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Abstract

Current natural language systems designed for
multi-step claim validation typically operate
in two phases: retrieve a set of relevant
premise statements using heuristics (planning),
then generate novel conclusions from those
statements using a large language model
(deduction). The planning step often requires
expensive Transformer operations and does
not scale to arbitrary numbers of premise
statements. In this paper, we investigate
whether an efficient planning heuristic is
possible via embedding spaces compatible
with deductive reasoning. Specifically, we
evaluate whether embedding spaces exhibit
a property we call deductive additivity: the
sum of premise statement embeddings should
be close to embeddings of conclusions based
on those premises. We explore multiple
sources of off-the-shelf dense embeddings in
addition to fine-tuned embeddings from GPT3
and sparse embeddings from BM25. We
study embedding models both intrinsically,
evaluating whether the property of deductive
additivity holds, and extrinsically, using them
to assist planning in natural language proof
generation. Lastly, we create a dataset,
Single-Step Reasoning Contrast (SSRC), to
further probe performance on various reasoning
types. Our findings suggest that while
standard embedding methods frequently embed
conclusions near the sums of their premises,
they fall short of being effective heuristics and
lack the ability to model certain categories of
reasoning.

1 Introduction

One way to justify the truth of a statement is to
give an explanation building logically towards that
statement based on deduction from shared premises.
The ways facts can be combined through reasoning
are numerous, including many different modes of
deduction like syllogism or modus tollens. This
process can be automated with natural language

Figure 1: A visualization of an embedding space that
has the Deductive Additivity property. When two facts
(blue and red) are added together, their resulting vector
(yellow) should have high similarity with the embedding
of a statement that logically follows via deduction
(green).

processing, using systems to generate natural
language proofs that use evidence to derive a claim
through a structured argument. Large language
models (LLMs) like GPT4 (OpenAI, 2023) have
exhibited impressive performance in reasoning
tasks. However, these models can still make
unsound inferences (Ye and Durrett, 2022; Zhang
et al., 2023; Xue et al., 2023).

One reason for these errors is that models may
fail to plan reasoning effectively. LLMs do not
have explicit planning capabilities: they generate
conclusions in a way that conflates lexical choice
and decisions of what content to generate, and
no alternatives are materialized in typical greedy
or sampling-based LLM inference. A recent line
of work (Bostrom et al., 2021, 2022; Sprague
et al., 2022; Creswell et al., 2023) explores how
to decouple these stages. However, what is still
missing is a scalable method for doing planning in
these kinds of natural language reasoning settings:
past work involves early-fusion invocation of pre-
trained LMs (Xiong et al., 2021) and does not scale
to thousands of premises.

This work explores the feasibility of planning
the reasoning process directly in a vector space,
where combining statements and retrieving similar
statements can be efficiently implemented as
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addition and cosine similarity, respectively. We
introduce deductive additivity (DA), a property
of an embedding space necessary to enable this
planning. A visualization of an embedding space
with the deductive additivity property is shown in
Figure 1. Each piece of evidence is embedded into
a fixed-size vector, and the combined embeddings
of two facts should be close to embeddings of
statements that are entailed from those two facts
via deduction. This property can help us plan when
we are trying to derive a goal statement based on
premise statements. New facts that bring us closer
to that goal should be explored in the deductive
reasoning process, so this vector space provides a
natural heuristic: we want to find fact embeddings
that, when summed, achieve the highest dot product
with the encoding of our goal. Crucially, the
vector-based nature of this heuristic facilitates rapid
retrieval through efficient search algorithms.

Our experiments test both off-the-shelf em-
beddings (e.g., SimCSE (Gao et al., 2021)) as
well as embeddings that are explicitly tuned for
deductive additivity. First, we conduct intrinsic
evaluations to see whether embeddings of standard
encoders exhibit deductive additivity. We then
test how well the method performs as a search
heuristic on the natural language proof generation
datasets EntailmentBank (Dalvi et al., 2021) and
Everyday Norms: Why Not (Sprague et al.,
2022, ENWN). Finally, we create the Single-Step
Reasoning Contrast (SSRC) dataset to benchmark
each method on how well they model different
reasoning categories, like syllogism or modus
tollens, and how robust they are to common errors
in reasoning, like negation.

Our main contributions are threefold: (1) We
propose a novel method for planning reasoning
steps over a collection of facts purely based on
vector arithmetic. (2) We show that several
embedding methods have promise for deductive
additivity but do not fully meet the properties
required for planning in natural language deduction
scenarios even when explicitly fine-tuned for
it. (3) We present a new dataset meant to
help diagnose and identify areas where deduction
planning methods are underperforming across a
range of different reasoning categories.

2 Problem Description and Motivation

Here we introduce the problem of proof generation,
the system we use to generate proofs and deductive

additivity.

2.1 Problem Setup
We explore the process of proving a goal statement
(or claim) g by generating an entailment tree
T , given a set of general-purpose facts X =
x1, ... xn and a collection of instance-specific
facts F = f1, ... fm. Instance-specific facts
typically pertain to the context or background of a
particular scenario, while general-purpose facts can
be applied more broadly. An example can be seen
in Figure 1, where F consists of two statements,
“Joe is an animal” and “Joe is in outer space”,
and all other facts belong to X . T is a binary-
branching tree with its leaves being members of X
and F while its non-leaf nodes (which we also call
intermediates) are new statements generated via
deductive reasoning. The root of T must logically
entail g. We use the entailment models from past
work (Bostrom et al., 2022; Sprague et al., 2022),
which are based on WaNLI (Liu et al., 2022) to
make this judgment.

The EntailmentBank dataset (Dalvi et al., 2021)
formalizes three variants of this problem setting.
The first setting, denoted as Task 1 (T1), provides
only the general-purpose facts relevant to the
construction of the gold entailment tree, making it
the easiest setting as it eliminates the need to sift
through irrelevant facts. Task 2 (T2) includes both
the relevant facts and lexically similar distractor
facts. Task 3 (T3) (Dalvi et al., 2021) includes
all facts from a large corpus like Wikipedia as the
general-purpose fact set X . In all these settings,
the task involves iteratively building the entailment
tree through deductions until the original goal g
is entailed. Our experiments will focus on the T2
setting. 1

2.2 Proof Generation
We follow past work on these tasks (Bostrom et al.,
2022; Sprague et al., 2022) where the intermediate
nodes of the entailment tree are generated from a
pre-trained language model. Details on the model
are in Appendix D. Specifically, given two premise
statements pa and pb, we assume access to a model
P (dab | pa, pb) that places a distribution over valid

1While the T3 setting offers a large-scale stress test for
retrieval-based approaches like ours, we found in practice
that a first-stage retrieval (i.e., converting T3 to T2) with
BM25 worked well for all datasets considered in this work.
Nevertheless, models that scale to large X sets will be useful
for future systems tackling more sophisticated problems like
automatic fact-checking.
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deductions d given the two premises. If the two
premises do not combine to yield any meaningful
new conclusions, the behavior of this system is not
well-defined.

To produce an entailment tree T , we follow the
proof generation algorithm from Bostrom et al.
(2022); we outline it here and detail all modules
of the search algorithm in Appendix D. We begin
with our collection of premises P = {X⋃

F}. In
EntailmentBank and ENWN, the set P is given per
dataset example. From P , a heuristic M ranks pairs
of premises as to how useful their deduction will
be in proving the claim g (also given per example).
We denote a single ranked premise pair as a step
in the search, and we term the current collection
of steps at any moment in the search as the search
fringe.

A deductive step model, S, pops the highest-
ranked step (according to M ) from the fringe and
generates a set of deductions.2 These deductions
are validated and added back to the pool of
premises P , where the heuristic will rank all
potential pairs of the new set of deductions with
all other previous premises to create new steps in
the search fringe. This process is repeated until the
maxSteps limit is reached or the fringe has been
exhausted.

Our work focuses on investigating if the
heuristics used during the search can leverage
embedding spaces that exhibit deductive additivity.

2.3 Deductive Additivity
Recall that dab represents a valid conclusion from
a pair of premises pa and pb. Our heuristics are
based on an embedding function E : Σ∗ → Rn,
embedding a sentence into n-dimensional space.
We represent the sum of the embedded premises
as the deductive trajectory embedding e

′
a+b =

E(pa) + E(pb), where e
′

signifies embeddings
produced through arithmetic operations rather
than the encoder E. An encoder E generates
an embedding space exhibiting the property of
deductive additivity if the deductive trajectory
embedding has a higher cosine similarity with their
embedded conclusion than any other statement, x,
not entailed by the premises via deduction, denoted
as pa, pb ↛ x. That is, we want

cos(e
′
a+b, E(dab)) > cos(e

′
a+b, E(x)) (1)

2To thoroughly explore the space of all plausible
deductions, we sample k generations each time (k = 5 in
all our experiments).

When the condition in Equation 1 holds, the
embedding space is capable of representing logical
relationships strictly in their vectors and can be
expressed through simple arithmetic operations
such as addition.

2.4 Tuning for Deductive Additivity

Any sentence embedding method can be evaluated
for whether or not it exhibits deductive additivity.
However, we additionally describe a method for
fine-tuning an embedding model to have this
property.

We use EntailmentBank to obtain a collection
of premise deduction triplets D = {pa, pb, dab}.
Subsequently, we use a loss function to push the
encoded representations of the premises closer to
that of the deduction (Chen et al., 2020a; Gao et al.,
2021).

lab = − log
exp(e′

a+b · E(dab)/τ)∑N
i=1 exp(e

′
a+b · E(di)/τ)

(2)

where N represents the batch size. Most
deductions di will not entail the deduction dab,
so they serve as suitable negatives from the
perspective of Equation 1.

For training, we employ temperature scaling in
the contrastive loss in Equation 2. Previous work
has found that contrastive learning benefits from
having large batch sizes, more in-batch negatives,
and hard negatives (He et al., 2020; Karpukhin
et al., 2020; Chen et al., 2020b; Radford et al., 2021;
Xiong et al., 2021). To take advantage of hard in-
batch negatives, we leverage the tree structures in
our training data (EntailmentBank). Specifically,
each batch in our training loop contains all the
intermediate labeled steps for an entailment tree
in EntailmentBank, covering multiple trees. We
discover that triplets from the same tree serve
as suitable proxies for hard negatives in our
contrastive learning process, allowing us to bypass
the need for hard negative mining. Our batches
include 100 trees, as many as we could fit onto our
GPU, which equates to 200-300 triplets in a batch.
We found that increasing the batch size led to better
performance. We implement our method with the
PyTorch Metric learning library (Musgrave et al.,
2020).

Following each epoch of training, we assess
the encoder’s performance by our second intrinsic
evaluation, Ranking Gold Steps. We use the
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EntailmentBank T2 development set for checking
when to stop training the encoder.

2.5 Caching

Certain heuristics used in proof generation
algorithms, such as the one we construct using
deductive additivity, can cache the encodings of
the initial evidence pool X . This offers significant
time savings in completing the first step of a search
procedure (where a non-cached method would need
to set up and rank the pairs for the initial set).
However, any subsequent deductions will need
to be encoded since they cannot be precomputed
and cached. We also found the time savings to be
relatively limited in the T1 and T2 settings since
n is relatively small, so we do not expand on this
capability further.

3 Heuristics and Datasets

To measure the performance of using deductive
additivity as a proof generation heuristic, we
explore five heuristics and three datasets.

3.1 Baseline Heuristics

We consider two baseline heuristics for ranking
and retrieving relevant statements: BM25, a sparse
retrieval method, and the original heuristic from
previous work, SCSearch, which employs an early-
fusion premise ranker model.

BM25 BM25 (Robertson et al., 1995) matches
items in an index with a query via sparse vector
representations, capturing lexical overlap but not
deeper semantic similarity. In the proof generation
search procedure, we index all concatenations
of strings in each step (two premises, generated
deductions, or one of both), then retrieve the best
step based on the goal.

SCSearch Past work (Bostrom et al., 2022)
has used heuristics with a substantially different
structure. These heuristics use language models
like DeBERTa to score premise pairs conditioned
on a claim. Specifically, these models are of the
form w⊤E(p1, p2, g); they encode p1, p2, and g
jointly with an encoder model. A linear layer w is
then used to predict a logit value used for ranking.
These models are trained as binary classifiers on
EntailmentBank by selecting positive examples of
premise pairs that eventually lead to g and negative
examples of unrelated premise pairs. This allows
the language model to determine if the immediate

deduction would be beneficial towards deducing
the claim that it is conditioning on. It also allows
the language model to see the claim and premise
pairs in context and model interactions between
them. Because these methods use Transformers
to score the premise pair and can model nonlinear
interactions between the premises, these models
are strictly more expressive than vector-based
heuristics.

3.2 Embedding-based Heuristics
To test if embeddings with deductive additivity
can be useful in proof generation, we employ
three different heuristics that all use deductive
additivity but with different encoders to compare
different embedding spaces. A deductive additivity
heuristic will, for each step, encode any new
deductions from the previous step and then sum
all the pairs to create deductive representations e

′
d

for hypothetical deduced pairs. We then compute
the cosine similarity of each e

′
d with eg (the goal

embedding), which is used as a score to select the
next step Si = argmax

d
cos(e

′
d, eg).

We consider the deductive additivity heuristic
under three different encoders: SimCSE and GPT3
are used to test off-the-self sentence encoders for
deductive additivity, and finally, we fine-tune GPT3
explicitly for deductive additivity.

SimCSE SimCSE (Gao et al., 2021) is an
encoder that produces sentence embeddings
optimized using a contrastive objective.3 We test
to see if this encoder produces an embedding space
where deductive additivity holds.

GPT3 We use OpenAI’s embedding endpoint to
create sentence embeddings using the Ada model
(Brown et al., 2020). We test to see if this encoder
produces an embedding space where deductive
additivity holds as well.

GPT3-tuned We combine OpenAI’s embedding
endpoint with three additional dense layers
using the GLU activation function with residual
connections between each layer. We then fine-tune
these three layers using the EntailmentBank T1
dataset as described in Section 2.4.

3Note that this contrastive objective is different from ours.
Training for SimCSE was performed on natural language
inference (NLI) examples from MNLI and SNLI datasets.
From the perspective of data assumptions, we place it in
the “fine-tuned” category; although it hasn’t been trained on
EntailmentBank data explicitly, it uses related entailment data.
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3.3 Datasets

EntailmentBank (EB) This dataset comprises
annotated entailment trees for textbook-based
science facts (Dalvi et al., 2021). We used this
dataset for training the majority of our models in a
T1 setting. We evaluate the models on the test slice
of entailment trees for the T2 task setting.

Each example in EB contains a set of premises,
P , and a claim g that we are trying to prove given
P . To prove g, the system has to produce a series of
deductions by combining two premises from the set
P , then combining intermediate deductions and the
premises in P until the claim is proven. Whether
it is proven is determined via an entailment model
scoring g above a certain threshold from some
generated conclusion following previous work
(Sprague et al., 2022; Bostrom et al., 2022) and
detailed further in Appendix D. Planning heuristics
must determine which premise-premise or premise-
deduction pairs are most likely to help in proving
the claim, as the set of pairwise premises and
intermediate deductions can be large.

In the T2 setting, the number of premises n is
fairly small; n < 30 for most examples. There are
usually only 3 to 5 deductions involved to produce
the annotated entailment tree. We allow for a total
of 10 steps (maxStep), and for each step, we allow
for five generations to be sampled (k).

Everyday Norms: Why Not (ENWN) ENWN
(Sprague et al., 2022) contains annotated en-
tailment trees for common everday scenarios.
Structurally, ENWN resembles EntailmentBank
but with a different domain of reasoning and
a larger number of required deductive steps on
average (4.71 to 4.26). ENWN aims to combine
common social rules deductively to determine
whether a person should perform a particular action
(usually something they should not do). ENWN
currently does not have a T2 or T3 setting.

3.4 Single-Step Reasoning Contrast Dataset

Both EntailmentBank and ENWN test a subset of
logical inference types but do not necessarily have
broad coverage. For example, EntailmentBank has
very few examples involving negation, despite this
being a very important phenomenon to model in
practice. We want to test whether our embedding
methods can handle a wider range of cases.

We construct a new dataset that examines

Figure 2: Distribution of cosine similarities for
examples in EntailmentBank T2 and ENWN. All three
encoders show little overlap between Random and
Gold, showing that these embeddings support Deductive
Additivity and the condition in Equation 1. However,
the overlap with Partial is substantially higher.

common forms of logical reasoning4 via synthe-
sized examples. We consider fourteen categories:
Analogy, Categorical Syllogism, Causal reasoning,
Classification, Comparison, Composition, Division,
Modus Ponens, Modus Tollens, Definition, Tempo-
ral Logic, Propositional Logic, Quantificational
Logic, and Spatial Relationship. For each
category, we use GPT-3.5 to generate ten examples
of deductions given two premises using the
corresponding reasoning category.

For every example deduction, we prompt
GPT 3.5 further to perturb the premises in four
ways creating additional examples of incorrect
deductions. For each perturbation, we create
three examples where one or both premises have
been negated, three examples where one or both
premises are a false premise, fifteen examples
where one or both premises are an irrelevant fact,
and three examples where one or both premises
have an incorrect quantifier (usually meaning that
“some”, “all”, or “none” has been prepended to
the premise). Examples from the dataset from
different reasoning categories and perturbation
types are shown in Section B of the Appendix in
Table 5. Prompts to create examples and perturb
the examples can be found in Appendix E.

4We initially employed ChatGPT for annotating examples
in EntailmentBank and ENWN. However, it did not yield
consistent labels, signaling an opportunity for further
exploration in future research. Instead, we adopted a different
approach, generating a selection of widely-used labels that we
subsequently employed as the reasoning categories within the
SSRC dataset.
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4 Experiments

4.1 Intrinsic Evaluation
We perform two intrinsic evaluations to test if
encoders exhibit the deductive additivity property:
do they rank gold premise pairs in the proof
generation task above incorrect pairs?

Comparing Deduction Embedding Representa-
tions In our first intrinsic evaluation, we measure
the cosine similarity distributions of premise pairs
and a deduction in three settings to test for
deductive additivity. The first setting uses a
deduction dab and measures the cosine similarity
of its embedding E(dab) with a random premise
pair Pr = {px, py} where px and py are drawn
randomly from the set of premises, U(P ). The
next setting looks at partially random premise pairs,
Pp = {pa, py} where pa is one of the gold premises
Pg = {pa, pb} that yield the deduction dab. Finally,
we measure the distribution of scores for the gold
premise pair Pg and the following deduction from
those premises dab. These three settings correspond
to Random, Partial, and Gold, respectively, in
Figure 2.

Additionally, we also compared the gold
premise pair Pg = {pa, pb} with model-generated
deductions Sd(pa, pb) = d′ab and measured their
cosine similarity cos(e

′
a+b, E(d′ab)). Finally, we

measured the cosine similarity scores of the
annotated deductions and the generated deductions
cos(E(dab), E(d′ab)); this is a sort of sanity check
to see if the deductive additivity property holds for
proof generation. This experiment checks whether
the step model introduces significant deviation in
embedding similarity compared to using the gold
steps. These settings correspond to Model and G.
to S. respectively in Figure 2, all settings have their
averages reported in Table 4 in Section A of the
Appendix as well.

Embedding Representations Results Figure 2
shows a slight overlap between the cosine similarity
score distributions of random and gold pairs,
aligning with expectations and showing that
Equation 1 roughly holds for all three encoders.
However, the partial pairs have much more overlap
with the distribution of gold pairs for each encoder.
Concerningly, the partial pairs are much more
numerous because these pair one of the ground
truth statements with an irrelevant statement,
forming a pair we do not want the heuristic to
surface. We will see the performance ramifications

of this in the end-to-end evaluation. On a positive
note, we also see high agreement between the
gold premise pair and the generated deduction,
indicating that deductions generated by the step
model are similar to the annotated deductions.

EB T2 ENWN
Heuristic Deductive Goal Deductive

BM25 0.47 0.21 0.50
SCSearch 0.78 0.39 0.82

SimCSE (DA) 0.46 0.20 0.59
GPT3-tuned (DA) 0.54 0.23 0.54

GPT3 (DA) 0.54 0.24 0.56

Table 1: Comparison against different heuristics on
the MRR of selecting gold premises conditioned on
their immediate deduction and the goal of the tree.
GPT3 outperforms BM25, indicating that there are
more complex reasoning steps required than just lexical
overlap. However, SCSearch still outperforms all
methods by as much as 0.24.

Ranking Gold Steps The second intrinsic
evaluation measures the rankings of premise pairs,
Ppairs, conditioned on a deduction embedding,
E(dab), where one pair is the gold premise pair
Pg = {pa, pb} which yield the deduction. All
other pairs are either random Pr = {px, py},
where px and py are sampled uniformly from the
set of premises U(P ), or are partially random
Pp = {pa, py}. The full list of premise pairs
is the union of all these sets Ppairs = Pg ∪
Pp ∪ Pr. We calculate scores for each pair
according to how each heuristic scores premise
pairs, scores = {heuristic(Ps, dab) | Ps ∈
Ppairs}. For the heuristics using deductive
additivity (DA), the scores are cosine similarities,
scores = {cos(e′

n+m, E(dab)) | {pn, pm} ∈
Ppairs}. Finally, we sort scores and find the rank
of the gold premise pair.

We calculate the mean reciprocal rank (MRR)
using the ranks of the gold premise pairs across all
examples in the EntailmentBank T2 and Everyday
Norms: Why Not datasets. We also repeat this
process for EntailmentBank T2 where we make
the target of the search the claim g instead of the
immediate deduction dab. Because the claim g
is often a product of multiple deductions in the
premise set P , we expect the MRR scores to be
lower than the scores on the immediate deductions
dab. ENWN does not have a T2 setting, so we
do not show the claim-conditioned scores because
every premise would be related to the claim g,
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EB ENWN
Solved Steps Solved Steps

BM25 43% 2.2 48% 5.1
SCSearch 61% 3.4 86% 9.8

SimCSE (DA) 44% 2.8 46% 2.7
GPT3-tuned (DA) 49% 2.1 46% 2.5

GPT3 (DA) 49% 2.2 41% 2.2

Table 2: Generated proofs per heuristic on the two
datasets. BM25 has high performance on both of these
datasets, indicating that textual overlap is enough to
plan reasoning steps for nearly 50% of the examples.
SimCSE (DA) and GPT3 (DA) underperform BM25
on ENWN; this could mean that these methods are not
as sensitive to lexical overlap as BM25 is. SCSearch
still outperforms every baseline by as much as 38%,
showing that a lot of reasoning is unaccounted for in the
other methods.

making nearly all pairs valid. These are shown in
Table 1. A number closer to 1.0 indicates that the
gold premise pair was consistently ranked higher
than partial and random premise pairs.

Gold Steps MRR Results Table 1 shows the
BM25 MRR scores as being quite competitive with
the methods using deductive additivity, SimCSE,
GPT3, and GPT3-tuned, all of which are within 0.1
of each other. BM25s high performance indicates
that the datasets EB T2 and ENWN have many
examples where the lexical overlap is enough to
determine the gold premise pair Pg. GPT3 does
outperform the BM25 baseline, however, and in
nearly every case, the SimCSE heuristic does
as well (except for ENWN). GPT3-tuned does
slightly worse in both EB T2 and ENWN, showing
that fine-tuning the embeddings to produce the
deductive additivity property is not trivial. The
degradation in performance is surprising given
that the model was fine-tuned on a task very
similar to the intrinsic evaluation being reported
in Table 1. SCSearch still outperforms all leading
methods. There is a significant drop across all
methods between ranking premise pairs with the
immediate deduction and the goal. Although this
was expected, the drop is quite significant and is
worth exploring further in future work on how it
could be mitigated.

4.2 Extrinsic Evaluation: Generating Proofs

Next, we explore how well heuristics employing
deductive additivity can perform on proof
generation datasets detailed in Section 3.3.

Results We report the percentage of proofs that
entailed the goal, g, as well as the average number
of steps to prove the claim across all planning
heuristics in Table 2. GPT3 (DA), GPT3-tuned
(DA), and SimCSE (DA) are all able to produce
slightly more proofs than BM25 on the EB T2
dataset but fail to outperform BM25 on ENWN.
Because BM25 is a limited heuristic that only
employs lexical overlap, this result shows that
nearly 50% of examples in these datasets can have
proofs generated using simple heuristics that use no
deeper semantic representations. However, deeper
reasoning does help, as shown by the fact that
SCSearch is able to generate far more proofs than
the other methods across both datasets by as much
as 36%. This finding is also supported by the MRR
results of the second intrinsic evaluation, shown
in Table 1. Disappointingly, deductive additivity
does not seem to be able to capture the same sort
of benefits in the heuristic it provides.

4.3 Single-Step Reasoning Contrast Dataset

To best understand where the vector-based methods
are lacking in performance and pinpoint where
improvements can be made, we test each method
across a variety of types of reasoning and common
failure cases in the Single-Step Reasoning Contrast
(SSRC) dataset. In this experiment, we perform the
same evaluation as our second intrinsic evaluation,
Ranking Gold Steps. Here we use examples from
the SSRC dataset, which have been curated and
labeled to allow for a report of an MRR on different
types of deductions and error cases.

Encoder Overall MRR

SCSearch 0.83
SimCSE (DA) 0.80

GPT3-Tuned (DA) 0.83

GPT3 (DA) 0.85
BM25 0.50

Table 3: Overall scores of each heuristic on the SSRC
dataset. GPT3 (AD) outperforms SCSearch slightly on
this benchmark, slightly contradicting the results of the
previous experiments.

Results Table 3 shows the averaged MRR scores
across all methods. GPT3 (DA) outperforms
SCSearch slightly overall, but to better understand
the performance, we plot the average MRR across
the fourteen reasoning categories and perturbation
types for each method compared to SCSearch in
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Figure 3: Comparison plot of the heuristic methods
versus the SCSearch heuristic. If a point is above the
green line, then that method outperformed SCSearch.
Circles indicate reasoning categories, and X-marks
indicate perturbation types. BM25 underperforms all
other methods, showing that the dataset is not sensitive
to lexical overlap.

Figure 3. GPT3 (DA) can outperform both BM25
and SimCSE (DA) consistently across nearly every
reasoning category and all perturbation types.
Furthermore, we see that GPT3 (DA) is capable
of beating or matching SCSearch on half of
the reasoning categories and perturbation types,
contradicting previous results indicating that these
datasets might be skewed in areas where SCSearch
excels at.

GPT3-Tuned (DA) performs worse in 9
categories than GPT3 (DA) and better in only
3. This could be from the skewed reasoning
categories in EntailmentBank, but it could also
be that enforcing the condition in Equation 1
directly is counterproductive. Averaged scores
for each reasoning category and perturbation type
can be found in Appendix C, in Tables 6 and 7
respectively.

5 Discussion

Vector-based methods are not sufficient to
capture all information for planning deductions.
We’ve found that vector-based methods can
represent complex reasoning but fall short in
planning reasoning steps when compared to early-
fusion premise rankers like SCSearch. Our results
suggest a more complex and structured approaches
may be necessary for step-by-step systems.

Skewed datasets provide optimistic benchmarks
for weaker models. Our results focused on the

T2 setting because we discovered that a BM25 +
SCSearch pipeline did quite well and scaled to
large numbers of premises. However, we believe
this is an optimistic result and may not scale to
production settings where claims may require more
complex deductions that are less sensitive to lexical
overlap. Developing datasets with more complex
reasoning and benchmarking in real production
settings is a focus for future work.

Training for Deductive Additivity can harm
performance. We found that training deductive
additivity directly improves categories of reasoning
prevalent in the training dataset while harming
other categories. Both larger and more diverse
datasets may be a solution for this problem,
but GPT3 embeddings already show deductive
additivity without explicitly training for it.
Developing different training objectives that result
in embeddings with deductive additivity is another
focus for future work.

6 Related work

Our work follows from models and methods
done in the Question Answering domain where
models are required to generate an answer or
select evidence that leads to the answer through
“multi-hop” reasoning (Chen et al., 2019; Min
et al., 2019; Nishida et al., 2019). Although
these end-to-end methods can be used in proof
generation, understanding the underlying reasoning
of the decisions being made is impactful for
understanding the affordances of the model (Hase
and Bansal, 2020; Bansal et al., 2021).

Step-by-step methods have been looked at
for proof generation, detangling planning and
reasoning into separate subsystems that work
together as a whole when proving a claim (Dalvi
et al., 2021; Ribeiro et al., 2022; Bostrom et al.,
2022; Yang et al., 2022; Hong et al., 2022; Creswell
et al., 2023; Yang and Deng, 2023). There has
also been work on using similar modular systems
in answering questions with a knowledge base
and different types of embeddings (Bordes et al.,
2013; Ren et al., 2020; Tran et al., 2022). Our
work extends from this literature, focusing on
exploring alternative heuristics for natural language
deduction planning entirely in embedding space by
tapping into the property of deductive additivity.

We also follow work being done in retrieval,
which focuses on finding evidence from a large
corpus that would help answer a query. State-
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of-the-art retrieval methods involve encoding the
corpus into vector indexes that can be used to
calculate the cosine similarity of an encoded
query (Xiong et al., 2021; Karpukhin et al., 2020;
Khattab and Zaharia, 2020). Sparse encoders, like
BM25, have also been used to help reduce the
search space for relevant passages (Valentino et al.,
2022). However, none of the methods tap into the
deductive additivity property in their embedding
spaces and instead encode the query to find relevant
passages and then re-encode the query with the
appended passages to find additional relevant
passages. We consider this to be similar to early-
fusion premise rankers in the proof generation task.

Another line of relevant work deals with
understanding reasoning errors from language
models, like the detection of logical fallacies in text
(Jin et al., 2022). We further this line of work with
the SSRC dataset, building a contrast set (Gardner
et al., 2020) for reasoning targeting certain types
of deductions and common reasoning errors.

7 Conclusion

In this work, we have explored the property
of deductive additivity in sentence embedding
spaces. Results show that off-the-shelf sentence
encoders exhibit the property somewhat; however,
when used as heuristics in natural language proof
generation, they are only slightly more successful
than BM25. Furthermore, we see that fine-tuning
for deductive additivity does not lead to better
reasoning capabilities of the embedding space,
and we posit that a large contributor to this could
be skewed datasets. We introduced the Single-
Step Reasoning Contrast dataset, which shows that
these same skewed datasets provide over-optimistic
results for inferior methods harming our ability
to benchmark systems for their use in production
settings. Lastly, we’ve shown that early-fusion
premise rankers like SCSearch still outperform
vector-based approaches. However, their ability
to scale to more diverse reasoning datasets that
are less sensitive to lexical overlap is still an open
question for future work.
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A Embedding Reconstruction Results

Table 4 shows the averaged cosine similarity of
the random, partially random, and gold pairs, as
well as the cosine similarities for the gold pairs
with the step model generations. This provides
complementary information to Figure 2.

B SSRC Dataset Examples

Table 5 shows four examples from the SSRC
dataset that have been sampled from different rea-
soning categories and show different perturbation
types for the premises.

C SSRC Dataset Results

We report the raw scores for both the reasoning
categories and perturbation types in Tables 6 and 7
respectively.

D Proof Generation Modules

We outline in more detail the proof generation
search algorithm we use in our experiments
following work from Sprague et al. (2022) and
Bostrom et al. (2022).

Algorithm 1 The main search function with a
heuristic using the deductive additivity property.
Given a set of premises and a goal claim, generate
intermediate deductions until the claim is proven
true or a termination criterion is met. E is a
sentence encoder.

Input A list X of string premises pi that will be used to
search over to prove a string claim g
Output A list of steps taken by the algorithm with their
generations
Procedure SEARCH(X = {p1, . . . pn}, g):
f ← {E(pi) + E(pj) | pi,pj ∈ X, i ̸= j}
ĝ ← E(g)
gens← {}
maxSteps ∈ N
i← 1
while |f | > 0 ∧ i ≤ maxSteps do

step← argmax
xi∈f

M(xi, ĝ)

f ← f \ {step}
sample yi from pS(y | step)
if yi /∈ gens then

gens← gens
⋃ {yi}

yield (step,yi)
if entails(yi,g) then return
f ← f ∪ {E(yi) + E(xj) |xj ∈ X}
f ← f ∪{E(yi) + E(yj) | yj ∈ gens, 1 ≤ j <

i}
i← i+ 1

D.1 Deductive Step Model

The deductive step model is trained using the
EntailmentBank dataset following Bostrom et al.
(2022). We transform the annotated entailment
trees into individual steps Ti = (x1, x2 → c) and
fine-tune a pre-trained language model to generate
the deduction given a set of premises. We do not
use data from (Bostrom et al., 2021).

D.2 Reasoning Validation

To ensure that the search space generates well-
reasoned deductions, we implement a set of
validators that examine both the types of steps
being taken and the generations produced by the
step models following Sprague et al. (2022). Firstly,
we employ a Consanguinity Threshold step to
ensure that the search procedure does not permit
steps to consist of the same premise or premises
that result in immediate deductions. For instance,
if pa and pb create the deduction dab, we disallow a
new step to be (pa, dab). This approach effectively
promotes diversity in the types of steps being taken.
We also enforce that no generation from a step
model is an exact duplicate of one of the inputs.

Furthermore, to avoid identifying high-ranking
pairs of premises that result in illogical deductions
due to hallucination, we devise a new validation
method to ensure consistency. The Deduction
Agreement validator compares the embedding of
the added premises ed′ with the embedding of the
generated deduction ed. If the cosine similarity
falls below a threshold tda, the step is filtered out.
A running average of all cos(ed′ , ed) scores for
previous deductions is maintained. If a branch in
the entailment tree generates too many deductions
that have low cosine similarity with their summed
premises, it will be filtered out.

D.3 Entailment Scores

We employ a DeBERTa model, fine-tuned on the
MNLI and WaNLI tasks, to assess the entailment
of each generated natural language deduction. If
a deduction achieves a score above a predefined
threshold, tg, it is considered to have recovered
the goal g. Once a deduction has successfully
recovered the goal, we can trace back the steps
used to create that specific deduction, resulting in a
minimal proof tree that contains only the essential
steps required to prove the goal.
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EB ENWN
Heuristic Rand Partial Gold Model Rand Partial Gold Model

SimCSE 0.25 0.62 0.85 0.85 0.14 0.48 0.72 0.76
GPT3-tuned 0.31 0.70 0.90 0.90 0.56 0.74 0.86 0.87

GPT3 0.79 0.88 0.93 0.94 0.79 0.89 0.95 0.95

Table 4: We look at the average cosine similarity score of different summed premise pairs with their textual
deduction embedding. We see large gaps between a Random set of premises and the Partial/Gold set; however,
Partial and Gold are less separated. The Model columns show that there is no loss in representing deductions if the
deduction is the gold annotation or from the deduction step model.

Category and Perturba-
tion

Premises Conclusion Perturbed Premises

Categorical Syllogism,
Negation

All cats are animals.
Whiskers is a cat.

Whiskers is an Animal. Some cats are not ani-
mals. Whiskers is not a
cat.

Causal Reasoning, Irrele-
vant Fact

High levels of stress
cause anxiety. Linda has
been under a lot of stress
lately.

Linda may develop anxi-
ety.

Anxiety disorders can
also manifest as physical
symptoms. ...

Comparative Reasoning,
Incorrect Quantifier

John is stronger than
Mary. Mary is stronger
than Sue.

John is stronger than Sue. Some women are
stronger than Sue.

Temporal Reasoning,
False Premise

The store is open for 12
hours. The store opens at
9 AM.

The store closes at 9 PM. The store is open for 10
hours.

Table 5: Examples taken from the Single-Step Reasoning Contrast (SSRC) dataset. The Category and Perturbation
column shows which reasoning category is used in the deduction as well as what type of perturbation is applied
to the premise. The perturbed premise is then used to create invalid premise pairs (where one premise could be a
gold premise, but the other is perturbed) such that when the two are combined, their deduction does not lead to the
conclusion. There are ten examples per reasoning category, and each example has multiple perturbed premises for
each of the four perturbation types.

SCSearch SimCSE (DA) GPT3-tuned (DA) BM25 GPT3 (DA)

Analogy 0.86 0.80 0.95 0.42 0.95
Categorical syllogism 0.80 0.72 0.78 0.55 0.87

Causal Reasoning 0.78 0.59 0.76 0.52 0.78
Classification 0.86 0.87 0.94 0.55 0.91

Comparative Reasoning 0.85 0.92 0.96 0.44 0.96
Composition 0.75 0.89 0.59 0.40 0.62

Definition 0.80 0.84 0.96 0.49 0.97
Divisions 0.85 0.83 0.83 0.41 0.84

Modus Ponens 1.0 0.99 0.98 0.56 1.0
Modus Tollens 0.83 0.70 0.66 0.56 0.7

Propositional Logic 0.89 0.75 0.73 0.62 0.69
Quantification Logic 0.76 0.83 0.90 0.61 0.87

Spatial Reasoning 0.78 0.81 0.87 0.47 0.90
Temporal Reasoning 0.74 0.70 0.77 0.46 0.79

Table 6: Results of each heuristic on SSRC are broken down by the reasoning category and averaged over the
individual perturbation types of each category. We separate SCSearch and SimCSE (DA) from the BM25 and
GPT3 (DA) heuristics as the BM25 and GPT3 (DA) have not been trained on any natural language inference data
(with the possibility that GPT3 may have seen some incidental examples of inferences in its pretraining), making
them close to zero-shot on this task. SCSearch and SimCSE (DA) have both been fine-tuned on reasoning datasets
(EntailmentBank and NLI, respectively).
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SCSearch SimCSE (DA) GPT3-tuned (DA) BM25 GPT3 (DA)

False Premise 0.84 0.81 0.81 0.45 0.81
Irrelevant Fact 0.97 0.75 0.82 0.81 0.87

Incorrect Quantification 0.76 0.86 0.84 0.41 0.86
Negated 0.73 0.80 0.86 0.35 0.87

Table 7: Results of each heuristic on SSRC are broken down by the perturbation type and averaged over the
individual reasoning categories. We again separate SCSearch and SimCSE (DA) from the BM25 and GPT3 (DA)
heuristics.

E SSRC Prompting

We use ChatGPT to prompt GPT3.5 and create the
SSRC dataset. We followed the same template for
all reasoning categories and then used a simple
Python script to parse out the examples generated.
Below is an example of how we prompted ChatGPT
for the reasoning category Classification. All
prompts are given to ChatGPT one after another.

F Examples of GPT ranking SSRC
premise pairs

Here we show three examples from the SSRC
dataset and place the premise pairs in order of
how GPT3 ranked them. The Category indicates
which reasoning category the example belongs to,
Perturbation indicates which perturbation type the
example is exhibiting, Target is the claim g, Gold
Premises are the correct premises that yield the
claim from a deduction, Rank is the Rank GPT3
gave the gold premises (1 being the best). We also
include all premise pairs and their ranks below the
Rank of the gold premises, and we mark the pair
(G) for the gold premise pair.
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Creating the ten examples
Create ten deductions that use classification in the example. A definition of classification in
deductions and an example is below:

Definition:
Classification involves grouping things based on shared properties or characteristics and drawing
conclusions based on these groupings.

Example:
P1: A dog is a type of animal.
P2: A cat is a type of animal.
C: Dogs and cats are both animals.

Each example should have 2 premises and 1 conclusion. They must all use classification to perform
the deduction.

Figure 4: Prompt given to ChatGPT that creates the original ten deductions for the specific reasoning category. The
premises given in this step are referred to as the “gold premises”.

Negating the ten examples
For each of the ten generate negations of each premise and conclusion. If a premise begins with
"All... are x" you should both negate the sentence and remove the word "All" at the beginning.

Just write the negations and put it in the format:

P1: Negated premise one
P2: Negated premise two
C: Negated conclusion

Figure 5: Once the ten reasoning examples have been generated, we then ask ChatGPT to negate the ten examples’
gold premises.

Creating false premises
For each of the ten generate two false premises total, one for each premise. The false premise
should make the original deduction invalid. Do NOT generate a false conclusion. Do NOT repeat
the valid premises or conclusions. Only generate the False premises.

Put them in this format:

False P1: False premise for premise one
False P2: False premise for premise two

Figure 6: After the negated premises are generated, we ask ChatGPT to create false premises for the ten reasoning
examples. False premises are not negated premises. Instead, they should employ some common sense from the
model to make a statement false. An example from the SSRC dataset is “a granny smith is a type of fish.” which is a
false statement.
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Generating irrelevant facts: Prompt 1
For each of the ten generate two facts that seem related to the deduction but are in fact irrelevant.
They should not contribute to the deduction at all, but they should be close enough to trick someone.
ONLY GENERATE THE NEW FACTS.

Put them in this format:

Irrelevant Fact 1: Irrelevant fact for premise one
Irrelevant Fact 2: Irrelevant fact for premise two

Generating irrelevant facts: Prompt 2
Do this again. For each of the ten generate two facts that seem related to the deduction but are in
fact irrelevant. They should not contribute to the deduction at all, but they should be close enough
to trick someone. ONLY GENERATE THE NEW FACTS.

Put them in this format:

Irrelevant Fact 1: Irrelevant fact for premise one
Irrelevant Fact 2: Irrelevant fact for premise two

Generating irrelevant facts: Prompt 3
Generate one more set of facts. For each of the ten generate two facts that seem related to the
deduction but are in fact irrelevant. They should not contribute to the deduction at all, but they
should be close enough to trick someone. ONLY GENERATE THE NEW FACTS.

Put them in this format:

Irrelevant Fact 1: Irrelevant fact for premise one
Irrelevant Fact 2: Irrelevant fact for premise two

Figure 7: After the false premises are generated, we ask ChatGPT to create irrelevant facts that are true but not
helpful in deducing the original conclusion. We prompt ChatGPT three times for a set of six irrelevant facts per
example.

Generating examples with incorrect quantifiers
Now generate premises from the original set of 10 examples that have incorrect quantifiers that
would make the conclusion invalid. Use things like "All, some, none, etc.". Do not write the
conclusion.

Put them in the format:
Incorrect P1: Incorrect quantifiers for p1
Incorrect P2: Incorrect quantifiers for p2

Figure 8: Finally, we prompt ChatGPT to adjust the quantifier on the original gold premises.
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Category: spatial reasoning
Perturbation Type: NEGATED
Target: The pharmacy is on the same side of the street as the bank.
Gold Premises: The post office is on the same side of the street as the bank. The pharmacy is next
to the post office.
Rank: 1

Rank (G) 1: the pharmacy is next to the post office. the post office is on the same side of the
street as the bank.

Rank 2: the pharmacy is not next to the post office. the post office is on the same side of the
street as the bank.

Rank 3: the pharmacy is next to the post office. the post office is not on the same side of the
street as the bank.

Rank 4: the pharmacy is not next to the post office. the post office is not on the same side of the
street as the bank.

Figure 9: An example of GPT3 embeddings using deductive additivity correctly ranking a spatial reasoning example
with negation from the SSRC dataset.

Category: definition
Perturbation Type: FALSE PREMISE
Target: A Granny Smith is a type of fruit.
Gold Premises: An apple is a type of fruit. A Granny Smith is a type of apple.
Rank: 1

Rank (G) 1: an apple is a type of fruit. a granny smith is a type of apple.
Rank 2: an apple is a type of fruit. a granny smith is a type of fish.
Rank 3: a granny smith is a type of apple. an apple is a type of vegetable.
Rank 4: a granny smith is a type of fish. an apple is a type of vegetable.

Figure 10: An example of GPT3 embeddings using deductive additivity correctly ranking a definition example with
false premises from the SSRC dataset.
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Category: propositional logic
Perturbation Type: IRRELEVANT FACT
Target: The store is closed.
Gold Premises: If it is Sunday, the store is closed. It is Sunday.
Rank: 10

Rank 1: i need to buy groceries. if it is sunday, the store is closed.
Rank 2: i forgot to bring my reusable bag. if it is sunday, the store is closed.
Rank 3: if it is sunday, the store is closed. i prefer to shop on saturdays.
Rank 4: the store is near my house. it is sunday.
Rank 5: it is sunday. the store has a sale.
Rank 6: i need to buy groceries. the store has a sale.
Rank 7: i prefer to shop on saturdays. the store has a sale.
Rank 8: i forgot to bring my reusable bag. the store has a sale.
Rank 9: the store is near my house. i prefer to shop on saturdays.
Rank (G) 10: if it is sunday, the store is closed. it is sunday.
Rank 11: the store is near my house. i need to buy groceries.
Rank 12: i have a coupon for the store. it is sunday.
Rank 13: the store is near my house. i forgot to bring my reusable bag.
Rank 14: i have a coupon for the store. i prefer to shop on saturdays.
Rank 15: i have a coupon for the store. i need to buy groceries.
Rank 16: i have a coupon for the store. i forgot to bring my reusable bag.

Figure 11: An example of GPT3 failing to rank a propositional logic example of the SSRC dataset correctly amongst
irrelevant facts.
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