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Abstract

The creation of the most famous German dic-
tionary, also referred to as “Deutsches Worter-
buch” or in English “The German Dictionary”,
by the two brothers Jacob and Wilhelm Grimm,
took more than a lifetime to be finished (1838—
1961). In our work we pose the question, if it
would be possible for them to create a dictio-
nary using present technology, i.e., language
models such as BERT. Starting with the defini-
tion of the task of Automatic Dictionary Gen-
eration, we propose a method based on con-
textualized word embeddings and hierarchical
clustering to create a dictionary given unan-
notated text corpora. We justify our design
choices by running variants of our method on
English texts, where ground truth dictionaries
are available. Finally, we apply our approach to
Shakespeare’s work and automatically generate
a dictionary tailored to Shakespearean vocabu-
lary and contexts without human intervention.

1 Introduction

In 1838, the brothers Jacob and Wilhelm Grimm
started to create the Deutsches Worterbuch (Grimm
and Grimm, 1854), a comprehensive German dic-
tionary with references for each entry. A dictionary
is a resource that assigns meanings or translations
to words. Words are usually displayed in alphabet-
ical order in their canonical form, called lemma,
and an explanation of the meaning, called a gloss.
The first volumes of the famous German dictionary
were published in 1852. Brothers Grimm could not
finish their work within their lifetime, but different
scholars and institutions later succeeded in 1961.
The creation took 123 years in total. If the brothers
Grimm started their project nowadays, they would
likely use state-of-the-art technology like the in-
ternet and a pretrained language model like the
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) to speed up
their work. In our work, we want to examine if

the automated generation of a dictionary is possi-
ble with state-of-the-art technology and if today’s
language models could do the extensive work.

In Natural Language Processing (NLP), we have
to split sentences into smaller units which we refer
to as tokens. Tokens are not only written words
but also punctuation marks and numbers. To auto-
matically build a dictionary from plain reference
texts, we need to find all occurrences of each word
and distinguish their sense only from their context,
which aligns with Wittgenstein’s dictum "the mean-
ing of a word is its use in the language" (Wittgen-
stein, 1953). Given a fixed set of senses, choosing
the correct word sense from that set is defined as
the task of word sense disambiguation (WSD). As
the number of senses for each word appearing in
a given text is unknown, we need to separate the
senses for each word without any prior knowledge,
which is called word sense induction (WSI). The
class of tokens that have the same meaning is re-
ferred to as type. Words with only one meaning are
called monosemous, while ambiguous words are
referred to as polysemous.

It has been shown that BERT’s contextual-
ized word embeddings hold syntactic and seman-
tic knowledge (Rogers et al., 2021). In addi-
tion, they form separable clusters for polysemous
words (Wiedemann et al., 2019). We want to uti-
lize these characteristics of contextualized vector
representations produced by language models such
as BERT and perform word sense induction using a
hierarchical clustering method to tackle the task of
automatic dictionary generation (ADG) from raw
text without any further annotations.

Contributions.

1. We define the task of automatic dictionary
generation (ADG).

2. We discuss how to evaluate automatically gen-
erated dictionaries.
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3. We present a simple approach for ADG using
a pretrained CharacterBERT (El Boukkouri
et al., 2020) model and agglomerative hier-
archical clustering (AHC), and apply it to
the work of William Shakespeare to create
a Shakespearean dictionary.

The remaining paper is structured as follows:
in the upcoming section, we discuss related work.
We then define the task of ADG and afterward ex-
plain our approach to ADG called Grimm’s BERT
and discuss how we evaluate the model. Section 4
presents our experiments on the task of ADG. To
demonstrate the applicability of our ADG pipeline
to an interesting real-world text corpus, we apply it
to the works of William Shakespeare in order to cre-
ate a Shakespearean dictionary in Section 5 before
giving a conclusion of our work in Section 6. All
of our experiments are available on GitHub under:
https://github.com/Weilando/grimm_bert.

2 Related Work

Among the many possibilities, we choose to use
CharacterBERT (EI Boukkouri et al., 2020) embed-
dings to calculate contextualized vector representa-
tions of each word in a given text and apply hierar-
chical clustering to distinguish word types used in
a text to create dictionary entries. In the following
section we firstly discuss previous approaches to
generate dictionaries and secondly look at methods
to disambiguate the meaning of words.

Dictionary Generation. The generation of lex-
ical resources such as dictionaries has interested
researchers for a long time (Chang et al., 1995).
Past work on dictionary generation, also referred to
as dictionary construction can be divided into two
categories. There have been methods to construct
(1) bilingual (Kaji et al., 2008) and (ii) monolin-
gual (Tavast et al., 2020) dictionaries which are ei-
ther of a general nature or focus on domain-specific
terms (Ren et al., 2022). Bilingual dictionaries
have been either created by translation (Varga and
Yokoyama, 2009), through the use of parallel cor-
pora (McEwan et al., 2002) or by combining two
existing dictionaries (Kaji et al., 2008). One chal-
lenge all these methods face is the ambiguity of
words. To solve it, additional knowledge has been
necessary in form of thesauri, WordNet (Nicolas
et al., 2021) or statistics given raw text in both
languages (Kaji et al., 2008).

Word Sense Induction And Disambiguation.
To tackle the task of WSD, there are knowledge-
based approaches that utilize linguistic resources
like thesauri and supervised (and semi-supervised)
approaches that train a classifier on manually la-
beled training data and possibly unlabeled corpora
in addition (Wiedemann et al., 2019). In contrast,
we want to solve the task without the use of any an-
notations or further knowledge as a sub-task of the
automatic dictionary generation. For WSD there al-
ready have been approaches based on word embed-
dings. The context-group-discrimination (Schiitze,
1998) algorithm, for example, combines context
independent word vectors with context vectors
that capture information from second-order co-
occurrences and clusters. Wiedemann et al. (Wiede-
mann et al., 2019) investigate the application of
the contextualized word embeddings of Flair (Ak-
bik et al., 2018), ELMo (Peters et al., 2018) and
an uncased BERTL e (Devlin et al., 2019) for
WSD. BERT was the only evaluated contextualized
embedding that allowed distinguishable clusters
and therefore outperformed its competitors (Wiede-
mann et al., 2019). For the task of WSI many
methods apply clustering of some kind of word
representation to discriminate the senses of each
word in context. A simple clustering approach is
k-means, which usually requires to know the num-
ber of clusters beforehand (Giulianelli et al., 2020).
Other approaches are affinity propagation (Martinc
et al., 2020) and agglomerative clustering (Arefyev
et al., 2019). For our ADG pipeline we perform
WSI with agglomerative clustering and contextual-
ized CharacterBERT embeddings.

3 Automatic Dictionary Generation

Informally, automatic dictionary generation (ADG)
is the process of creating a dictionary from raw text,
containing a list of senses with reference sentences
for each type. While this description appears obvi-
ous for common languages like English, there are
a couple of choices to make, which we detail next.

More formally, a fext is given as a sequence of
characters, i.e., as a string. The first step is to split
the string into a sequence of fokens. A trivial choice
is to split at whitespace characters. However, many
so-called tokenizers split words even further into
stem and ending. Punctuation marks and numbers
are most often tokens themselves. The second step
is to split the sequence of tokens into subsequences
called sentences. Sentences give context to a token
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and should be characteristic of the token’s sense.
Based on these choices, a dictionary is a set of one
dictionary entry per unique word. Each entry con-
sists of a list of senses, where each sense has a list
of reference sentences assigned. Some tokens are
possibly excluded from the dictionary, e.g., word
endings.

Thus to implement ADG, we have to specify
how we define tokens and sentences, since these
choices determine what the generated dictionary
will contain. For most common languages, the
dictionary entries contain an additional human-
understandable description called gloss, which we
exclude from our pipeline for now. Note that in
contrast to WSD, the ADG task does not assume
any knowledge about the number of senses a word
occurring in a text corpus has. Consequently a step
in the ADG pipeline is to perform word sense in-
duction for each word in a text. To solve the task of
ADG, we employ contextualized representations of
each token that capture semantic and syntactic fea-
tures. Several studies show that BERT embeddings
capture syntactic information (Rogers et al., 2021).
Wiedemann et al. (Wiedemann et al., 2019) also
compared different contextualized word embed-
dings for WSD and found that uncased BERT em-
beddings perform best for this task. Motivated by
these results, we use BERT embeddings to tackle
the task of ADG.

Algorithm 1: ADG Pipeline

1 Tokenize the input.

2 Generate one contextualized word vector per token.

3 Perform token-wise sense induction clustering the
contextualized word vectors.
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3.1 Grimm’s BERT for ADG.

Next, we propose a method for the ADG task,
which we call Grimm’s BERT. Figure 1 shows the
complete pipeline of our approach. The general
steps that are performed for ADG are also written
down as Algorithm 1. To give further explanation
we next discuss each step separately:

1. Tokenization. BERT] yy e solves the task of
WSD better than other contextualized word em-
beddings (Wiedemann et al., 2019). However, the
used WordPiece tokenizer (Wu et al., 2016) cuts
words into so-called word pieces. As our dictio-
nary should contain only human-readable words,
we decided to use a BERT model that is pretrained
using a word level tokenizer. We choose Charac-
terBERT (El Boukkouri et al., 2020), more pre-
cisely CharacterBERT gepera1 Which is a pretrained
variant of the uncased BERTg,s. model that uses
ELMo’s (Peters et al., 2018) word level Character-
CNN module instead of WordPiece embeddings.

2. Generate Contextualized Word Embeddings.
We calculate one contextualized word vector per to-
ken with a pretrained CharacterBERT gepera model,
forward the tokenized input and extract the 768
dimensional output from the model’s last hidden
layer.

3. Token-wise Sense Induction. Each occurring
word has at least one word sense. We perform
agglomerative hierarchical clustering (AHC) to re-
lated word vectors to detect and discriminate dif-
ferent word senses for polysemous words. AHC is
a bottom-up method that starts with single objects
and successively merges the closest objects to build
a binary merge tree. A linkage criterion determines
the relevant distance between clusters for the pro-
cess of merging. Average linkage clustering uses
the average distance between all pairs of objects in
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two clusters, complete linkage takes the maximum
distances between all objects of two clusters and
single linkage uses the minimum distance between
all objects of the two sets.

There are several ways to cut the binary merge
tree into subtrees to get different clusters. One op-
tion is a fixed distance threshold that determines
connections to cut and leaves the resulting num-
ber of clusters open. Another option is a fixed
cluster count that maximizes the linkage criterion
but ignores the absolute value of the cut connec-
tions. Grimm’s BERT builds one dendrogram per
unique word using the average linkage criterion
with the Euclidean distance as linkage distance. It
applies a fixed linkage distance threshold, which
is a hyperparameter, to cut the dendrograms into
subtrees representing different groups of senses.
For our choices of the linkage and cut criterion, we
performed extensive experiments presented in the
Appendix.

3.2 Evaluation.

While WSD is a classification task, ADG is a clus-
tering problem. The following section discusses
how to evaluate an automatically created dictionary
for the case where we have ground truth informa-
tion about the number of word senses. We choose
the Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) as an objective evaluation metric to quantify
the quality of the resulting clusters. Classical met-
rics for WSD like the accuracy or the F'; score are
not applicable, as forming clusters of senses can
rather be seen as a separation of unnamed senses
than a selection from a fixed dictionary.

Let X = {Xi,...,Xn} be a set of objects,
Y ={Y1,...,Yx} be a partitioning of X in K €
1,..., N disjoint sets and m denote a clustering
method which describes how to obtain Y from a
given X. Then (X,Y, m) describes a clustering
problem, and we call Y a clustering. Rand (1971)
defines the Rand Index (RI) via

D i< Vi
(5)

where Y is another clustering and

RI(Y,Y') = el0,...,1] (1)

1 if there exist k, k' s.t. both X, X;
are in both Y}, and Y},

1 if there exist &, k" s.t. X; is in both
Y}, and Y}, while X is neither in
Y, or Y/,

0 otherwise

Yij =

withi,5 € {1,...,N} and k, k¥ € {1,...,K}.
Intuitively, ;; is true if two objects are together or
separate in both clusterings. RI(Y,Y”) = 1 indi-
cates identical clusterings, whereas RI(Y,Y') = 0
for two clusterings without any similarities.

Rand (Rand, 1971) defined the Rand Index (RI)
to measure the similarity of two clusterings by cal-
culating the agreement between two different parti-
tions. The index considers every pair of the given
data points in the obtained and correct clustering
and counts how many pairs are in the same clus-
ters and how many are in different clusters. The
ARI (Hubert and Arabie, 1985) is the Rand Index,
corrected for chance using the hypergeometric dis-
tribution. We obtain the ARI with

RI — E(RI)

ARL= L ax(RD) — E(RI)

el-1,...,1] (@

where E(RI) is the expected value of RI. Please
note that ARI = 1 indicates perfectly matched
clusterings, ARI = 0 indicates random cluster-
ings regarding the hypergeometric distribution, and
ARI < 0 does not have an intuitive interpretation.
ARI is symmetric, so ARI(Y,Y’) = ARI(Y",Y).
Only the assignment of objects to the same or differ-
ent clusters matters, as the score is invariant under
the permutation of label names.

As the ARI compares a clustering with some
ground truth, we cannot use it to evaluate a dic-
tionary for corpora without any semantic annota-
tions. In that case, we measure the density and
separation of clusters using the Silhouette Coeffi-
cient (Rousseeuw, 1987) to find a sensible cluster
count k for a set of n objects. In our context, ob-
jects are tokens and clusters are senses.

The Silhouette Coefficient s(7) for each object i
is defined as

max{a(i), b(i) }
where a(i) is the average distance inside the clus-

ter and b(i) is the average distance to the closest
cluster (Rousseeuw, 1987).

€ [_171]7 (3)

Implementation Details. We transform corpora
into lists of sentences, where each sentence is a
list of tokens. We save these lists into an archive
file to avoid repeated preprocessing steps like to-
kenization and lower casing. For the actual WSI
per token, we apply the implementation of AHC
from the machine learning library scikit-learn'. We

1https: //scikit-learn.org/stable/
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choose the Euclidean distance between word vec-
tors as affinity and the average linkage criterion
(see Table 4 in the Appendix for a comparison of
different linkage criteria and Cosine vs Euclidean
distance).

4 Experiments

We conduct several experiments to evaluate how
well our pipeline works. To numerically measure
the performance of our approach, we perform ADG
on different annotated corpora and measure the
ARI of our obtained clusters.

4.1 Datasets

For the evaluation of our model, we use textual cor-
pora with token-level sense annotations to evaluate
the performance of semantic tasks. Please note that
many corpora do not contain sense tags for every
token, as semantic tagging by hand is a tedious
and costly process. So-called all-words corpora
contain tags for every token with certain part-of-
speech (POS) tags but usually omit closed-class
words (Snyder and Palmer, 2004; Moro and Nav-
igli, 2015). Table 1 lists all datasets together with
the number of documents, sentences and tokens per
corpus and indicates the kind of POS for tokens
with semantic tags. Senseval and SemEval are part
of WSDEval (Raganato et al., 2017) which is a uni-
fied evaluation framework that offers several anno-
tated corpora in the same XML format with sense
annotations from WordNet (Miller et al., 1990) ver-
sion 3.0. Raganato et al. (Raganato et al., 2017)
applied the XML schema of the SemEval2013 all-
words WSD task (Navigli et al., 2013), removed
annotations for auxiliary verbs, semi-automatically
updated WordNet senses to version 3.0, lemma-
tized and POS tagged all tokens to standardize the
corpora. Some datasets like Senseval2 and Sense-
val3 do not contain semantic tags for all words of a
POS. Sometimes, multiple sense tags exist in the
case of ambiguity or if no suitable WordNet sense
was available (Navigli et al., 2013).

4.2 Performance Evaluation of Our Approach

We compare the performance of our approach with
two different baselines (see Table 2) to assess its
value in practice. The first baseline assigns a dis-
tinct sense to each token, called “No Cluster”-
baseline. The second baseline assigns all occur-
rences of the same word to a single sense, called
“Single Cluster”-baseline. We perform our ADG

pipeline with average linkage and the Euclidean
distance (see Table 4 in the Appendix for other op-
tions). Table 2 presents our results with linkage
distance thresholds, which we optimized within a
range of 8 — 16 (see Appendix A.4). Please note
that all ARI scores are slightly better than our base-
lines (see Table 2), except for the SemEval2013
task for which our best result is equal to the “Sin-
gle Cluster”-baseline. As a proof of concept, we
were able to improve over the baselines with some
parameter tuning of the distance threshold.

To study how the ARI scores depend on the dis-
tance threshold, we show the distribution of ARI
scores in Figure 2 for every dataset for varying dis-
tance thresholds. For large distance thresholds, the
ARI score matches the “Single Cluster”-baseline,
since all occurring tokens end up in a single cluster.
Unfortunately, the scores converge to the baseline.
However, this might be due to selective annotations
in the corpora. Note that for SemEval2007 we can
see a peak before reaching the ARI for the “Sin-
gle Cluster”’-baseline, which shows that for that
particular dataset, the token embeddings can give
meaningful clusterings.

To further analyze the SemEval2007 dataset we
show the distribution of the ARI for different link-
age criteria in the left panel, together with the
“Single Cluster”-baseline and the ARI for differ-
ent sense counts in the right panel in Figure 3. We
see that the exact choice of the linkage criterion is
not critical and that for the SemEval2007 corpus
the clustering works well for tokens with a single
and more than three unique senses. For the other
datasets the corresponding plots are in the Figure 7
in the Appendix.

5 ADG for Shakespeare’s Works

So far, we defined the ADG task and proposed
a simple pipeline to solve it. In the experiments
above, we generate contextualized word vectors
with a general CharacterBERT model pretrained
on the English Wikipedia and the OpenWebText
corpus.” However, ADG is much more interesting
and becomes more complicated if raw text is the
only available training resource for the particular
language to create a dictionary. In that case we
have to pretrain a language model on the exact text
that is the input for the complete pipeline. Note that
such an approach is also applicable to unannotated

2https://skylion@@7.github.io/
OpenWebTextCorpus/
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Corpora Docs.  Sents. Tokens  Annotations per POS
Senseval2 (Edmonds and Cotton, 2001) 3 242 5,766 ADJ, ADV, NOUN, VERB
Senseval3 (Snyder and Palmer, 2004) 3 352 5,541 ADJ, ADV, NOUN, VERB
SemEval2007 (Pradhan et al., 2007) 3 135 3,201 NOUN, VERB
SemEval2013 (Navigli et al., 2013) 13 306 8,391 NOUN
SemEval2015 (Moro and Navigli, 2015) 4 138 2,604 ADJ, ADV, NOUN, VERB
SemCor (Miller et al., 1993) 352 37,176 802,443  ADJ, ADV, NOUN, VERB

Table 1: Overview of WSDEval Corpora. POS tags are adjectives (ADJ), adverbs (ADV), nouns (NOUN) and verbs

(VERB).
Corpus | Dist. Threshold | Unique Senses | No Cluster  Single Cluster  ADG (ours)
SemCor 14.50 54,806 0.0000 0.6521 0.6522
Senseval2 14.00 1,626 0.0000 0.9136 0.9137
Senseval3 10.30 2,144 0.0000 0.8395 0.8671
SemEval2007 9.60 1,685 0.0000 0.7109 0.8632
SemEval2013 15.00 2,376 0.0000 0.9377 0.9377
SemEval2015 10.60 876 0.0000 0.9464 0.9509

Table 2: ARI scores (last three columns) for two baselines “No Cluster” and “Single Cluster” vs our results “ADG

(ours)” using Grimm’s BERT.

low resource languages.

To investigate this scenario, we apply our
method to generate a dictionary for all works of the
famous English poet William Shakespeare (1564
—1616). The vocabulary and grammar from Early
Modern English (used in late 15" to mid-to-late
17™ century) is different from today’s Modern En-
glish (used since mid-to-late 17" century). Nev-
ertheless, his works have been widely studied and
understood and are readable without too much ef-
fort. As the manual creation of appropriate dic-
tionaries is time-consuming and computationally
expensive, the results of our automated pipeline
(see Algorithm 1) could be a useful starting point
for generating such a dictionary.

Training Data. We use an open corpus with son-
nets and plays from Shakespeare.®> For preprocess-
ing, we remove stage directions beginning with
“<”. We delete all lines that contain only a number,
e.g., years of publication or enumerations of son-
nets. Additionally, we remove repeated line breaks.
The resulting corpus consists of 112,521 sentences
with 1,152,400 tokens and 23,547 unique words. It
is small compared to typical datasets used to train
CharacterBERT, but larger than SemCor (802,443
total tokens, see Table 1).

CharacterBERT Model for Shakespearean En-
glish. We train a CharacterBERT model with the

3h’ctps ://ocw.mit.edu/ans7870/6/6.006/s08/
lecturenotes/files/t8.shakespeare. txt

original pretraining code* and our Shakespeare cor-
pus. The used hyperparameters for pretraining can
be found in Table 8 in the Appendix. We also use
the LAMB optimizer (You et al., 2019), a layer-
wise adaptive large batch optimization technique
that works well with attention models like Char-
acterBERT. Please note that the training process
includes two phases. The optimizer works with
a higher learning rate and shorter input sequence
lengths during the first phase to achieve broadly
reasonable weights. The second phase requires
fewer update steps and improves the weights with
a lower initial learning rate and longer input se-
quences. Different sequence lengths require adap-
tions regarding the number of accumulation steps
and batch size, as the target batch size and the
CharacterBERT model need to fit into the GPU’s
memory. We perform our ADG pipeline with av-
erage linkage and the Euclidean distance, as this
setup worked best for most corpora, particularly
for the large SemCor. (see Table 4). We run the
pipeline with threshold 8.0, 9.0, and 10.0. Table 3
shows that different numbers of senses are found
as expected. Since we have no ground truth we ar-
bitrarily choose the threshold 9.0 for the following
examples.

Qualitative Evaluation. The raw text from
Shakespeare does not provide semantic annota-
tions. So we can not use metrics like the ARI for
quantitative evaluation. Instead, we pick examples

*https://github.com/helboukkouri/
character-bert-pretraining
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Figure 3: Results only for the SemEval2007 dataset. ARI score for different thresholds and linkage criteria and the
“Single Cluster”-baseline (left) and ARI score per sense count and different linkage criteria (right).

Linkage Distance Threshold 8.0 9.0 10.0
Reference Sentences 112,521

Number Tokens 1,152,400

Unique Words 23,547

Unique Senses 52,797 51,070 49,272

Table 3: Number of unique senses for different thresh-
olds in our Shakespeare Dictionary.

from Shakespeare’s Words>, an online glossary, the-
saurus, and collection of Shakespeare’s works, and
compare them with our findings manually. Please
note that we present all tokens lowercase and sep-
arated with single spaces. The enumerator styles
indicate the assigned senses. Our created dictio-
nary offers two different senses for the word eyed.
Looking at the sentence examples, the first example

is an adjective but the second is a verb.
e it is the green - eyed monster , which doth mock
o for as you were when first your eye i eyed ,
Our dictionary correctly lists only one sense for

both occurrences of writer.
e i’ [l haste the writer , and withal
o drive some of them to a non - come . only get the learned
writer to

However, for wrongful, we incorrectly get two

different senses.
o that i despise thee for thy wrongful suit,
o in wrongful quarrel you have slain your son .

5https ://www. shakespeareswords.com

Curiously, words with more reference sentences
tend to have outliers. For example, the word
englishman only has one meaning, however our
dictionary assigns eight reference sentences to the
same sense but assigns two occurrences to another.

’

a soul so easy as that englishman ’ s .
king henry . an englishman ?
thinking this voice an armed englishman -

for that my grandsire was an englishman -

a box of the ear of the englishman , and swore he would
pay him

caius . by gar, then i have as much mockvater as de
englishman .

cassio . is your englishman so expert in his drinking ?
i do not know that englishman alive

that any englishman dare give me counsel ?

where ever englishman durst set his foot .

SO e e

The word major is an interesting dictionary entry.
The first two references form a sense, while the
other two occurrences belong to a second cluster.
At first glance, the division appears correct since
the first sense is a noun, and the second sense is
an adjective. However, major means “matter” in
the first example, but refers to a constellation in
the second one. A correct distinction might require
background knowledge and logical reasoning. Nev-
ertheless, the entry is almost correct.

o fal . i deny your major . if you will deny the sheriff, so ;

if not,

e nativity was under ursa major , so that it follows i am
rough and

< the major part of your syllables ; and though i must be
content to
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© my major vow lies here , this i’ Il obey .

In this experiment, the most difficult challenges
are the corpus size, which is small for training a
language model and large for clustering methods.
Contexts in our Shakespeare corpus are often short
and incomplete, since we defined a sentence to be
limited to a single line, but many sentences extend
over several lines. While our generated dictionary
tends to list too many senses per word, it also con-
tains valuable groupings and correct entries.

6 Conclusion

In this paper, we examine whether the brothers
Grimm could create a dictionary using language
models like BERT. To achieve this, we define the
ADG task and a first simple approach to automat-
ically generate a dictionary from raw text using a
language model and AHC.

At its core, ADG is a clustering problem, and it
is possible to evaluate it with ARI scores if sense
annotations are available. Thus, (partially) labeled
corpora for WSD are suitable for comparing dif-
ferent ADG approaches. Other metrics like the
Silhouette Coefficient (see Appendix A.3) measure
the cluster quality without any ground truth but
usually have strong assumptions and miss some
crucial edge cases. In addition, we consider a sce-
nario with texts from Shakespeare’s work. We train
a CharacterBERT model on it and use our pipeline
to generate a customized dictionary. Many dictio-
nary entries are reasonable but sometimes list too
many senses per word.

While our first simple approach to ADG does not
give perfect results yet, we see great potential for
this task and believe that our contribution is a start-
ing point that could be used by linguists who want
to create new dictionaries. It might be reasonably
assumed that the quality of the resulting clusters
of our pipeline will further increase with the con-
tinuous improvement of state-of-the-art language
models. We assume that with today’s technologies,
the brothers Grimm would likely have witnessed
the completion of their German dictionary during
their lifetime.

Limitations

In this work, we defined the task of ADG and pro-
posed one method to solve it. Nevertheless, there
are many open questions emphasizing the key chal-
lenges and proposing new ideas beyond our experi-
ments.

1. How can we train language models even for
low resource languages? Our ADG pipeline
can be used for low resource languages to
build a preliminary dictionary, but requires
to pretrain a language model from scratch.
As we have seen in our experiments with the
works of William Shakespeare, our approach
generates reasonable outcomes, but learning
language models on small corpora is challeng-
ing.

2. Is there a better way to evaluate automat-
ically generated dictionaries? The eval-
uation of dictionaries without any ground
truth remains partially open, mainly because
the Silhouette coefficient is not applicable
to situations where only one cluster exists.
Other metrics and techniques to analyze high-
dimensional clusters might be useful.

3. How can we determine the correct num-
ber of senses for a word? We analyze the
search range for the linkage thresholds in Ap-
pendix A.4. Our experiments show that the
optimal threshold is different for every dataset.
It is still unclear how the optimal cut criterion
can be determined in an unsupervised manner.

4. How can we find relations between words?
We discuss the detection of relations like syn-
onyms in Appendix A.5 but do not deliver a
concrete implementation. The detection of re-
lations like synonyms might be possible using
by clustering the centroids and could lead to a
reasonable extension of our pipeline.

5. Can we automatically generate descrip-
tions for the word types? Generating glosses
(aka descriptions) for each extracted sense is
a challenging task. Currently we are only able
to assign senses to each word in a text, to-
gether with references to sentences. In the
future it will be interesting to automatically
generate short descriptions for each word and
each sense respectively and find a meaning-
ful way to evaluate automatically generated
glosses.

Our work has shown the potential of ADG, yet
some aspects of the approach remain unsolved and
for future work. Nevertheless, we believe that ADG
can lead to powerful practically useful tools for
dictionary generation which will profit from new
and more powerful language models and additional
input created by the deep learning community.
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Ethics Statement

In this paper we propose an approach to automati-
cally generate a dictionary from plain text. Using
technology for communication is a great advan-
tage of today’s world. Having sentences and whole
documents translated in the blink of an eye is ben-
eficial for the communication between humans of
all kinds of languages and cultures. The aim of this
area of research is to use machines to study lan-
guages, potentially also low-resource languages in
the context of written text. It is to say that this kind
of technology should always have a supporting role
and should not be used to make final decisions.
Machine learning models always hold the risk of
producing biased and incorrect predictions. Our
work relies on the use of large language models
such as BERT and CharacterBERT. These models
are trained on large amounts of data and encode
various parts of it. There is a risk that they con-
tain sensitive data, generate false information or
are actively misused.
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A Appendix

Our design choices for the ADG pipeline are based
on extensive experiments that we conducted. These
are described in the following sections. Namely,
we compare different linkage criteria and metrics
for clustering.

A.1 ARI for Clusterings with Different
Affinities and Linkage Criteria

As the geometry of clusters in the embedding space
is not trivial, we empirically search for the best link-
age criterion with the WSDEval corpora. There-
fore, we perform AHC with average linkage, com-
plete linkage and single linkage and aid it with the
true number of clusters it should find. More pre-
cisely, we cluster the word vectors for each distinct,
sense annotated token based on all corresponding
word vectors and the total, unique number of its
annotated senses. We compute the ARI to measure
the quality of the clustering and omit generated
senses.

While the cosine distance measures angles be-
tween vectors, the Euclidean distance compares
their lengths. Even if we usually use the cosine
distance for NLP tasks, we also set both affinities
side by side.

Table 4 presents the ARIs for sense clusterings
with different affinities and linkage criteria and
underline indicates the best performance for each
corpus. All runs but for SemCor with complete
linkage outperform our baselines from Table 4, in-
dicating that our pipeline extracts meaningful word
senses. Average linkage works best for SemCor,
Senseval2, Senseval3 and SemEval2013. Complete
linkage yields the highest ARI for SemEval2007
and SemEval2015. Often, the three criteria perform
similarly well and SemCor is the only corpus for
which complete linkage works significantly worse
than the other two criteria. SemCor contains not
only far more tokens and sense annotations but also
some words with a higher disambiguity with up to
57 unique senses, whereas the other corpora only
hold words with at most 5 unique senses.

We expect marginally better results for the Eu-
clidean distance Dg,.(A, B) with A, B € R? and
d € Ny, because the cosine distance D¢os(A, B)
is equivalent to the Euclidean distance of normal-
ized vectors. By expansion, it holds

Dfy(A — B) = (A~ B)- (A~ B)

With normalized vectors D2 .(A) = DZ,.(B) = 1,
this term is equal to 2(1 —cos(A, B)) and therefore

Deos(4, B) = w_

However, the Euclidean distance usually pro-
duces slightly stronger results, but yields the same
ARI as the cosine distance for SemEval2013 and
SemEval2015 with average linkage, Senseval3
and SemEval2013 with complete linkage and Se-
mEval2013 with single linkage. Senseval2 with
single linkage is the only setup for which the cosine
distance moderately outperforms the Euclidean dis-
tance. This experiment suggests a setup with the
Euclidean distance and average linkage. Possible
explanations for the results are rounding errors and
word vectors that are not exactly normalized to
length one.

Please note that Yenicelik et al. (2020) investi-
gate the organization of BERT’s word vectors for
polysemous words. More precisely, they use the se-
mantic annotations in SemCor (Miller et al., 1993)
to analyze the separability and clusterability of the
768 dimensional output of BERT’s last layer.

They perform a dimensionality reduction via
principal component analysis (PCA) (Pearson,
1901) and predict a semantic class per token with a
linear classifier (Yenicelik et al., 2020). They inter-
pret its accuracy as a measure of linear separability.
Results for frequently occurring words show that
individual semantic classes are reasonably linearly
separable and contextual word embeddings form
closed semantic regions (Yenicelik et al., 2020).

For clusterability, they apply several cluster-
ing algorithms on word vectors for sampled
words from SemCor and the news.2007.corpus’
and measure the quality of the resulting clusters
with the ARI (Rand, 1971; Hubert and Arabie,
1985) (Yenicelik et al., 2020). No clustering
method was able to distinguish between multiple
semantic classes on a satisfying level (Yenicelik
et al., 2020). For several words, resulting clusters
differ not only in meanings but also in other linguis-
tic properties like sentiment (Yenicelik et al., 2020).
BERT’s word embeddings form closed but overlap-
ping semantic regions (Yenicelik et al., 2020).

We perform the analysis on the whole SemCor
corpus with AHC and without PCA. In contrast,
Yenicelik et al. (2020) use more complex clustering
methods and sample polysemous words.

"https://www.statmt.org/wmt14/
training-monolingual-news-crawl/
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Average Linkage

Complete Linkage Single Linkage

Corpus Cosine  Euclidean Cosine Euclidean Cosine Euclidean
Semcor 0.6615 0.6627 0.4899 0.4958 0.6561 0.6558
Senseval2 0.9594 0.9596 0.9553 0.9558 0.9541 0.9540
Senseval3 0.9322 0.9326 0.9280 0.9261 0.9287
SemEval2007 0.9457 0.9612 0.9687 0.9844 0.9457 0.9612
SemEval2013 0.9700 0.9632 0.9694
SemEval2015 0.9712 0.9723 0.9734 0.9711 0.9681

Table 4: ARI for Clusterings with Different Affinities and Linkage Criteria using known sense counts. Underline
indicates the best result per corpus. Joined cells indicate identical ARIs for both affinities. We ignore all tokens with

generated Senses.

A.2 Sense-Count-Level ARI for Clusterings
with Different Linkage Criteria

While Table 4 presents the overall performance of
our approach with one ARI per corpus, Figure 4
shows bar plots with one average ARI per unique
sense count. We analyze the dictionaries from Ta-
ble 4 and completely omit tokens with generated
senses in our plots again.

The results for monosemous words are almost
perfect for all corpora and linkage criteria, be-
cause we provide the true number as we generate
these dictionaries (see Section A.1). For polyse-
mous words, the average ARI is usually smaller
but clearly positive, indicating clusterings that are
better than random choice. Especially for larger
corpora like SemCor or SemEval2013, the drop is
more evident. Please note that the total number of
words per bar usually decreases with higher unique
sense counts.

A.3 Sense-Count-Level Silhouette Coefficient
for Clusterings with Different Linkage
Criteria

Now we calculate one average Silhouette coef-
ficient per sense count for the dictionaries from
Table 4 to investigate the quality of sense clus-
terings. Please note that the score requires 2 <
k < n — 1 with the sense count k£ and token count
n (Rousseeuw, 1987). Thus, we omit all annotated
tokens that do not fulfil the condition and cannot
provide any measurements for n = 1. Similar
to Figure 4, the significance of the bars decreases
with higher unique sense counts. As the SemEval
corpora provide very few polysemous words, their
plots are less representative.

The cluster quality decreases with increasing
sense counts, starting at a score of approximately
0.15 for n = 2 and approaching values near 0.1 for
most configurations and corpora. Average and com-
plete linkage usually yield similar scores, whereas

single linkage often performs worse and even gets
some negative scores for SemCor.

A.4 Linkage Distances at the Cut

The sensible prediction of sense counts per word is
problematic due to the fact that we need to evaluate
multiple clusterings per word and do not have any
reliable information for single senses. Choosing
one linkage distance threshold above which we
do not merge any clusters avoids the choice of a
suitable number of senses and requires only one
clustering per word. Therefore, we investigate the
linkage distances at the last cuts that occur during
our clusterings with known sense counts (see Table
A.l).

As the linkage criterion optimizes a certain dis-
tance between clusters, there are n — 1 distances
for n samples. AHC is a bottom-up approach that
starts with clusters that contain only one sample
and successively builds a binary merge tree. We
investigate the exact linkage distance at the tree
node that marks the last merge. If all linkage dis-
tances differ, we can generate the same clustering
by setting the distance threshold to the exact dis-
tance at the last merge and add a small number. In
cases with no available distance, for example, if
we merge all samples into one cluster, we pick the
closest obtainable distance in the tree. For words
with a single occurrence, we do not consider any
distances.

Table 5 and Table 6 show the averages and stan-
dard deviations of the Euclidean and cosine linkage
distances at the last performed merge in the merge
tree. Again, we analyze the dictionaries from Table
A.1 and only consider tokens with known senses.
The averages are fairly similar for all corpora and
the standard deviations are rather small. Our results
for SemEval2015 are clearly the worst due to lower
averages and higher standard deviations, possibly
because it contains comparatively few samples.
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Figure 4: Sense-Count-Level ARI for Clusterings with Different Linkage Criteria using known sense counts and the
Euclidean distance as affinity. Each bar plot shows the average ARI for all words that have the same number of true
unique senses and no generated senses. We analyze the dictionaries from Section A.1.
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Figure 5: Sense-Count-Level Silhouette Coefficient for Clusterings with Different Linkage Criteria using known
sense counts and the Euclidean distance as affinity. Each bar plot shows the average Silhouette Score for all words
that have the same number of true unique senses and no generated senses. We analyze the dictionaries from Section
Al
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Figure 6: Euclidean Linkage Distances at the Last Merge using known sense counts. Each histogram shows
frequencies for all words that have no generated senses. We analyze the dictionaries from Section A.1.
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Average Linkage =~ Complete Linkage Single Linkage
Corpus Avg. Std. Avg. Std. Avg. Std.
SemCor 9.6395 2.0394 10.0726 2.1631 9.1755 2.0249
Senseval2 8.4796 1.8256 8.7032 1.9295 8.2633 1.7940
Senseval3 7.7612 2.0223 7.9206 2.0855 7.5898 2.0015
SemEval2007 8.5086 1.7495 85396  1.7577 8.4842 1.7464
SemEval2013 8.5505 2.0034 8.7958  2.1140 8.3034 1.9379
SemEval2015 74175 2.4254  7.6239  2.5386 7.2192 2.3627

Table 5: Average and Standard Deviation of Euclidean Linkage Distances at the Last Merge using known sense
counts. We analyze the dictionaries from Section A.l and ignore tokens with generated senses or only one

occurrence.

Average Linkage  Complete Linkage Single Linkage
Corpus Avg. Std. Avg. Std. Avg. Std.
SemCor 0.3624 0.1469 0.3960 0.1610 0.3285 0.1423
Senseval2 0.2900 0.1198 0.3060 0.1304 0.2753 0.1156
Senseval3 0.2464 0.1183 0.2566 0.1234 0.2358 0.1165
SemEval2007 0.2928 0.1156 0.2947 0.1161 0.2912 0.1152
SemEval2013 0.2946 0.1297 0.3125 0.1410 0.2771 0.1224
SemEval2015 0.2357 0.1306 0.2497 0.1404 0.2229 0.1257

Table 6: Average and Standard Deviation of Cosine Linkage Distances at the Last Merge using known sense counts.
We analyze the dictionaries from Section A.1 and consider all words with at least two occurrences and no generated

sSenses.

Figure 6 exhibits histograms for Euclidean link-
age distances at the cut corresponding to Table 5.
Considering the averages and standard deviations
of linkage distances in combination with their dis-
tributions from the histograms, we propose that
most last merges occur near a Euclidean linkage
distance of about 8.5 — 9.0 with a standard devia-
tion of about 1.7. This observation holds for most
examined corpora and even accross different link-
age criteria. Due to the sample size of SemCor, the
related results are most representative and suggest
a bell curve with said parameters. Therefore, a link-
age distance threshold slightly above the maximum
of the bell curves should yield a reasonable dictio-
nary. The similarities in our experiments suggest
that 8.0 — 9.5 is a reasonable initial search space
in hyperparameter optimization.

Table 7 offers the averages and standard devi-
ations of the Euclidean linkage distances at the
successor of the last merge in the tree. We need
to cut the tree between the last performed merge
and its successor to obtain the same clustering. The
latter distances are significantly higher than those
from Table 7 and the standard deviations indicate
minor overlaps of both distributions. These results
indicate clear gaps and further suggest the existence
of a reasonable linkage distance threshold.

A.5 Relation Detection

Often, terms and names consist of more than one
token, for example, the “White House”. We could
use syntactic knowledge to find related words in the
sentences. For instance, the contextualized word
embedding BERT encodes some syntactic rules
(Clark et al., 2019; Jawahar et al., 2019). In con-
trast, there are syntactic correlations between differ-
ent words, e.g., for the combination of an auxiliary
verb and its participle like “has finished”. Some
approaches mitigate such problems with seman-
tic knowledge about existing entities and phrases.
Inflections help determine syntax and context in
a sentence. Usually, only one entry per infinitive
exists in resources like dictionaries. Mapping in-
flected forms to their infinitives is challenging and
may require prior knowledge. We need to pick a
distance criterion to separate clusters of word vec-
tors. The criterion could be a fixed threshold or a
relative factor for distances. Some methods might
depend on more sophisticated geometric criteria
or estimate the number of clusters or objects. Its
choice might depend on the given corpus.

Similar contexts yield word vectors close in the
embedding space, so similar word vectors for dif-
ferent words might indicate synonyms. In contrast,
word vectors that point in the opposite direction
might reveal antonyms.

However, performing clustering methods on all
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Average Linkage =~ Complete Linkage Single Linkage

Corpus Avg. Std. Avg. Std. Avg. Std.

SemCor 10.1048 2.0594 10.6219 2.1876 9.5731 2.0454
Senseval2 8.7927  1.7905 9.0681 1.9032 8.5312 1.7627
Senseval3 8.0880  2.1119  8.2969  2.2062 7.8749 2.0615
SemEval2007 8.8758 2.0199 89492 2.0532 8.7969 1.9871
SemEval2013 8.7354  2.0456  9.0253  2.1949 8.4543 1.9713
SemEval2015 7.7537  2.3858  8.0112  2.5202 7.5166 2.3156

Table 7: Average and Standard Deviation of Euclidean Linkage Distances after the Last Merge using known
sense counts. We analyze the dictionaries from Section A.1 and ignore tokens with generated senses or only one
occurrence.

words is more computationally expensive. Clus-
tering the centroids of sense clusters might also
reveal related words. In this setting, the definition
of negative concepts like antonyms is less obvious.
We could measure the strength of the relation be-
tween two clusters via the distance between their
centroids. The closer any two centroids are, the
stronger their relation is and vice versa. We could
choose thresholds or ranges to define certain con-
cepts like synonyms and antonyms.

A.6 ARI scores for different linkage distance
thresholds

In Figure 7 we show the details for every dataset on
the distribution of the ARI score next to the “Single
Cluster”-baseline. As described before, for large
thresholds the ARI converges to the ARI of our
“Single Cluster”-baseline. For both the Senseval3
and the SemEval2007 corpus a clear peak before
converging to the baseline. To gain further insights
why our method works better for some corpora
than for others, an analysis of the corpora and the
tagged annotations is necessary.

A.7 Details on Creating Shakespearean
Dictionary

Table 8 shows all hyperparameters we used to pre-
train CharacterBERT for creating a Shakespearean
dictionary.
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Figure 7: Linkage distance thresholds per dataset
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Hyperparameter

Phase 1 Phase 2

Learning Rate
Warm-Up Proportion

6x107% 4x1073
0.2843 0.128

Warm-Up Rate 0.01
Weight Decay 0.01

Target Batch Size 2,048
Accumulation Steps 256 1,024
Total Batch Size 8 2
Update Steps 1,800 800
Max. Input Sequence Size 128 512
Max. Masked Tokens per Input 20 80

Table 8: Hyper-Parameters for Training CharacterBERT on Shakespeare’s Works, based on the hyper-parameters
for the general CharacterBERT model (El Boukkouri et al., 2020).
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