CSUR).

Ana Marasovic, Iz Beltagy, Doug Downey, and Matthew

Peters. 2022. Few-shot self-rationalization with nat-
ural language prompts. In Findings of the Associa-
tion for Computational Linguistics: NAACL 2022,
pages 410424, Seattle, United States. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Fabio Petroni, Tim Rocktidschel, Patrick Lewis, An-

ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research,21:1—
67.

Nazneen Fatema Rajani, Bryan McCann, Caiming

Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,

pages 4932-4942.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical

27

cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255-269, Online. Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schiitze. 2021b. Few-shot
text generation with natural language instructions. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 390—
402, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Timo Schick and Hinrich Schiitze. 2021c. Generating
datasets with pretrained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6943—
6951, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222-4235.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149-4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Sarah Wiegreffe, Jack Hessel, Swabha Swayamdipta,
Mark Riedl, and Yejin Choi. 2022. Reframing
human-AlI collaboration for generating free-text ex-
planations. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

https://doi.org/10.18653/v1/2021.starsem-1.26
https://doi.org/10.18653/v1/2021.starsem-1.26
https://doi.org/10.18653/v1/2021.starsem-1.26
https://doi.org/10.18653/v1/2022.acl-long.397
https://doi.org/10.18653/v1/2022.acl-long.397
https://doi.org/10.18653/v1/2022.findings-naacl.31
https://doi.org/10.18653/v1/2022.findings-naacl.31
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47

Technologies, pages 632—658, Seattle, United States.
Association for Computational Linguistics.

Sarah Wiegreffe and Ana Marasovi¢. 2021. Teach me
to explain: A review of datasets for explainable nlp.
ArXiv, abs/2102.12060.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Xi Ye, Srinivasan lyer, Asli Celikyilmaz, Ves Stoy-
anov, Greg Durrett, and Ramakanth Pasunuru. 2022.
Complementary explanations for effective in-context
learning. arXiv preprint arXiv:2211.13892.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-

ternational Conference on Machine Learning, pages
11328-11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

28

A Appendix
A.1 Prompt design

Parameter Values
Prefixes (pref) "Explanation:", "Rationale:"
Task verbalizers (v) | "entails", "contradicts", "does not entail"
Patterns (patt) patty, patts =t +v + tp + pref+ <mask>
patty, patty = pref+ <mask> + "Text:" +t, +v + 1

Table 4: Synthesis of the possible values of each of prompt parameters.

A.2 System diagrams

.......

Paterms

me L) .

(uniabelied)

J M Uniaines mocel
L . 2 - @ | Scorey (scores candide

»] % Yim) A P e ;

J E
Fine-tune Method 3
TRAINgys M (Ensembling)
Uncaodael i
e H

‘Synthetc ensermble
Gataser
e ‘

Nl patern]

T ——————

nnnnnnnnnn

Figure 1: A diagram of our three proposed methods. Hexagons indicate datasets, cylinders indicate language models,
white squares indicate prompting functions applied to inputs, and red rectangle indicates the final evaluation step.

29

