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Abstract
We explore the effectiveness of character-level neural machine translation using Transformer
architecture for various levels of language similarity and size of the training dataset on transla-
tion between Czech and Croatian, German, Hungarian, Slovak, and Spanish. We evaluate the
models using automatic MT metrics and show that translation between similar languages ben-
efits from character-level input segmentation, while for less related languages, character-level
vanilla Transformer-base often lags behind subword-level segmentation. We confirm previ-
ous findings that it is possible to close the gap by finetuning the already trained subword-level
models to character-level.

1 Introduction

Character-level NMT has been studied for a long time, with mixed results compared to subword
segmentation. In the MT practitioner’s discourse, it has sometimes been assumed that character-
level systems are more robust to domain shift and better in the translation of morphologically
rich languages. Recent studies (Libovický et al., 2022) show that there are no conclusive proofs
for these claims.

At the same time, character-level systems have been reliably shown to be robust against
source-side noise. In terms of general translation quality, they often either underperform or
are on par with their subword-level counterparts (Libovický et al., 2022). Also, both training
and inference speeds are lower and memory requirements are higher due to longer sequence
lengths (mostly because of the quadratic complexity of the Transformer attention mechanism
with respect to the input length (Vaswani et al., 2017)) unless specialized architectures are used.

In this work, we present experiments on a specific use-case of translation of related lan-
guages. We train bilingual Transformer translation models to translate between Czech and
Croatian, German, Hungarian, Slovak, or Spanish. We vary the training dataset size, vocab-
ulary size and model depth and study the effects. We show that in the baseline configuration
with vanilla Transformer-base, character-level models outperform subword-level models
in terms of automated evaluation scores only in closely related Czech-Slovak translation pair.
Finally, we confirm that it is possible to obtain a better quality of the char-level translation
for less related languages by first training a subword-level model and in the later stage of the
training switching to character-level processing.

2 Related work

Libovický et al. (2022) analyze the body of the work on character-level NMT and show that
in most cases, it still falls behind in many aspects compared to the subword-level counterpart.
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Since they provide a comprehensive overview of the field up to today, we will only very briefly
list the most influential works in this section, and refer the reader to the detailed analysis in
Libovický et al. (2022).

In one of the earliest works, Chung et al. (2016) use RNN with character segmentation on
the decoder side. Lee et al. (2017) use CNN for fully character-level NMT. Costa-jussà et al.
(2017) apply a similar approach to byte-level translation. Gupta et al. (2019) and Ngo et al.
(2019) explore character-level MT using the Transformer model. Recent work on character-
level NMT includes Li et al. (2021); Banar et al. (2021) and Gao et al. (2020).

Libovický and Fraser (2020) show that problems with slow training and worse final trans-
lation quality for character-level NMT models can be largely mitigated by first training with
subword segmentation and subsequently finetuning on character-segmented text. However, a
problem of lower speed (due to longer sequence length) persists, which can make both the
training and inference prohibitively costly and slow, especially for models that make use of a
larger context than only one sentence.

Our work specifically targets character-level translation of closely related languages. In
WMT 2019 Similar Language translation task (Barrault et al., 2019), Scherrer et al. (2019)
show that character-level NMT is effective for translation between closely related Portuguese
and Spanish and in Multilingual Low-Resource Translation for Indo-European Languages task
at WMT21 (Akhbardeh et al., 2021), Jon et al. (2021) successfully apply character-level NMT
to translation between Catalan and Occitan.

3 System description

3.1 Data

We evaluate our models on translation from Czech to German, Spanish, Croatian, Hungarian
and Slovak and vice-versa. We train on MultiParaCrawl (Bañón et al., 2020)1 corpus. It is
based on Paracrawl, which is English-centric (each language in the original dataset is aligned
only to English). MultiParaCrawl aligns the sentences in the other languages that have the same
English translation. This introduces mis-alignments into the dataset (it is possible that two
sentences with different meanings in other languages have the same English translation), but
we nevertheless use it to have a comparable training corpus for all the languages. We sample
subsets for each language pair in sizes of 50k, 500k, and 5M sentences (Croatian corpus only
has about 800k sentences in total, so we use only the 50k and 500k sizes). We use FLORES-200
(Team et al., 2022) as validation and test sets (we keep the original splits). We note that this test
set is created by translating the same English test into all the languages and not translating the
two tested languages between each other – this might mean that the effect of language similarity
is somewhat subdued in this setting.

We segment the text using SentencePiece with the given vocabulary size (32k, 4k, or
character-level model), with 99.95% character coverage and UTF-8 byte fallback for unknown
characters. The segmentation models are trained on the whole 5M datasets, jointly for each pair.

Language similarity We use chrF score (Popović, 2015), traditionally used to compute trans-
lation quality, as a language similarity metric. It is a character-level metric and we hypothesize
that character-level similarity is an important aspect for our experiments. We compute chrF
score of the Czech FLORES-200 test set relative to all the other languages (Table 1). We also
show the lexical similarity score provided by the UKC database2, which is based on a number
of cognates between languages in their contemporary vocabularies (Bella et al., 2021).

1https://opus.nlpl.eu/MultiParaCrawl.php
2http://ukc.disi.unitn.it/index.php/lexsim/
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Language chrF LexSim
sk 36.7 16.5
hr 22.7 8.2
es 16.5 2.6
hu 16.3 2.9
de 15.4 3.7

Table 1: UKC LexSim and chrF score-
based similarities of the testsets, i.e. chrF
score of untranslated Czech testset com-
pared to the other languages.

Pair Lang % skip Avg len

cs-de cs 0.43 88.2
de 0.64 100.3

cs-es cs 0.30 84.5
es 0.50 95.5

cs-hr cs 1.21 127.1
hr 1.30 131.7

cs-hu cs 0.26 76.4
hu 0.45 83.0

cs-sk cs 0.25 74.9
sk 0.29 77.4

Table 2: Percentage of examples exceed-
ing the training source length limit (400
characters) and average sentence charac-
ter lengths for all the training datasets for
character-level training.

3.2 Model

We trained Transformer (Vaswani et al., 2017) models to translate to Czech from other lan-
guages (Hungarian, Slovak, Croatian, German and Spanish) and vice-versa using MarianNMT
(Junczys-Dowmunt et al., 2018).

Our baseline model is Transformer-base (512-dim embeddings, 2048-dim ffn) with
6 encoder and 6 decoder layers. We also train two other versions of Transformer-base:
with 16 encoder + 6 decoder layers and with 16 encoder + 16 decoder layers. For other hyper-
parameters, we use the default configuration of MarianNMT. We evaluate the models on the
validation set each 5000 updates and we stop the training after 20 consecutive validations with-
out improvement in either chrF or cross-entropy. We use Adam optimizer (Kingma and Ba,
2017) and one shared vocabulary and embeddings for both source and target.

Similarly to Libovický and Fraser (2020), we compared training char-level models from
scratch to starting the training from subword-level models (both with 4k and 32k vocabularies)
and switching to character-level processing after subword-level training converged. They ob-
tained better results with a more complex curriculum learning scheme, while we only finetune
the pre-trained model.

We performed a length analysis on the character level for all the datasets. Based on this,
we set the maximum source sequence length for training and inference to 400 for all the sys-
tems. We skip longer training examples. In the worst case (Croatian to Czech), 1.3 % of the
examples are skipped. Table 2 shows average character lengths and percentage of the skipped
training examples in all directions. For inference, we normalize the output score by the length
of the hypothesis as implemented in Marian. We search for the optimal value of the length
normalization constant on the validation set in the range of 0.5 to 4.0.

3.3 Evaluation

We use SacreBLEU (Post, 2018) to compute BLEU and chrF scores. We set β = 2 for chrF
in all the experiments (i.e. chrF2, the default in SacreBLEU). For COMET (Rei et al., 2020)3

scores we use the original implementation and the wmt20-comet-da model.

3https://github.com/Unbabel/COMET
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3.4 Hardware
We ran the experiments on a grid comprising of Quadro RTX 5000, GeForce GTX 1080 Ti, RTX
A4000, or GeForce RTX 3090 GPUs. We trained a total of about 170 models with training times
ranging from 10 hours to 14 days, depending on the dataset, model, and GPUs used.

4 Results

4.1 Subwords vs. characters
We compare BLEU, chrF and COMET scores for Transformer-base trained on different train-
ing dataset sizes and with different segmentations in all the language directions in Table 3 and
the same results are plotted in Figure 1. First and foremost, the character-level models provide
the best results for the most similar language pair, Czech-Slovak (sk), across training data sizes
and translation directions. For example, with a 50k dataset, the character-level model achieves
a COMET score of 0.8834 and 0.8429 in Czech-to-Slovak and Slovak-to-Czech translations,
respectively. The scores are better compared to those of 4k and 32k vocab models with the
same training dataset. This trend continues with larger datasets; the character-level model out-
performs in both the 500k and 5M datasets, although for the largest datasets, the results are very
similar across vocabulary sizes.

However, for the other language pairs, the results are mixed, and subword-level models
often outperform character-level models, particularly with larger training dataset sizes. For
instance, in Czech-to-Hungarian (hu) translations with a 5M dataset, the 32k vocab model
achieves a COMET score of 0.6531 which is better than the 0.6263 score of the character-
level model. The same pattern is observed in Czech-to-German (de) translations with the 32k
vocab model outperforming the character-level model in the 5M dataset with a COMET score
of 0.6275 against 0.5955.

For all the other languages (aside from Slovak), training on the 50k dataset fails to produce
usable translation model at any vocabulary size, even for the second most similar language,
Croatian. However, as we show in the next section, we can see the benefits of char-level trans-
lation of Czech-Croatian when finetuning charl-level model from subword-level model.

The results are more favorable for subword-level models with increasing training set sizes,
probably due to the sparsity of the longer subwords in smaller datasets which results in worse
quality of the embeddings. We also see that generally, character-level models perform better in
terms of chrF (char-level metric) than BLEU and COMET. For example, see Czech-to-Spanish,
5M dataset: character model has the best chrF score (although by a small margin), but the worst
BLEU and COMET scores.

4.2 Finetuning
We took an alternative approach to training character-level models from scratch by fine-tuning
the subword-level models. We only finetuned the models in the direction from Czech to the
target language. Starting from the last checkpoint of the subword-level training, we switched the
dataset to a character-split one. Since SentencePiece models include all the characters in their
vocabularies, there was no need to adjust them. We proceeded with the same hyperparameters,
including the optimizer parameters, after resetting the early-stopping counters.

We present the results in Tables 4 and 5 for models finetuned from 4k and 32k subword
models, respectively. We see that in cases where training a char-level model from scratch didn’t
perform well compared to a subword-level one, finetuning from subword-level helps to attain
the quality of the subword-level and even surpass it in some cases. For example, Czech-to-
Croatian char level model without finetuning obtains COMET score of −1.4055, but after fine-
tuning from 4k model, the score increases to −0.2671, which is also better than the −1.0112 of
the 4k model alone.
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Czech → Lang Lang → Czech

Lang Dataset Vocab BLEU CHRF COMET BLEU CHRF COMET

sk

50k
char 23.1 53.1 0.8834 23.4 53.1 0.8429

4k 21.1 51.7 0.6989 21.6 51.8 0.7054
32k 20.1 50.5 0.5155 20.1 50.2 0.5226

500k
char 27.8 56.4 1.0737 27.2 56.1 1.0165

4k 27.0 55.8 1.0574 26.7 55.8 1.0018
32k 26.8 55.6 1.0342 26.3 55.4 0.9893

5M
char 28.7 57.0 1.1035 28.4 56.8 1.0419

4k 28.6 56.9 1.1012 28.1 56.5 1.0333
32k 28.7 56.9 1.0973 28.2 56.6 1.0376

hu

50k
char 0.6 21.0 -1.4054 0.3 18.1 -1.4137

4k 1.9 25.4 -1.3256 1.5 24.2 -1.2826
32k 3.0 28.3 -1.2141 2.1 25.5 -1.2116

500k
char 13.3 45.8 0.1812 12.3 42.2 0.1892

4k 12.7 44.7 0.1371 12.3 41.2 0.2414
32k 12.4 43.4 0.0852 11.8 40.6 0.1658

5M
char 17.4 50.8 0.6263 17.7 46.9 0.6999

4k 17.7 50.3 0.6447 18.4 47.4 0.7283
32k 18.3 50.6 0.6531 18.6 47.2 0.7325

de

50k
char 0.4 22.5 -1.5904 0.4 18.5 -1.4006

4k 2.2 29.2 -1.3982 2.0 25.7 -1.2548
32k 4.7 33.7 -1.2014 4.7 29.9 -1.0102

500k
char 18.0 50.6 0.3185 18.0 47.3 0.4657

4k 19.2 50.9 0.3568 18.0 47.3 0.5533
32k 19.2 50.3 0.3155 17.6 46.1 0.4517

5M
char 24.1 55.2 0.5955 23.1 52.0 0.8322

4k 24.3 55.2 0.6043 23.0 51.9 0.8648
32k 25.2 55.7 0.6275 23.4 51.8 0.8838

es

50k
char 0.2 23.0 -1.4847 0.2 18.3 -1.3952

4k 2.3 28.4 -1.329 1.4 24.0 -1.2688
32k 4.6 32.6 -1.1684 2.8 27.3 -1.0927

500k
char 16.0 46.6 0.1857 0.4 18.1 -1.3986

4k 15.6 45.7 0.1765 11.7 41.2 0.3451
32k 15.8 45.4 0.0976 11.5 40.2 0.2395

5M
char 19.3 49.5 0.4602 14.6 44.2 0.6394

4k 20.0 49.3 0.4911 15.7 44.9 0.7160
32k 20.4 49.4 0.5074 15.7 45.1 0.7186

hr

50k
char 0.2 21.2 -1.4055 0.2 16.9 -1.4397

4k 4.8 34.0 -1.0112 4.6 30.3 -1.0283
32k 7.7 38.1 -0.7048 5.3 31.3 -0.9501

500k
char 19.6 51.6 0.6403 18.0 47.3 0.5469

4k 19.7 51.2 0.6922 19.3 48.2 0.6772
32k 19.2 50.5 0.6160 19.3 47.6 0.6170

Table 3: Test set scores for Transformer-base models (6 encoder and 6 decoder layers) trained
from scratch. Bold are the best results within the same training dataset.
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Figure 1: Relationship between language similarity scores (chrF of the untranslated test set
source) and BLEU, chrF and COMET scores, depending on vocabulary size. First row are the
results for 50k sentence train set, second row for 500k train set and third row for 5M train set.
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Score ∆(char) ∆(4k)

Lang Dataset BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET

sk 50k 21.8 52.4 0.8750 −1.3 −0.7 −0.0084 0.7 0.7 0.1761

500k 27.6 56.3 1.0720 −0.2 −0.1 −0.0017 0.6 0.5 0.0146

5M 28.8 57.0 1.1017 0.1 0.0 −0.0018 0.2 0.1 0.0005

hu 50k 1.7 22.8 -1.3850 1.1 1.8 0.0204 −0.2 −2.6 −0.0594

500k 13.4 46.0 0.2555 0.1 0.2 0.0743 0.7 1.3 0.1184

5M 18.2 51.2 0.6726 0.8 0.4 0.0463 0.5 0.9 0.0279

de 50k 2.9 30.7 -1.4227 2.5 8.2 0.1677 0.7 1.5 −0.0245

500k 19.3 51.3 0.3966 1.3 0.7 0.0781 0.1 0.4 0.0398

5M 24.7 55.6 0.6214 0.6 0.4 0.0259 0.4 0.4 0.0171

es 50k 1.8 27.5 -1.4024 1.6 4.5 0.0823 −0.5 −0.9 −0.0734

500k 16.3 46.4 0.2276 0.3 −0.2 0.0419 0.7 0.7 0.0511

5M 19.8 49.5 0.5038 0.5 0.0 0.0436 −0.2 0.2 0.0127

hr 50k 10.3 42.9 -0.2671 10.1 21.7 1.1384 5.5 8.9 0.7441

500k 20.6 52.4 0.7382 1.0 0.8 0.0979 0.9 1.2 0.0460

Table 4: Results of char-level models for translation from Czech finetuned from 4k subword-
level models. Numbers under ∆(char) show the difference between fine-tuned model scores
compared to the char-level model trained from scratch, under ∆(4k) difference from the model
that served as the initial checkpoint for the finetuning.

Score ∆(char) ∆(32k)

Lang Dataset BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET

sk
50k 21.2 52.2 0.8697 −1.9 −0.9 −0.0137 1.1 1.7 0.3542

500k 27.5 56.2 1.0723 −0.3 −0.2 −0.0014 0.7 0.6 0.0381

5M 29 57.2 1.1011 0.3 0.2 −0.0024 0.3 0.3 0.0038

hu
50k 2.2 24.8 -1.358 1.6 3.8 0.0474 −0.8 −3.5 −0.1439

500k 12.7 45.7 0.1832 −0.6 −0.1 0.0020 0.3 2.3 0.0980

5M 18 51.0 0.6589 0.6 0.2 0.0326 −0.3 0.4 0.0058

de
50k 4.5 33.3 -1.3335 4.1 10.8 0.2569 −0.2 −0.4 −0.1321

500k 19.4 51.4 0.3775 1.4 0.8 0.0590 1.4 0.8 0.0590

5M 24.8 55.6 0.6274 0.7 0.4 0.0319 −0.4 −0.1 −0.0001

es
50k 3.3 30.9 -1.3182 3.1 7.9 0.1665 −1.3 −1.7 −0.1498

500k 15.8 46.2 0.1854 −0.2 −0.4 −0.0003 0.0 0.8 0.0878

5M 19.6 49.4 0.4875 0.3 −0.1 0.0273 −0.8 0.0 −0.0199

hr
50k 8.9 41.3 -0.4144 8.7 20.1 0.9911 1.2 3.2 0.2904

500k 20.5 52.0 0.7181 0.9 0.4 0.0778 1.3 1.5 0.1021

Table 5: Results of char-level models for translation from Czech finetuned from 32k subword-
level models. Numbers under ∆(char) show the difference between fine-tuned model scores
compared to the char-level model trained from scratch, under ∆(32k) difference from the model
that served as the initial checkpoint for the finetuning.
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16-enc/6-dec 16-enc/16-dec

Lang Dataset Vocab BLEU CHRF COMET BLEU CHRF COMET

sk

50k
char 21.9 52.4 0.8475 21.9 52.0 0.8001

4k 20.2 51.0 0.6444 19.3 50.1 0.5262
32k 19.6 50.1 0.5308 20.1 50.4 0.5764

500k
char 27.4 56.0 1.0621 27.4 56.1 1.0618

4k 26.5 55.6 1.0432 26.6 55.6 1.0469
32k 26.2 55.4 1.0319 26.2 55.4 1.0194

5M
char 28.6 57.0 1.1016 28.5 56.9 1.1013

4k 28.6 56.9 1.1015 28.3 56.7 1.0920
32k 28.2 56.7 1.0916 28.4 56.8 1.0986

hu

50k
char 2.8 26.2 -1.3086 2.9 25.2 -1.3019

4k 2.8 26.4 -1.2933 2.5 26.6 -1.2995
32k 3.0 28.3 -1.2445 3.1 27.5 -1.2623

500k
char 12.9 45.7 0.0855 11.8 43.4 -0.0212

4k 11.1 42.0 -0.1612 11.1 41.8 -0.1580
32k 11.4 42.3 -0.0943 12.0 42.5 -0.0934

5M
char 17.3 50.7 0.6280 17.6 50.1 0.6102

4k 17.3 49.8 0.6140 17.4 49.8 0.6045
32k 17.7 49.9 0.6280 17.5 50.0 0.6409

de

50k
char 5.7 35.4 -1.2272 5.0 33.0 -1.2836

4k 3.5 31.5 -1.3532 3.2 31.0 -1.3571
32k 4.8 34.2 -1.2328 3.8 32.9 -1.2819

500k
char 18.9 51.1 0.3203 18.6 51.0 0.3155

4k 17.1 49.1 0.1909 16.6 48.4 0.1292
32k 17.7 48.8 0.1595 17.5 49.0 0.1624

5M
char 24.1 55.4 0.6146 24.1 54.9 0.6007

4k 24.6 55.3 0.6138 24.1 54.8 0.6006
32k 24.8 55.2 0.6178 24.3 54.7 0.6055

es

50k
char 4.6 32.8 -1.2302 4.5 31.3 -1.2476

4k 4.1 30.7 -1.2826 3.3 30.0 -1.2983
32k 5.1 33.6 -1.1571 4.5 32.6 -1.1992

500k
char 15.5 45.7 0.1277 14.8 45.6 0.0684

4k 15.0 44.6 0.0258 14.3 43.8 -0.0695
32k 14.6 44.1 -0.0454 14.8 44.1 -0.0491

5M
char 20.1 49.7 0.4917 19.8 49.1 0.4679

4k 19.3 48.8 0.4712 19.6 49.0 0.4582
32k 20.0 48.9 0.4670 19.9 49.0 0.4708

hr

50k
char 10.3 42.3 -0.4010 9.5 40.4 -0.4877

4k 5.7 35.5 -0.9234 4.5 33.3 -1.0641
32k 7.8 37.9 -0.7439 6.7 35.8 -0.8185

500k
char 19.3 51.6 0.6619 20.1 51.6 0.6795

4k 18.0 50.0 0.5527 18.6 50.2 0.5224
32k 18.0 49.6 0.5050 18.3 49.6 0.5208

Table 6: Test set scores for deeper models (16 encoder layers, 6 decoder layers and 16 encoder
layers, 16 decoder layers). Bold are the best results within the same training dataset and same
model architecture.
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Similar, although small increases compared to training from scratch can be seen across all
the language pairs, with the exception of Czech-Slovak. For this pair, the translation quality
of the character-level model trained from scratch is already much higher on the 50k and 500k
datasets. Finetuning from either 32k or 4k models hurts the quality in this case, which could be
expected.

After the finetuning, the char-level Croatian model clearly outperforms both 4k and 32k
subword models on the 50k dataset in all the metrics. As this did not occur with other, less
similar languages, we hypothesize that language similarity is again an important factor in favor
of character-level translation.

4.3 Model size
Previous work suggests that character-level processing in Transformers requires the use of
deeper models to reach the same performance as subword-level processing. We present experi-
ments with increasing depth of the model in Table 6. All the models are trained in the direction
Czech to target. The model sizes are described in Section 3.2. We observe improvements in
character-level translation compared to subword-level models of the same depth, but not com-
pared to the Transformer-base models (the results are actually often worse than for the
base model). For instance, in German (de) target language with the 500k dataset, the character-
level model using 16 encoder layers and 6 decoder layers yielded a COMET score of 0.3203.
In contrast, the 4k and 32k vocab subword-level models achieved lower scores of 0.1909 and
0.1595, respectively. Similar patterns can be observed for other languages and datasets as well.
However, the vanilla Transformer-base with 4k (Table 3) obtained COMET of 0.3568, still out-
performing even the deeper character-level model. The baseline models outperform the deeper
models with 4k and 32k vocabularies, often by a large margin, while performance at char-level
remains similar or only slightly worse (compare corresponding rows in Table 3 and Table 6).

We hypothesize that the absence of improvements is caused by small dataset sizes and
non-optimal hyperparameter choices. The results however suggest that deeper models are better
suited for character-level translation, even though they mostly fail to outperform the shallower
models in our setting.

5 Conclusions

We trained standard Transformer models to translate between languages with different levels of
similarity both on subword-segmented and character-segmented data. We also varied the model
depth and the training set size. We show that character-level models outperform subword-
segmented models on the most closely related language pair (Czech-Slovak) as measured by
automated MT quality metrics. Finetuning models trained with subword-level segmentation
to character-level increases the performance in some cases. After finetuning, character-level
models surpass the quality of subword-level models also for Czech-Croatian. Other, less similar
language pairs reach similar preformances for both subword- and character-level models.
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transformer.

Jon, J., Novák, M., Aires, J. P., Varis, D., and Bojar, O. (2021). CUNI systems for WMT21:
Multilingual low-resource translation for Indo-European languages shared task. In Proceed-
ings of the Sixth Conference on Machine Translation, pages 354–361, Online. Association
for Computational Linguistics.

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield, K., Neckermann,
T., Seide, F., Germann, U., Aji, A. F., Bogoychev, N., Martins, A. F. T., and Birch, A.



370

(2018). Marian: Fast neural machine translation in C++. In Proceedings of ACL 2018, Sys-
tem Demonstrations, pages 116–121, Melbourne, Australia. Association for Computational
Linguistics.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Lee, J., Cho, K., and Hofmann, T. (2017). Fully character-level neural machine translation
without explicit segmentation. Transactions of the Association for Computational Linguis-
tics, 5:365–378.

Li, J., Shen, Y., Huang, S., Dai, X., and Chen, J. (2021). When is char better than subword: A
systematic study of segmentation algorithms for neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 2: Short Papers),
pages 543–549, Online. Association for Computational Linguistics.
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