
Proceedings of the Joint 3rd NLP4DH and 8th IWCLUL, pages 248–265
December 1-3, 2023 ©2023 Association for Computational Linguistics

Bridging the Gap: Demonstrating the Applicability of Linguistic Analysis
Tools in Digital Musicology

Sebastian Oliver Eck
Department of Musicology Weimar-Jena

University of Music Franz Liszt Weimar, Germany
sebastian.eck@hfm.uni-weimar.de

Abstract

This study introduces the novel concepts of Ex-
plicit and Implicit Musical Parameters (EMPs
and IMPs) and demonstrates their application
in digital musicology. Furthermore, it dis-
cusses the concept of ’musical words’, that
suggests representing explicit and implicit mu-
sical parameters as words or textual entities.
This ’music-to-text’ approach allows the appli-
cation of advanced techniques and tools com-
monly used within the computational linguis-
tics for the analysis of musical data, highlight-
ing the structural parallels between music and
language. Lastly, the findings of this paper not
only illustrate the feasibility of this approach
but also pave the way for further interdisci-
plinary studies and the advancement of analyt-
ical user-friendly tools that are applicable in
both computational linguistics and digital mu-
sicology.

1 Introduction

In the age of digital humanities, interdisciplinary
dialogue between interrelated scientific fields is be-
coming increasingly important. With the intentions
of showing the possible benefits of interdisciplinary
approaches, this paper investigates to what extent
easy-to-use off-the-shelf software-tools and meth-
ods commonly used within the computational lin-
guistics (CL) can be adopted and applied by digital
musicologists for their own research within their
respective field.

An initial assessment of the relevant scientific
literature underscores the urgency and relevance
of such an exploration: though the potential mer-
its (as well the presumed deficiencies) of using
computational methods in musicology have already
been recognised and emphasized decades ago (Volk
et al., 2011; Cook, 2005; Huron, 1999), data avail-
able on lens.org, a repository of worldwide patent
and academic knowledge, reveals a significant and

widening gap between the number of publications
in digital musicology and those in computational
linguistics (cf. Figure 1). It is reasonable to as-
sume that this discrepancy might not only persist
but potentially grow wider, as with the growing
public interest and economic relevance of natural
language processing and generation technologies,
such as the now famous ChatGPT, computational
linguistics is likely to gain even more resources,
both in academia as well as the free market. How-
ever, the significance of this research paper lies in
its potential to create a bridge between two seem-
ingly disparate fields: successfully applying CL
tools within the field of digital musicology could
not only expand research possibilities drastically,
but also facilitate a more holistic approach when re-
searching and trying to understand the similarities
between language and music.

This study is structured into four main parts: an
introduction that discusses structural parallels be-
tween music and language, further introducing the
novel idea of implicit and explicit musical parame-
ters (EMPs and IMPs); a data section describing the
data preparation process, encompassing the collec-
tion, tokenization and transformation of data used
for this study; a methodology section, in which
will be explained, how GUI-applications frequently
used in computational linguistics, such as AntConc,
can be adapted to analyse textual music data; and
finally, a demonstration section, in which methods
are presented that showcase how AntConc could be
employed to address various musicological ques-
tions.

1.1 Related Work

This study positions itself in the broad field of digi-
tal musicology by explicitly discussing the concept
of musical words to which computational linguis-
tics (CL) tools can be applied. It establishes con-
nections between music and language, exploring
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Figure 1: Scientific Publication Trends Measured by Keyword Matches in Title, Abstract, Keyword, or Field of
Study (Data Source: lens.org)

their shared structural characteristics, in order to
integrate CL tools into musicological research. As
the work identifies a lack in studies in the applica-
tion of CL tools to music data, it highlights oppor-
tunities for interdisciplinary research. This paper’s
findings, in particular the presented music-to-text
approach further supports the foundational frame-
work, set out by others (Norgaard and Römer, 2022;
Wołkowicz et al., 2008), for reinterpreting mono-
phonic musical data, e.g., folk songs, as music text,
structurally comparable to written language. This
paper differentiates itself by addressing theoret-
ical limitations and philosophical interpretations
of musical notation and performance, particularly
through introducing the novel concepts of Explicit
Musical Parameters (EMPs) and Implicit Musical
Parameters (IMPs). On a final note, this study aims
to further lower the barriers for interdisciplinary
research by demonstrating the applicability of user-
friendly GUI computational linguistics tools for
musicological research.

Despite its rather low absolute quantity of pub-
lications, over the last decades research in com-
putational musicology or, more specifically, Mu-
sic Information Retrieval (MIR) has seen signifi-
cant contributions in various areas. This includes
work in authorship and composer recognition (Hon-
tanilla et al., 2013; Kaliakatsos-Papakostas et al.,
2010; Van Kranenburg and Backer, 2005), as well
as in artist similarity recognition (Shao et al., 2008),
genre recognition (Mayer and Rauber, 2011), or
music recognition using ’acoustic fingerprinting’
as an example (Brinkman et al., 2016).

Monophonic folk music classification, with its
relatively straightforward structure, has consis-
tently been a focal point in Music Information Re-
trieval (MIR) research (Huron et al., 1996). This
trend continues in more recent studies (Hillewaere
et al., 2014, 2009a; Taminau et al., 2009). In con-
trast, polyphonic music information retrieval, due
to its inherent complexities, proofs to be more chal-
lenging, as evidenced in various conducted studies
(Hillewaere et al., 2010, 2009b).

Additionally, MIR has made significant progress
in the context of chord embeddings (Lahnala et al.,
2021) and the development of chord vector repre-
sentations (Madjiheurem et al., 2016).

Lastly, MIR’s advancements have also extended
beyond music, incorporating techniques that might
seem more conventional from a linguistic view-
point that were utilized for song lyric analysis
(Mahedero et al., 2005) or classification (Fell and
Sporleder, 2014).1

The study critically analyzes the limitations of
its data and adopts both a humanities and com-
putational perspective, enhancing the merit of its
approach. This work aims to open new pathways in
digital and computational musicology to pave the
way for future interdisciplinary research endeavors.

1The author wishes to express gratitude to the peer review-
ers for their insightful literature recommendations, which have
significantly contributed to enriching the context and depth of
this study.
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1.2 Comparing the Structure of Music and
Language

One key assumption of this paper is that (written)
music and (written) language share enough for-
mal similarities to make these two distinct sign
systems structurally comparable and research tools
mutually applicable. However, finding and defining
those similarities is not an easy task: for instance,
both music and spoken language follow an intrinsic
logic; syntax and grammar give, to a certain degree,
meanings to otherwise arbitrarily combined units,
such as words, letters, or as in the case of music,
musical notes. But unlike in linguistics, where
many broadly available tools have already proven
to rather reliably identify and give syntactic mean-
ing to elements of, for example, a sentence, for
music, in which even the definition of a phrase, a
melody or the function of a chord is mostly ambigu-
ous, such dependable instruments and methods are
yet to be found and developed.2

One reason might be, of course, that in contrast
to music, language conveys a clear, human under-
standable message, and therefore the correctness of
the grammatical rule-set applied, can rather easily
be verified by a listener familiar with the language
in question. In music, the concepts of syntax and
grammar seem less concrete, but equally context
dependent: the defining rules of music greatly de-
pend on factors such as the historical and cultural
context in which the piece was composed, its genre,
as well as the theoretical and cultural background
of its composer or listener. Even though shared
structural commonalities can be identified within
one or across a set of several musical pieces, these,

2While the task of defining and finding similarities between
music and language is complex, notable attempts have been
made in this area. For instance, a previous, rather extensive
publication (Granroth-Wilding, 2013) demonstrates the appli-
cation of Combinatory Categorial Grammar (CCG) to analyze
the hierarchical structure of chord sequences. This approach
introduces a formal language, similar to first-order predicate
logic, to express the tonal harmonic relationships between
chords, serving as a mechanism to map unstructured chord
sequences into structured analyses. Additionally, a subsequent
study (Granroth-Wilding and Steedman, 2014) successfully
showed the effectiveness of applying machine learning tech-
niques to the identification of musical grammar. It describes
the use of a formal grammar of jazz chord sequences, com-
bined with statistical modelling techniques, for parsing musi-
cal structure, demonstrating that these NLP-adapted statistical
techniques can be profitably applied to the analysis of gener-
ally ambiguous harmonic structure in music. Further, as a side
note, James R. Meehan’s work (Meehan, 1979) is notable as
it provides a rather historic, however interesting comparison
between language and music originating from the early days
of Artificial Intelligence (AI).

it seems, are not as strictly defined as the rules of
language.

1.3 The Limitations of Sheet Music Notation

Despite this clear lack of an universally defined in-
trinsic musical structure, a vast number of musical
parameters can still be extracted and, consequently,
patterns can, presuming their existence, be iden-
tified. However, asking the question of how to
extract those parameters is particularly intriguing
when considering the complex nature of music.

Sheet music notation is best described as a tex-
tual, time-continuous, simplified representation of
musical reality. Whereas musical reality - due to its
subjective nature - still lacks a clear definition, from
a purely physical perspective, music is generally
understood as a series of sound events that we inter-
pret and understand as music. As a consequence,
any sheet music notation, digital or analogue, is by
nature a mere simplification or abstraction of an
indefinitely complex musical reality. To get back
to and support the initial assumption of this paper,
based on these observations it seems reasonable
to argue that sheet music notation, in other words
written music, is as much a simplified description
of performed music as written text is a simplified
description of spoken language - therefore, no rep-
resentation, of musical or literary nature, will ever
be able to entirely represent physical reality in its
entire complexity; as a general verdict, we can pre-
sume that some information loss is inevitable.

This, of course, comes with difficulties, as much
of the information - that had existed or will exist
in the exact moment text turns into sound, is not
(yet) contained in our textual source material. But
this exact apparent shortcoming, on the other side,
reduces the information that we need to work with
to a humanly graspable, but in context of this study
even more importantly, computationally manage-
able amount. More over, notation systems bear the
potential to enrich descriptions as they give space
for including information that is not inherent in the
object or phenomenon that they describe (e.g., per-
formance directions, cross-references, subdivisions
etc.).

Due to these obvious limitations, music notation
systems generally represent only a very limited
set of musical parameters. The amount as well
as the specific set chosen are usually determined
by its anticipated scope of application scenarios.
As the number of specific scenarios is virtually
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unlimited, over the past decades, parallel to the
development of various computational methods for
music analysis, various digital formats for storing
music (related) information have already been, are
expected to be invented or further developed. For
a long time, some of the most commonly used
music notation systems have been Standard MIDI
(.mid) (Loy, 1985)3 as well as the much younger
MusicXML (.mxl/.musicxml) (Good, 2001),4 both
formats focusing on a rather practical aspect of
storing music information for playback, or as in
case of musicXML for representation in music no-
tation software. Nowadays, the Music Encoding
Initiative’s schema MEI (Roland, 2000; Hankin-
son et al., 2011),5 has established itself as the gold
standard for academic music notation. Analogue to
the Text Encoding Initiative’s format TEI (Aguera
et al., 1987),6 MEI was invented in particular with
the intentions to standardise music encoding for
scientific and archival use.7

1.4 Introducing the Concept of Explicit and
Implicit Musical Parameters

When trying to retrieve musical parameters from
any form of textual music representation, analogue
or digital, it seems reasonable to differentiate be-
tween explicit and implicit musical parameters con-
tained within the given source material. As a con-
sequence, the following classification is proposed:

In the context of Music Information Retrieval
(MIR) the term explicit musical parameter (EMP)
must refer to a musical attribute that is explicitly no-
tated or indicated in the given sheet music notation.
The term implicit musical parameter (IMP), on the
other hand, should refer to a musical attribute that
is not directly stated but can be inferred or deduced,
i.e., by comparison or calculation.

EMPs are musical parameters that are explicitly
defined and communicated within the given mu-
sical notation system. As in .xml-notation, this
information would be encoded using specific, pre-
defined symbols and coding conventions. Within
this code, those symbols and markings store abso-
lute information, such as pitches, durations, dynam-

3https://www.midi.org/
4https://www.musicxml.com/
5https://music-encoding.org/
6https://tei-c.org/
7For a detailed discussion on the challenges and complex-

ities of digitally encoding music notation compared to text
encoding, particularly through the Music Encoding Initiative’s
(MEI) and Text Encoding Initiative’s (TEI) respective formats,
see (Teich Geertinger, 2021)

ics, tempo markings, articulations, as they were
encoded by the annotator. However, given the com-
plex nature of music (cf. Chapter 1.3), any notation
system can represent/contain only a finite number
of EMPs, which, as a side note, further underlines
the inevitable limitations of musical notation as a
static representation of musical reality.

IMPs, on the other side, represent relational or
contextual information. They aren’t directly stated
but are deduced by observing changes in one or
more EMPs or IMPs across multiple consecutive
musical events. For instance, in the context of the
aforementioned .xml notation format, a musical
interval would be considered an implicit musical
parameter, as it is not explicitly notated but can be
inferred from the difference in pitch between two
compared notes.

As the number of performable calculations is, at
least in theory, indefinite, any form of sheet music
notation, whether digital or analogue, theoretically
contains an equally infinite number of IMPs; of
which, of course, not all are equally relevant for
music analysis or related research.

Differentiating between EMPs and IMPs helps
to better understand and handle complex musical
information: EMPs, being directly indicated, form
the basic layer of information that is relatively easy
to access and process; IMPs, on the other hand,
though not directly represented, bring additional
levels of complexity which can be calculated and
utilized when needed, and ignored when not. This
can lead to better and more efficient musical pa-
rameter extraction methods, as well as rank and
classify musical data representations according to
the number of EMPs contained.

1.5 The Use of CL Tools for Music
Information Retrieval

With this understanding of explicit and implicit
musical parameters well established, we shall now
turn to the question of how to navigate and make
sense of this vast, sheer endless set of complex in-
formation. Luckily, the need to manage and extract
patterns from a substantial and often ambiguous
dataset is not unique to music: within the field of
computational linguistics (CL) many of such ex-
plorative tools have already been developed and
adopted to a variety of different use-cases. For in-
stance, in the CL those patterns are usually found
within repeating combinations of words, letters, or
other linguistic elements, expressed as n-grams,

251

https://www.midi.org/
https://www.musicxml.com/
https://music-encoding.org/
https://tei-c.org/


which are contiguous sequences of ’n’ items from
a given sample of text. Unsurprisingly, utilizing
n-gram searches analogously in digital musicology
research to identify recurring patterns in sequences
of musical elements has already been well estab-
lished, as exemplified in various studies (cf. section
1.1).

Those linguistic elements, seen as the smallest
distinguishable units, are typically referred to as
tokens. By applying the concept of tokens to mu-
sic, these then newly created musical tokens, which
could encompass a variety of explicit and implicit
parameters such as individual pitches, durations,
or as an example for relational information, hori-
zontal (melodic) intervals, can, as this paper will
show in its last section, facilitate the application
of CL tools on musical source material, and there-
fore to a certain degree, close the gap between the
computational linguistics and music information
retrieval.

2 Data

The second section of this paper will focus on data
collecting and preparation. In this process several
tools where utilized to convert musical source ma-
terial into textual data, as necessitated by the tool
AntConc used for corpus analysis in sections 3 and
4 of this study (cf. Figure 2).

Figure 2: Musical Data Conversion and Custom
Database Creation: From Kern Score to MIDI to CSV
to Textual Data

The complete process can be divided into two
sub-sections: Corpus Creation as well as Tokeniza-
tion and Database Creation.

2.1 Corpus Creation

A selection of roughly 8.000 music files that be-
long to the Essen Folksong Database (Schaffrath,
1997) were chosen as the source material for the
study at hand. With more than “20.000 songs

and instrumental melodies, mostly from Germany,
Poland and China, with minor collections from
other (mostly European) countries” (Dahlig, n.d.),
the Essen Folksong Database offers an extensive
set of diverse monophonic musical pieces (cf. Fig-
ure 3). As of today, 8.473 pieces within The Essen
Folksong Database are available as Humdrum data
translations (Schaffrath and Huron, 1995; Sapp,
2005). Referenced from its associated website,8

the **kern (.krn) based Humdrum file format is best
described as a “text-based description for musical
scores, and its primary purpose is for computational
musical analysis using the Humdrum Toolkit.“ The
Humdrum format is capable of containing meta-
data as well as basic music information for each
individual musical event, such as pitch, duration,
key signature, tempo, meter and others (cf. Figure
5). However, for compatibility with the chosen tool
for tokenization, those files needed to be converted
to a more universally accepted format: the afore-
mentioned Musical Instrument Digital Interface
(MIDI, .mid) file format for music representation.
The conversion was accomplished by using the
music21 Python framework (Cuthbert and Ariza,
2010), developed by the Massachusetts Institute of
Technology (MIT), that offers a variety of tools for
handling and manipulating music data.

2.2 Tokenization and Database Creation

After successfully converting nearly all of the avail-
able 8.473 .krn-files, with one exception, the re-
sulting 8.472 .mid-files were prepared for further
processing. This next step involved the extraction
of certain explicit musical parameters for each suc-
cessive musical event (also commonly referred to
as musical note). This process, known as tokeniza-
tion, involved, in the scope of this study, breaking
down each musical piece and its entire melodic
line into its fundamental components or, as termed
earlier, musical tokens.

2.2.1 Tokenization: MidiTok
In this study, these musical tokens were created
utilizing MidiTok (Fradet et al., 2021), an open-
source Python package for MIDI file tokenization.9

MidiTok offers a variety of ten different tokeniz-
ers, each of which uses a different pattern to com-
bine several extracted explicit musical parameters
(EMPs) into distinct musical tokens. The tokens

8http://kern.humdrum.org/help/tour/
9https://miditok.readthedocs.io/en/v2.

1.7/index.html
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Figure 3: Score Representation of the Folk Song ”Nun schürz dich, Gretlein”; signature: deut0781

are stored in either one-dimensional lists (cf. Fig-
ure 6) or two-dimensional nested lists (cf. Figure
7), with the latter format proving useful for data
transformation as it allows each musical token to
be allocated to a separate array. Those arrays can
easily be extracted and stored within a more univer-
sal table-like data structure for further processing
using computational methods.

Tokenizer Success Rate (%) Structure
MIDILike 99.976 1D
MMM 99.976 1D
REMI 99.976 1D
Structured 99.976 1D
TSD 99.976 1D
CPWord 99.976 2D
MuMIDI 99.976 2D
OctupleMono 99.976 2D
Octuple 88.302 2D
REMIPlus 88.302 1D

Table 1: Success rates and structural dimensions
of MidiTok tokenizers in processing 8472 .mid-files
(sorted by Success Rate (%) in descending order).

Although each of MidiTok’s ten tokenizers was
applied on the data set equally, not all tokenizers
performed with equal reliability. Specifically, the
Octuple (Zeng et al., 2021) and REMIPlus (von
Rütte et al., 2022) tokenizers failed to tokenize 991
of the in total 8472 .midi-files (11.697%) (cf. Table
1). Consequently, only the remaining eight tokeniz-
ers (1D: MIDILike (Oore et al., 2018), MMM
(Ens and Pasquier, 2020)), REMI (Huang and
Yang, 2020), Structured (Hadjeres and Crestel,
2021), TSD (Fradet et al., 2023); 2D: CPWord
(Hsiao et al., 2021), MuMIDI (Ren et al., 2020)
and OctupleMono) were considered for further
study. In the end, OctupleMono10 was chosen

10The OctupleMono tokenizer is constructed similarly to
the Octuple tokenizer (Zeng et al., 2021). The difference is the
exclusion of the ’Program token’ in OctupleMono, making it
specifically suitable for the tokenization of monophonic music
files, which consist of a single track.

1. for its high reliability, failing only two tok-
enizations out of 8472 files, and

2. its two-dimensional structure, which enables
presorted parameters and efficient data han-
dling. As shown in Figure 7, this structure is
unique to OctupleMono as well as other two-
dimensional tokenizers, offering a more orga-
nized approach compared to one-dimensional
tokenizers due to their grouped parameters or
tokens.

In a last data transformation process, the to-
kenized data of each of the 8470 successfully
processed files were compiled into a single .csv
file, with the first column being the individual file
names, facilitating further data manipulation in sub-
sequent steps. For a visual representation of this
compiled data, refer to Table 4.

2.2.2 Data Refinement
The data refinement involved several steps. Ini-
tially, the ‘Duration’ values were converted into
numeric values, making them easier to read, even-
tually calculate on and compare. Following this,
a relational implicit musical parameter was calcu-
lated: The ‘PitchDifferenceToNextPitch’ parame-
ter would later (cf. section 4) allow for a horizontal
(melodic) interval search while also including its
transpositions. Another refinement step involved
the removal of redundant prefixes following the
pattern “prefix ”. This streamlined the data and
reduced its overall size (cf. Table 5).

2.2.3 Data Extraction
The last phase of data preparation involved creating
individualized data files for each piece and parame-
ter. Essentially, for each music piece, every musical
parameter tied to its filename was separated out.

These separated data sets were then saved as
individual .txt files within a dedicated folder (cf.
Figure 8). It is important to note that each of these
.txt-files contained only a single type of extracted
parameter (cf. Figure 4), making the data readable
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by the concordance and analysis tool AntConc used
in sections 3 and 4.

Figure 4: Extracted Relational Token “PitchDiffer-
enceToNextPitch” of the folk song “Nun schürz dich,
Gretlein”; signature: deut0781

With these steps, the necessary custom database
was created and prepared for the next phase of the
study, ensuring a solid and easily accessible data
foundation for the subsequent corpus analysis.11

Note: All the data conversion and tokenization
steps outlined in this section have been integrated
into the Interactive Music Analysis Tool (I-MaT)
python package (Eck, 2023). I-MaT, complete
with its robust functionalities for corpus creation,
database creation, tokenization, as well as music
analysis is openly available for access and usage
via GitHub.12

3 Methodology

In the following section, the methodological ap-
proach, used for demonstrating the applicability of
well-established CL tools for answering questions
emanating from the field of musicology will be
presented.13

3.1 The Text Concordance and Analysis Tool
AntConc

The tool of choice was the freeware corpus analy-
sis toolkit AntConc (Anthony, 2004), which can be
described as an easy-to-use tool originally devel-
oped for concordancing and text analysis. AntConc
uses several tools that include pattern search, pat-
tern distribution analysis and similar functions for
analysing individual text files or conducting corpus
studies. AntConc 4.2.014 offers these functions via
the Keyword in Context (KWIC) tool, the Plot tool,

11All the data (.mid-conversions, tokenizations, cleaned and
enhanced databases (.csv-files), and extracted parameters (.txt-
files) used in this study are freely available on figshare.com for
further research and exploration: ’https://figshare.
com/s/03179521a56c88bfac63’.

12https://github.com/sebastian-eck/
I-MaT

13During the review process, the author has been made
aware of a similar approach recently attempted (Norgaard and
Römer, 2022), but as the work is not readily accessible, this
study still offers unique contributions to digital musicology
with its distinct use case and theoretical framework.

14https://www.laurenceanthony.net/
software/antconc/.

and other tools such as Cluster, N-Gram, Collocate,
Wordlist, and Keyword-List.

3.2 Utilizing AntConc for statistical analysis
in the context of MIR

In a first step, AntConc’s in-built Corpus Man-
ager was used to create a custom database. For
this task, the folder “PitchDifferenceToNextPitch”
created earlier served as the source, containing
all the necessary .txt-files to be included in the
custom corpus. A critical aspect to consider dur-
ing the corpus creation was to reconfigure the ‘to-
ken definition’ setting: to ensure an accurate com-
putation of types and tokens, this parameter was
adjusted to include all numerical values and “.na”
(value: [-0123456789.na]). This step was essential
as the data in use primarily consists of numerical
values but also possible “nan” [= no subsequent
interval available] entries (cf. Chapter 4.2).

Utilizing AntConc for statistical analysis in the
context of MIR demanded a conceptual re-framing:
numerical values, which represent musical param-
eters, are treated as words. In theory, any desired
number of numerical values, i.e., numerical repre-
sentations of musical parameters, extracted from
one and the same musical event (e.g., pitch, du-
ration etc.) can be combined. A higher number
would result in more complex, but also more exact
representations of musical events.

For simplicity, in this study only one musical pa-
rameter was extracted from each musical event.
These single-element word-sequences are sepa-
rated by whitespace characters, imitating the struc-
ture of a sentence (cf. Figure 4). This unconven-
tional approach is necessitated by the nature of the
tool, which is designed primarily for text analy-
sis. In short, for AntConc to correctly interpret the
musical text data at hand, numbers had to be rein-
terpreted as numerical representations of musical
events, as words ultimately forming sentences.

Though this approach might seem unusual, it al-
lowed, as the final section will show, to nearly fully
engage the capabilities of AntConc in a musicolog-
ical context. This ‘numerical-to-textual’ approach
made it possible, as the following examples show,
to perform n-gram pattern searches, conduct cluster
analyses on and plot pattern distributions on these
newly created ‘musical words’ and ’sentences’.
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4 Demonstration

In this last section, three distinct ways to utilize
AntConc for music analysis will be demonstrated.
Each of these demonstrations will focus on a par-
ticular aspect of music analysis:

1. melodic pattern search (N-Gram-Tool)

2. end phrase pattern search (Cluster-Tool)

3. pattern distribution (Plot-Tool)

These analyses will be performed on the custom
database, created within AntConc earlier in section
2.2. Numerical representations of musical events
will be treated as textual entities or ’musical words’,
allowing AntConc to be used as an user-friendly
tool for conducting various music analyses.

Note: As the pattern search will be performed
not on absolute pitch values, but on values ex-
tracted from the relational parameter “PitchDif-
ferenceToNextPitch”, patterns will be identified
across melodic transpositions.

4.1 N-Gram-Tool

Identifying Common Melodic Sequences: One mu-
sicological question that can be addressed using the
n-gram pattern search feature of AntConc is identi-
fying the most common melodic sequences within
a corpus of music. After interpreting sequences of
relative pitch intervals, or ’musical words’, as n-
grams, the pattern search function revealed several
sequences as the most prominent (cf. Table 2).

Type Rank Freq Range
0.0 0.0 0.0 0.0 0.0 1 1210 441

-2.0 -2.0 -1.0 -2.0 -2.0 2 894 683
2.0 -2.0 -2.0 -1.0 -2.0 3 846 637
2.0 1.0 -1.0 -2.0 -2.0 4 555 436

-2.0 -1.0 -2.0 -2.0 0.0 5 543 455
-2.0 -1.0 -2.0 -2.0 2.0 6 519 413
2.0 2.0 -2.0 -2.0 -1.0 7 499 363

3.0 -2.0 -1.0 -2.0 -2.0 8 494 373
1.0 2.0 2.0 -2.0 -2.0 9 484 353
2.0 2.0 1.0 -1.0 -2.0 10 469 352

Table 2: Results (Excerpt) of a N-Gram-Search (n = 5)
Performed on the Custom Database

These patterns can be grouped as:

1. Repetitive Sequences: {0.0 0.0 0.0 0.0 0.0}

2. Descending Interval Patterns: {-2.0 -2.0 -
1.0 -2.0 -2.0} and {-2.0 -1.0 -2.0 -2.0 0.0}

3. Combination of Ascending and Descend-
ing Intervals: {2.0 -2.0 -2.0 -1.0 -2.0} and
{2.0 1.0 -1.0 -2.0 -2.0}

4. Alternating Interval Structures: {2.0 2.0 -
2.0 -2.0 -1.0} and {3.0 -2.0 -1.0 -2.0 -2.0}

Conclusions: ”Regional and Cultural Influences”
- The recurrence of certain patterns, such as repet-
itive sequences or descending interval patterns,
might indicate patterns commonly used in melody
construction. Given the diversity of the Essen Folk-
song Collection, a n-gram-search that groups re-
sults by geographic information (as indicated in
the individual file names, e.g., ”steier09...”, cf. Ta-
ble 9) could reveal specific patterns influenced by
regional or cultural traditions, revealing patterns
more prevalent in Germanic folk songs compared
to those from other regions, in relation to their total
number.

Note: Here, as well as in the following examples,
melodic intervals are represented as numeric val-
ues, each whole number representing a semitone
step. Negative values represent descending, posi-
tive values ascending intervals. Zero-values, such
as in the most prominent interval-series (cf. Table
2), represent repetitions of the same pitch.

4.2 Cluster-Tool

Identifying Common End Phrase Patterns: By em-
ploying AntConc’s pattern search capabilities, mu-
sicologists can identify common end phrase pat-
terns in a corpus of music. This can be achieved
by searching for recurring sequences at the end of
musical phrases.

Cluster Rank Freq Range
-2.0 -1.0 -2.0 -2.0 nan 1 423 423
-2.0 -2.0 2.0 -2.0 nan 2 160 160
0.0 -2.0 0.0 -2.0 nan 3 157 157
-2.0 -2.0 -1.0 1.0 nan 4 132 132
2.0 2.0 -2.0 -2.0 nan 5 119 119
-2.0 2.0 -2.0 -2.0 nan 6 98 98

-2.0 -2.0 -1.0 -2.0 nan 7 95 95
-2.0 -2.0 -3.0 -2.0 nan 8 83 83
1.0 -1.0 -2.0 -2.0 nan 9 82 82
-1.0 -2.0 0.0 -2.0 nan 10 80 80

Table 3: Results (Excerpt) of a Cluster Search (n = 5;
Search Term Position = On Right; Search Term = nan)
Performed on the Custom Database

Based on the table results, we can group the
common end phrase patterns as follows:
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1. Descending Endings: The most frequent pat-
tern, {-2.0 -1.0 -2.0 -2.0 nan}, can be inter-
preted as a part of a descending major scale,
corresponding to, e.g., ”G F E D C” in a
major key. This pattern, as well as others
like {-2.0 -2.0 2.0 -2.0 nan}, suggests a com-
mon use of descending intervals at the end
of phrases. The prevalence of such patterns,
particularly the descending major scale, might
not sound surprising to many listeners due to
its widespread use in traditional folk music.
But more interestingly, it reflects an expected
stylistic or structural preference in folk song
compositions for simplicity, aligning with the
perceived conventional or rather ’simple’ na-
ture of folk music melodies.

2. Static and Minor Movements: Patterns
such as {0.0 -2.0 0.0 -2.0 nan} and {-2.0 -
2.0 -1.0 1.0 nan} demonstrate either static (re-
peated pitches) or minor interval movements.
These may reflect a simplicity and compact-
ness in phrase endings commonly found in
folk songs.

3. Ascending and Mixed Intervals: Patterns
like {2.0 2.0 -2.0 -2.0 nan} and {1.0 -1.0 -
2.0 -2.0 nan} include a mix of ascending and
descending movements. This variety might
represent a richer melodic closure in some
folk songs.

Conclusions: The Cluster-Tool analysis provides
insights into common phrase-ending techniques in
the Essen Folksong Database. These patterns offer
a glimpse into the melodic structures and stylis-
tic tendencies in folk song compositions, particu-
larly in how phrases are conventionally concluded.
When considering geographic parameters (c.f. sec-
tion 4.1), the variety and frequency of these pat-
terns can also reflect regional or cultural influences
in folk song traditions, contributing to the under-
standing of musicological characteristics within
this genre.

Note: Here, the string ”nan” indicates the pres-
ence of end-notes. This particular string acted as
a placeholder when the relational token “PitchD-
ifferenceToNextPitch” was calculated, but no sub-
sequent pitch value could be identified. In short,
”nan” is a marker for situations where the calcu-
lation could not continue due to the absence of a
following pitch. Since this calculation was per-
formed on sequential pitch values only, rests within

the file will not be labeled. Furthermore, we can as-
sume that the automatic inclusion of a ”start” string
at the beginning of each .txt-file would effortlessly
allow for an analogue ’start pattern search’.

4.3 Plot-Tool

Visualizing Pattern Distributions Across a Musical
Corpus: A third application could involve using
AntConc’s plotting function to visualize the distri-
bution of specific melodic patterns across a musical
corpus. For instance, a musicologist could search
for a particular melodic sequence, interval pattern,
or, assuming a suitable custom corpus has been
created, a rhythmic motif. The results can then be
displayed by using the plotting function to visually
map out where and how frequently these patterns
occur across different pieces (cf. Figure 9). Visual-
izing pattern distributions seems particularly useful
within polyphonic music, such as imitative fugues,
or isorhythmic motets.

5 Conclusion

This study has successfully demonstrated the practi-
cal applicability of well-established computational
linguistics (CL) tools, such as AntConc, in the
the field of digital musicology. The successful re-
interpretation of tokenized music data as ’musical
words’ outlined in sections 2 and 3 has not only
indicated the existence of certain inherent struc-
tural/formal similarities between language and mu-
sic; it also unveiled the potential benefits of devel-
oping new analytical tools and methods that can
be used both within the fields of linguistics and
musicology.

A notable area for future code development lies
in the optimization of the tokenization and param-
eter extraction processes. Integrating more versa-
tile tools like music21 into the tokenization pro-
cess could address the current limitations encoun-
tered with MidiTok, particularly its restriction to
the rather unreliable .mid-file format. Utilizing mu-
sic21’s comprehensive capabilities would enable
the processing of a broader spectrum of music file
formats, enhancing the methodology’s versatility
as well as its robustness by further reducing its
dependency on third-party python packages.

Lastly, AntConc was mainly used for exemplary
reasons within this study. The incorporation of ad-
vanced Natural Language Processing (NLP) pack-
ages, such as NLTK or SpaCy, directly into the
aforementioned Interactive Music Analysis Tool
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(I-MaT), as outlined towards the end of section 2.2,
presents a significant opportunity. This integration
would enable more sophisticated analysis capabili-
ties, allowing for the calculation, exportation, and
visualization of results within a unified platform.
Such an approach could make the analysis process
more user-friendly and accessible, particularly for
scholars and students who are new to the field of
digital musicology. It would further lower the barri-
ers to entry in this interdisciplinary field, enhancing
the appeal and reach of digital musicological stud-
ies.

We can assume that this research not only makes
a step towards bridging the gap between compu-
tational linguistics and musicology but also lays
the groundwork for a more integrated and holistic
approach to the analysis of music and language.
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Appendices

260



filename Pitch Velocity Duration Position Bar
deut0781 Pitch 72 Velocity 91 Duration 1.0.16 Position 0 Bar 0
deut0781 Pitch 72 Velocity 91 Duration 1.0.16 Position 16 Bar 0
deut0781 Pitch 69 Velocity 91 Duration 1.0.16 Position 32 Bar 0
deut0781 Pitch 65 Velocity 91 Duration 1.0.16 Position 48 Bar 0
deut0781 Pitch 72 Velocity 91 Duration 2.0.16 Position 0 Bar 1
deut0781 Pitch 72 Velocity 91 Duration 1.0.16 Position 32 Bar 1
deut0781 Pitch 69 Velocity 91 Duration 1.0.16 Position 48 Bar 1
deut0781 Pitch 67 Velocity 91 Duration 1.0.16 Position 0 Bar 2
deut0781 Pitch 65 Velocity 91 Duration 1.0.16 Position 16 Bar 2
deut0781 Pitch 65 Velocity 91 Duration 1.0.16 Position 32 Bar 2
deut0781 Pitch 64 Velocity 91 Duration 1.0.16 Position 48 Bar 2
deut0781 Pitch 65 Velocity 91 Duration 2.0.16 Position 0 Bar 3

Table 4: Database (OctupleMono) Representation of the Folk Song ”Nun schürz dich, Gretlein”; Signature:
deut0781

filename Pitch Velocity Duration Position Bar PitchDifferenceToNextPitch
deut0781 72 91 1 0 0 0
deut0781 72 91 1 16 0 -3
deut0781 69 91 1 32 0 -4
deut0781 65 91 1 48 0 7
deut0781 72 91 2 0 1 0
deut0781 72 91 1 32 1 -3
deut0781 69 91 1 48 1 -2
deut0781 67 91 1 0 2 -2
deut0781 65 91 1 16 2 0
deut0781 65 91 1 32 2 -1
deut0781 64 91 1 48 2 1
deut0781 65 91 2 0 3 nan

Table 5: Refined Database (OctupleMono) Representation of the Folk Song ”Nun schürz dich, Gretlein”; Signature:
deut0781
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Figure 5: Humdrum Representation of the Folk Song ”Nun schürz dich, Gretlein”; Signature: deut0781

Figure 6: “Structured” Token Representation (One-Dimensional) of the Folk Song ”Nun schürz dich, Gretlein”;
Signature: deut0781
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Figure 7: “OctupleMono” Token Representation (Two-Dimensional) of the Folk Song ”Nun schürz dich, Gretlein”;
Signature: deut0781
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Figure 8: Organized Folder Structure of Extracted Data, Segregated by Parameter and Musical Piece
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Figure 9: Results (Excerpt) Created by Using the Plot-Tool (Search Term = -2.0 -2.0 -1.0 -2.0 -2.0) on the Custom
Database
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