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Abstract

Annotating cross-document event coreference
links is a time-consuming and cognitively de-
manding task that can compromise annotation
quality and efficiency. To address this, we pro-
pose a model-in-the-loop annotation approach
for event coreference resolution, where a ma-
chine learning model suggests likely corefering
event pairs only. We evaluate the effectiveness
of this approach by first simulating the annota-
tion process and then, using a novel annotator-
centric Recall-Annotation effort trade-off met-
ric, we compare the results of various underly-
ing models and datasets. We finally present a
method for obtaining 97% recall while substan-
tially reducing the workload required by a fully
manual annotation process.

1 Introduction

Event Coreference Resolution (ECR) is the task
of identifying mentions of the same event either
within or across documents. Consider the following
excerpts from three related documents:

e1: 55 year old star will replacem1 Matt Smith,
who announced in June that he was leaving the
sci-fi show.

e2: Matt Smith, 26, will make his debut in 2010,
replacingm2 David Tennant, who leaves at the
end of this year.

e3: Peter Capaldi takes overm3 Doctor Wh-
o . . . Peter Capaldi stepped intom4 Matt Smith’s
soon to be vacant Doctor Who shoes.

e1, e2, and e3 are example sentences from three
documents where the event mentions are high-
lighted and sub-scripted by their respective iden-
tifiers (m1 through m4). The task of ECR is to
automatically form the two clusters {m1,m3,m4},
and {m2}. We refer to any pair between the men-
tions of a cluster, e.g., (m1,m3) as an ECR link.
Any pair formed across two clusters, e.g., (m1,m2)
is referred to as non-ECR link.

Annotating ECR links can be challenging due
to the large volume of mention pairs that must be
compared. The annotating task becomes increas-
ingly time-consuming as the number of events in
the corpus increases. As a result, this task requires
a lot of mental effort from the annotator and can
lead to poor quality annotations (Song et al., 2018;
Wright-Bettner et al., 2019). Indeed, an annotator
has to examine multiple documents simultaneously
often relying on memory to identify all the links
which can be an error-prone process.

To reduce the cognitive burden of annotating
ECR links, annotation tools can provide integrated
model-in-the-loop for sampling likely coreferent
mention pairs (Pianta et al., 2008; Yimam et al.,
2014; Klie et al., 2018). These systems typically
store a knowledge base (KB) of annotated docu-
ments and then use this KB to suggest relevant
candidates. The annotator can then inspect the can-
didates and choose a coreferent event if present.

The model’s querying and ranking operations
are typically driven by machine learning (ML) sys-
tems that are trained either actively (Pianta et al.,
2008; Klie et al., 2018; Bornstein et al., 2020; Yuan
et al., 2022) or by using batches of annotations
(Yimam et al., 2014). While there have been ad-
vances in suggestion-based annotations, there is
little to no work in evaluating the effectiveness of
these systems, particularly in the use case of ECR.
Specifically, both the overall coverage, or recall,
of the annotation process as well as the degree of
annotator effort needed depend on the performance
of the model. In order to address this shortcoming,
we offer the following contributions:

1. We introduce a method of model-in-the-loop
annotations for ECR1.

2. We compare three existing methods for ECR
(differing widely in their computational costs),
by adapting them as the underlying ML mod-

1repo: github.com/ahmeshaf/model_in_coref
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els governing the annotations.

3. We introduce a novel methodology for assess-
ing the workflow by simulating the annota-
tions and then evaluating an annotator-centric
Recall-Annotation effort tradeoff.

2 Related Work

Previous work for ECR is largely based on model-
ing the probability of coreference between mention
pairs. These models are built on supervised classi-
fiers trained using features extracted from the pairs.
Most recent work uses a transformer-based lan-
guage model (LM) like BERT (Devlin et al., 2018;
Liu et al., 2019) to generate joint representations of
mention pairs, a method known as cross-encoding.
The cross-encoder is fine-tuned using a corefer-
ence scoring objective (Barhom et al., 2019; Cattan
et al., 2020; Meged et al., 2020; Zeng et al., 2020;
Yu et al., 2020; Caciularu et al., 2021). These meth-
ods use scores generated from the scorer to then
agglomeratively cluster coreferent events.

Over the years, a number of metrics have been
proposed to evaluate ECR (Vilain et al., 1995;
Bagga and Baldwin, 1998; Luo, 2005; Recasens
and Hovy, 2011; Luo et al., 2014; Pradhan et al.,
2014). An ECR system is evaluated using these
metrics to determine how effectively it can find
event clusters (recall) and how cleanly separated
the clusters are (precision). From the perspective
of annotation, it may only be necessary to focus
on the system’s recall or its effectiveness in finding
ECR links. However, an annotator might still want
to know how much effort is required to identify
these links in a corpus to estimate their budget. In
the remainder of the paper, we attempt to answer
this question by first quantifying annotation effort
and analyzing its relation with recall of the system.

We use the Event Coreference Bank Plus (ECB+;
Cybulska and Vossen (2014)) and the Gun Vio-
lence Corpus (GVC; Vossen et al. (2018)) for our
experiments. The ECB+ is a common choice for
assessing ECR, as well as the experimental setup of
Cybulska and Vossen (2015) and gold topic cluster-
ing of documents and gold mention annotations for
both training and testing2. On the other hand, the
GVC offers a more challenging set of exclusively
event-specific coreference decisions that require
resolving gun violence-related events.

2The ECB+ test set has 1,780 event mentions with 5K ECR
links among 100K pairwise mentions, while the GVC test set
has 1,008 mentions with 2K ECR links in 20K pairs. Full
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Figure 1: For the target mention (m1), the Annotated
Event Cluster store presents three potential coreferent
candidates (m2, m4 and m∗). The ranking module (an
ECR scorer) then ranks them based on their semantic
similarity to m1. The annotator reviews each candi-
date one-at-a-time and makes decisions on coreference.
m∗ is skipped after finding m4 as coreferent. The clus-
ter store is then updated based on these decisions.

3 Annotation Methodology
We implement an iterative model-in-the-loop meth-
odology3 for annotating ECR links in a corpus con-
taining annotated event triggers. This approach has
two main components - (1) the storage and retrieval
of annotated event clusters, which are then com-
pared with each new target event, and (2), an ML
model that ranks and prunes the sampled candidate
clusters by evaluating their semantic similarity to
the target mention.

As illustrated in Figure 1, our annotation work-
flow queries the Annotated Event Store for the tar-
get event (m1), retrieving three potential corefer-
ring candidates (m2, m∗, and m4). The ranking
module then evaluates these candidates based on
their lexical and semantic similarities to m1. The
annotator then compares each candidate to the tar-
get and determines if they are coreferent. Upon
finding a coreferent candidate, the target is merged
into the coreferent cluster, and any remaining op-
tion(s) (m∗) are skipped.

3.1 Ranking
We investigate three separate methods to drive the
ranking of candidates distinguished by their com-
putational cost. We use these methods to generate
the average pair-wise coreference scores between
mentions of the candidate and target events, then

statistics in Table 1 in Appendix A
3Utilizing the prodi.gy annotation tool. See Appendix D
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use these scores to rank candidates. We use a single
RTX 3090 (24 GB) for running our experiments.

Cross-encoder (CDLM): In this method, we use the
fine-tuned cross-encoder ECR system of Caciularu
et al. (2021) to generate pairwise mention scores4.
Their state of the art system uses a modified Long-
former (Beltagy et al., 2020) as the underlying LM
to generate document-level representations of the
mention pairs (detailed in §B.1). More specifically,
we generate a unified representation (Eq. 1) of the
mention pair (mi, mj) by concatenating the pooled
output of the transformer (ECLS), the outputs of
the individual event triggers (Emi , Emj ), and their
element-wise product. Thereafter, pairwise-wise
scores are generated for each mention-pair after
passing the above representations through a Multi-
Layer Perceptron (mlp) (Eq. 2) that was trained
using the gold-standard labels for supervision.

LF(mi,mj) =
〈

ECLS, Emi , Emj , Emi ⊙ Emj

〉
(1)

CDLM(mi,mj) = mlp(LF(mi,mj)) (2)

BERTScore (BERT): (Zhang et al., 2019) BERT-
Score (BS) is a NLP metric that measures pairwise
text similarity by exploiting pretrained BERT mod-
els. It calculates cosine similarity of token embed-
dings with inverse document frequency weights to
rate token importance and aggregates them into pre-
cision, recall, and F1 scores. This method empha-
sizes semantically significant tokens, resulting in a
more accurate similarity score (details in §B.2).

Sbert(m) = ⟨tm, [SEP], Sm⟩ (3)

BERT(mi,mj) = λ BS(tmi , tmj )

+ (1− λ) BS(Sbert(mi), Sbert(mj))
(4)

To calculate the BERTScore between the mentions,
we first construct a combined sentence (Sbert(m);
Shi and Lin (2019)) for a mention (m) by concate-
nating the mention text (tm) and its corresponding
sentence (Sm), as depicted in Equation 3. Sub-
sequently, we compute the BS for each mention
pair using Sbert(m) and tm separately, then extract
the F1 from each. We then take the weighted av-
erage of the two scores as shown in Equation 4
as our ranking metric. This process, carried out
using the distilbert− base− uncased (Sanh

4This method is compute-intensive since the transformer’s
encoding process scales quadratically with the number of
mentions. Using the trained weights, running inference on the
two test sets for our experiments takes approximately forty
minutes to calculate the similarities of all the mention pairs.
The weights are provided by Caciularu et al. (2021) here.

et al., 2019) model, requires approximately seven
seconds to complete on each test set.
Lemma Similarity (Lemma): The lemma5 similar-
ity method emulates the annotation process carried
out by human annotators when determining corefer-
ence based on keyword comparisons between two
mentions. To estimate this similarity, we compute
the token overlap (Jaccard similarity; JS) between
the triggers and sentences containing the respective
mentions and take a weighted average of the two
similarities (like Eq 4) as shown in Eq 56.

Lemma(mi,mj) = λ JS(tmi , tmj )

+ (1− λ) JS(Smi , Smj )
(5)

No Ranking (Random): For our baseline ap-
proach, we employ a method that directly picks
the candidate-mention pairs through random sam-
pling and without ranking, providing a reference
point for evaluating the effectiveness of the above
three ranking techniques.

3.2 Pruning
To control the comparisons between candidate and
target events, we restrict our selection to the top-
k ranked candidates. To refine our analysis, we
employ non-integer k values, allowing for the inclu-
sion of an additional candidate with a probability
equal to the decimal part of k. We vary the values
of k from 2 to 20 on increments of 0.5 and then
investigate its relation to recall and effort in §4.

3.3 Simulation
To evaluate the ranking methods, we conduct anno-
tation simulations on the events in the ECB+ and
GVC development and test sets. These simulations
follow the same annotation methodology of retriev-
ing and ranking candidate events for each target
but utilize ground-truth for clustering. By execut-
ing simulations on different ranking methods and
analyzing their performance, we effectively isolate
and assess each approach.

4 Evaluation Methodology
We evaluate the performance of the model-in-the-
loop annotation with the ranking methods through
simulation on two aspects: (1) how well it finds the
coreferent links, and (2) how much effort it would
take to annotate the links using the ranking method.

5We use spaCy 3.4 en_core_web_md lemmatizer
6λ is a hyper-parameter to control the weightage of the

trigger and sentence similarities in Equations 4 and 5, which
we tune using the development set. See Appendix C.
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Figure 2: Recall and Comparisons achieved upon varying the k for each ranking method in the ECR annotation
simulation. The three methods result in significantly fewer comparisons than the no-ranking Random baseline.

4.1 Recall-Annotation Effort Tradeoff
Recall: The recall metric evaluates the percent-
age of ECR links that are correctly identified by
the suggestion model. It is calculated as the ratio
of the number of times the true coreferent candi-
date is among the suggested candidates. The recall
error is introduced when the coreferent candidate
is erroneously removed based on the top-k value7.
Comparisons: A unit effort represents the com-

parison between a candidate and target mentions
that an annotator would have to make in the annota-
tion process. We count the sampled candidates for
each target and stop counting when the coreferent
candidate is found. For example, the number of
comparisons for the target m1, in Figure 1, is 2
(m2 and m4). We count this number for each target
event and present the sum as Comparisons.

4.2 Analysis and Discussion
We present an analysis of the various ranking meth-
ods employed in our study, highlighting the per-
formance and viability of each approach. We
employ the ranking methods on the test sets of
ECB+ and GVC. Then, estimate the Recall and
Comparisons measures for different k values, and
collate them into the plots as shown in Figure 2.
Performance Comparison: The performance im-
provement of CDLM over BERT and BERT over
Lemma can be quantified by examining the graph
for the ECB+ and GVC datasets. For example,
when targeting a 95% recall for the ECB+ cor-
pus, CDLM provides an almost 100 percent im-
provement over BERT reducing the number of

7Note that recall is always 100% if no candidates are ever
pruned.

comparisons to almost half of the latter. How-
ever, both CDLM and BERT outperform Lemma by
a significant margin while being drastically bet-
ter than the Random baseline (See Fig. 2). In-
terestingly, for GVC, the performance gap be-
tween CDLM and BERT is quite close, both need-
ing at least three-fourths as many comparisons
as the Lemma and crucially outperforming the
Random baseline. CDLM’s inconsistent perfor-
mance on GVC suggests that a corpus-fine-tuned
model such as itself is more effective when applied
to a dataset similar to the one it was trained on.
Efficiency and Generalizability of BERT:
BERT offers a compelling advantage in terms of
efficiency, as it can be run on low-compute settings.
Moreover, BERT exhibits greater generalizability
out-of-the-box when comparing its performance on
both the ECB+ and GVC datasets. This makes it
an attractive option for ECR annotation task espe-
cially when compute resources are limited or when
working with diverse corpora.

5 Conclusion
We introduced a model-in-the-loop annotation
method for annotating ECR links. We compared
three ranking models through a novel evaluation
methodology that answers key questions regarding
the quality of the model in the annotation loop
(namely, recall and effort). Overall, our analy-
sis demonstrates the viability of the models, with
CDLM exhibiting the best performance on the ECB+
dataset, followed by BERT and Lemma. The choice
of ranking method depends on the specific use case,
dataset, and resource constraints, but all three meth-
ods offer valuable solutions for different scenarios.
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Limitations

It is important to note that the approaches presented
in this paper have several constraints. Firstly, the
methods presented are restricted to English lan-
guage only, as Lemma necessitates a lemmatizer
and, BERT and CDLM rely on models trained ex-
clusively on English corpora. Secondly, the utiliza-
tion of the CDLM model demands at least a single
GPU, posing potential accessibility issues. Thirdly,
ECR annotation is susceptible to errors and severe
disagreements amongst annotators, which could
entail multiple iterations before achieving a gold-
standard quality. Lastly, the generated corpora may
be biased to the model used during the annotation
process, particularly for smaller values of k.

Ethics Statement

We use publicly-available datasets, meaning any
bias or offensive content in those datasets risks
being reflected in our results. By its nature, the
Gun Violence Corpus contains violent content that
may be troubling for some.
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CD-LM

</doc-s>...<doc-s>[CLS] <m> </m>

sum

... </doc-s>...<doc-s> <m> </m>...

sum

Figure 3: Illustration of Cross-encoding with CDLM from Caciularu et al. (2021).

ECB+ GVC
Train Dev Test Train Dev Test

T/ST 25 8 10 170 37 34
D 594 196 206 358 78 74
M 3808 1245 1780 5313 977 1008
C 1464 409 805 991 228 194
S 1053 280 623 252 70 43
P 300K 100K 180K 100K 20K 20K

P+ 15K 6K 6.5K 24K 3.7K 4.1K

Table 1: ECB+ and GVC Corpus statistics for event
mentions. T/ST = topics/sub-topics, D = documents,
M = event mentions, C = clusters, S = singletons. P =
unique mention pairs by topic. P+ = mention pairs that
are coreferent.

to encode much longer documents at finetuning
that are usually seen in coreference corpora like the
ECB+. As seen in Fig. 3, apart from the document-
separator tokens like <doc-s> and <doc-s/> that
help contextualize each document in a pair, it adds
two special tokens (<m> and </m>) to the model

vocabulary while pretraining to achieve a greater
level of contextualization of a document pair while
attending to the event triggers globally at finetun-
ing. Apart from the event-trigger words, the fine-
tuned CDLM model also applies the global atten-
tion mechanism on the [CLS] token resulting in
a more refined embedding for that document pair
while maintaining linearity in the transformer’s self-
attention.

B.2 BERTScore

BERT-Score is an easy-to-use, low-compute scor-
ing metric that can be used to evaluate NLP tasks
that require semantic-similarity matching. This
task-agnostic metric uses a base language model
like BERT to generate token embeddings and lever-
ages the entire sub-word tokenized reference and
candidate sentences (x and x̂ in Fig. 4) to calculate
the pairwise cosine similarity between the sentence
pair. It uses a combination of a greedy-matching
subroutine to maximize the similarity scores while

Reference
the weather is 
cold today

Candidate
it is freezing today

Candidate

Contextual
Embedding

Pairwise Cosine
Similarity

RBERT = (0.713⇥1.27)+(0.515⇥7.94)+...
1.27+7.94+1.82+7.90+8.88
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Figure 4: Illustration of the Recall Measure of BERTScore from Zhang et al. (2019).

142



normalizing the generated scores based on the IDF
(Inverse Document Frequency) of the sub-tokens
thereby resulting in more human-readable scores.
The latter weighting parameter takes care of rare-
word occurrences in sentence pairs that are usu-
ally more indicative of how semantically similar
such pairs are. In our experiments, we use the
distilbert− base− uncased model to get the
pairwise coreference scores, consistent with our
goal of deploying an annotation workflow suitable
for resource-constrained settings. Such lighter and
’distilled’ encoders allow us to optimize resources
at inference with minimal loss in performance.

C λ Hyper-parameter Tuning

We employ the evaluation methodology detailed in
§4 to determine the optimal value of λ (the weight
for trigger similarity and sentence similarity) for
both BERT and Lemma approaches. By conducting
incremental annotation simulations on the develop-
ment sets of ECB+ and GVC, we assess λ values
ranging from 0 to 1. The recall-effort curve is plot-
ted for each λ value, as shown in Figure 5, allowing
us to identify the one that consistently achieves the
highest recall with the fewest comparisons. Re-
markably, the optimal value for both methods is
found to be 0.7, and this value remains consistent
across the two datasets and approaches.

D Annotation Interface using Prodigy

Figure 6 illustrates the interface design of the
annotation methodology on the popular model-
in-the-loop annotation tool - Prodigy (prodi.gy).
We use this tool for the simplicity it offers
in plugging in the various ranking methods
we explained. The recipe for plugging it in
to the tool along with other experiment code:
github.com/ahmeshaf/model_in_coref.
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Figure 5: Trigger and Sentence Similarity weight (λ) Hyper-parameter tuning on the development sets of ECB+ and
GVC. We deduce λ = 0.7 is optimal for both methods for both datasets.
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Figure 6: The model-in-the-loop ECR annotation using the Prodigy Annotation Tool. The target event is on the left
and the Candidate cluster is on the right.
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