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Abstract

This paper describes the submissions of the
research group USTC-NELSLIP to the 2023
IWSLT Offline Speech Translation competi-
tion, which involves translating spoken English
into written Chinese. We utilize both cascaded
models and end-to-end models for this task. To
improve the performance of the cascaded mod-
els, we introduce Whisper to reduce errors in
the intermediate source language text, achiev-
ing a significant improvement in ASR recog-
nition performance. For end-to-end models,
we propose Stacked Acoustic-and-Textual En-
coding extension (SATE-ex), which feeds the
output of the acoustic decoder into the textual
decoder for information fusion and to prevent
error propagation. Additionally, we improve
the performance of the end-to-end system in
translating speech by combining the SATE-ex
model with the encoder-decoder model through
ensembling.

1 Introduction

This paper describes the submission for the IWSLT
2023 Offline Speech Translation task (Agarwal
et al., 2023) by National Engineering Laboratory
for Speech and Language Information Processing
(NELSLIP) at the University of Science and Tech-
nology of China.

Speech translation (ST) solutions include cas-
caded and end-to-end approaches. The cascaded
approach combines Automatic Speech Recogni-
tion (ASR) and Machine Translation (MT) systems.
The ASR system recognizes the source speech as in-
termediate text in the source language, and the MT
system translates the intermediate text into text in
the target language. While the end-to-end approach
directly translates the source speech into text in tar-
get language, without using source language text
as an intermediate representation. Compared with
cascaded approaches, the end-to-end paradigm can
overcome higher architectural complexity and er-
ror propagation (Duong et al., 2016). The Stacked

Acoustic-and-Textual Encoding (SATE) (Xu et al.,
2021) method combines the acoustic and textual
encoders using an adapter module to approach the
performance levels of cascaded solutions. Further-
more, ST can be improved using large-scale and
cross-modal pretraining methods (Radford et al.,
2022; Zhang et al., 2022b) such as Whisper (Rad-
ford et al., 2022), which leverages large-scale weak
supervision, and SpeechUT (Zhang et al., 2022b),
which optimizes the alignment of speech and text
modalities by hidden units.

In this study, we employ a cascaded approach
wherein the ASR system is built using the pre-
trained Whisper (Radford et al., 2022) to ensure
the recognition performance of speech to source
language text. Furthermore, the MT systems in the
cascaded setup are created using diverse techniques
like back translation (Sennrich et al., 2016a), self-
training (Kim and Rush, 2016; Liu et al., 2019),
domain adaptation and model ensemble.

In end-to-end condition, we implement two
types of architectures, including encoder-decoder
(Le et al., 2021) and Stacked Acoustic-and-Textual
Encoding extension (SATE-ex). For the encoder-
decoder, we use the corresponding components
of ASR models to initialize the encoder, and the
corresponding components of MT models to ini-
tialize the decoder. For SATE-ex, we utilize the
textual decoder to receive the output features of the
acoustic decoder to assist in generating the target
language text, achieving information complemen-
tarity of different ASR decoding hidden states, and
preventing intermediate error propagation. Addi-
tionally, we employ adaptation training, along with
the adaptation module and multi-teacher knowl-
edge distillation of Stacked Acoustic-and-Textual
Encoding (SATE) (Xu et al., 2021) to bridge the
gap between pre-training and fine-tuning. Our ap-
proach included the utilization of augmentation
strategies commonly used in cascaded systems, like
speech synthesis (Casanova et al., 2022) and gen-
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Corpus Duration (h) Sample Scale

Librispeech 960 1
Europarl 161 1
MuST-C (v1) 399 3
MuST-C (v2) 449 3
TED-LIUM3 452 3
CoVoST2 1985 1
VoxPopuli 1270 1

Table 1: The used speech recognition datasets.

Data Duration (h)
Raw data 8276
+ concat 16000
+ oversampling 32000
+ TTS 56000

Table 2: Augmented training data for ASR.

erating as much semi-supervised data as possible
to enhance the model’s performance. Furthermore,
we try to achieve further performance optimization
with ensemble of cascaded and end-to-end models.

2 Data Preprocessing

2.1 Speech Recognition

The speech recognition datasets utilized in our
experiments are listed in Table 1, including Lib-
rispeech, MuST-C (v1, v2), TED Lium3, Europarl,
VoxPopuli, and CoVoST. We first extracted 40-
dimensional log-mel filter bank features computed
with a 25ms window size and a 10ms window shift.
And then, a baseline ASR model, which is used to
filter training samples with WER > 40%, is trained.
Moreover, to generate sufficient speech recognition
corpora, we applied speed perturbation and over-
sampling techniques on the TED/MuST-C corpus
(Liu et al., 2021). As a result, we generated nearly
8k hours of speech data.

To improve our training data, we applied two
more data augmentation techniques. Firstly, we
combined adjacent voices to produce longer train-
ing utterances. Secondly, we trained a model us-
ing Glow-TTS (Casanova et al., 2021) on MuST-C
datasets and generated 24,000 hours of audio fea-
tures by using sentences from EN—DE text trans-
lation corpora. The resulting training data for ASR
is summarized in Table 2.

Parallel
50M

Monolingual

50M

EN-ZH

Table 3: Training data for text MT.

2.2 Text Translation

We participate in translating English to Chinese.
Both the bilingual data as well as the monolin-
gual data are used for training. To ensure optimal
training data quality, we apply several filters in-
cluding language identification. We remove sen-
tences longer than 250 tokens and those with a
source/target length ratio exceeding 3. Addition-
ally, we train a baseline machine translation model
to filter out sentences with poor translation quality.

To tokenize the text, we utilize LTP4.0! (Wanxi-
ang et al., 2020) for Chinese and Moses for English.
The subwords are generated via Byte Pair Encoding
(BPE) (Sennrich et al., 2016b) with 30,000 merge
operations for each language direction. Table 3
summarizes the detailed statistics on the parallel
and monolingual data used for training our systems.

EN—ZH For EN—ZH task, we utilize nearly
50 million sentence pairs collected from CCMT
Corpus, News Commentary, ParaCrawl, Wiki Ti-
tles, UN Parallel Corpus, WikiMatrix, Wikititles,
MuST-C, and CoVoST?2, to train our MT models.
In addition, we randomly extract 50 million mono-
lingual Chinese sentences from News crawl and
Common Crawl for back-translation purposes to
augment our training data.

2.3 Speech Translation

Table 4 outlines the speech translation datasets used
in our experiments. MuST-C and CoVoST?2 are
available for speech translation.

To augment our data, we implemented two ad-
ditional methods. Firstly, we utilized a text trans-
lation model to generate the corresponding target
language text from the transcriptions of the speech
recognition datasets. The generated text was then
added to our speech translation dataset along with
its corresponding speech, referred to as KD Cor-
pus in Table 4. This process is similar to sentence
knowledge distillation. Secondly, we applied the
trained Glow-TTS model to produce audio features
from randomly selected sentence pairs in EN—ZH
text translation corpora. The resulting filter bank
features and their corresponding target language

"https://github.com/HIT-SCIR/ltp
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Corpus Duration (h) Sample Scale
MuST-C 593 2
CovoST2 1092 2
EN-ZH kp 16000 2
TTS 27000 1

Table 4: Speech Translation Corpora.

text are utilized to enhance our speech translation
dataset, referred to as TTS Corpus in Table 4.

3 Cascaded Speech Translation

3.1 Automatic Speech Recognition

We implement ASR model in cascaded condi-
tion via Supervised Hybrid Audio Segmentation
(SHAS) and Whisper.

Supervised Hybrid Audio Segmentation. Super-
vised Hybrid Audio Segmentation (SHAS) (Tsia-
mas et al., 2022) is used to split long audio into
short segments with quality comparable to manual
segmentation. Hence, we use SHAS as a Voice Ac-
tivity Detection (VAD) in the ASR system, as well
as a speech segmentation tool in the Speech Trans-
lation system. This way, the output of the ASR
system can be directly fed into the text translation
component.

Whisper. We incorporated the pre-trained Whisper
(Radford et al., 2022) as the ASR model of the cas-
caded system to reduce errors in the intermediate
source language text.

Whisper scales weakly supervised speech-to-text
tasks to 680,000 hours of labeled audio data and
expands the pre-training scope from English-only
speech recognition to multilingual and multitask.
In comparison with the previous unsupervised pre-
training approach (Baevski et al., 2020), Whisper
not only improves the quality of the audio encoder,
but also trains a pre-trained decoder with high
equivalency, enhancing usefulness and robustness.
Results demonstrate that the pre-trained Whisper
model can be well transferred to different or even
zero-shot datasets without any dataset-specific fine-
tuning.

We used the large version of the pre-trained whis-
per model, which contains 32 layers and a total of
1550M parameters.

3.2 Neural Machine Translation

We adopted the same strategy as last year’s (Zhang
et al., 2022a) and built machine translation models

based on the Transformer (Vaswani et al., 2017)
implemented in the Fairseq (Ott et al., 2019) toolkit.
Each single model was executed on 16 NVIDIA
V100 GPUs. Our experiments utilized several
crucial technologies including Back Translation,
Sentence-level Knowledge Distillation, Domain
Adaptation, Robust MT Training, and Ensembling.
Back Translation. The utilization of Back-
Translation (Sennrich et al., 2016a) is a proficient
technique for enhancing translation accuracy. This
method generates synthetic sentence pairs by trans-
lating target-side monolingual data. It has gained
significant popularity in both academic research
and commercial applications. We train NMT mod-
els with bilingual data, and translate Chinese sen-
tences to English.

Knowledge Distillation. Sentence-level Knowl-
edge Distillation (Kim and Rush, 2016), also
known as Self-training, is an effective method for
enhancing performance. We expand our training
dataset by leveraging a trained NMT model to trans-
late English sentences into Chinese. This approach
has proven to be highly beneficial in improving
model accuracy.

Domain Adapatation. Due to the critical impor-
tance of high-quality, domain-specific translation
(Saunders, 2022), we fine-tune the NMT model by
using a mix of in-domain data (such as MuST-C,
TED-LIUMS3, etc.) and out-of-domain data. Ad-
ditionally, the labelled English sentences from the
speech recognition training data is also utilized as
augmented in-domain self-training data by translat-
ing them.

We adopt a Denoise-based approach (Wang et al.,
2018) to assess and select data for domain-specific
MT and use it to denoise NMT training. The tech-
nique of denoising addresses data quality issues
and reduces the adverse effects of noise on MT
training, particularly NMT training.

Robust MT Training. To enhance the robustness
of the MT model to ASR errors in cascaded ST,
the ASR output adaptive training approach (Zhang
et al., 2022a) is introduced. The English transcripts
of all speech translation datasets are inputted into a
trained ASR model to generate text in source side,
which is then paired with the transcription text in
target side. We improve the robustness of the MT
model through three methods: 1) fine-tuning the
MT model with synthetic data; 2) incorporating KL,
loss during fine-tuning to prevent over-fitting; and
3) distilling the model using clean source text and
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ASR output.

Ensemble. For each target language, we trained 4
variants based on the large Transformer configura-
tion, and the final model is an ensemble of these 4
models.

e EI5D6-v1: 15 layers for the encoder and 6
layers for the docoder. The embedding size is
1024. FFN size is 8192 and attention head is
16. All available corpora including bilingual,
BT and FT are used.

* E15D6-v2: 15 layers for the encoder, 10%
training data are randomly dropped.

* E18D6: 18 layers for the encoder and 10-30%
training data with low machine translation
scores are dropped.

e Macaron: A version with macaron architec-
ture (Lu et al., 2019) based on data of E18D6.
36 layers for the encoder and FFN size is
2048.

3.3 End-to-End Speech Translation

In the end-to-end condition, we ensemble the
encoder-decoder and the Stacked Acoustic-and-
Textual Encoding extension (SATE-ex) models de-
scribed in Section 3.4.

Encoder-Decoder. The encoder-decoder-based
end-to-end ST model processes the speech in the
source language by its encoder and generates text
in the target language by its decoder. The encoder
and decoder are initialized using the corresponding
parts of the cascade ASR and MT models. As re-
gards model architecture, we investigate 4 variants
in end-to-end ST.

* VGG-C: The encoder of VGG-C is initial-
ized by the ASR VGG-Conformer architec-
ture, which consists of 2 layers of VGG and
12 layers of Conformer. And the ASR VGG-
Conformer is trained using the data in Section
2.1. The decoder of VGG-C is 6 layers of
Transformer with embedding size of 1024, at-
tention head of 16 and FFN size of 8192.

* VGG-C-init: The encoder is VGG-Conformer,
initialized by ASR VGG-Conformer architec-
ture. The decoder is 6 layers of Transformer,
initialized by NMT E15D6-v2 variant.

* VGG-T: The encoder of VGG-T is initialized
by the ASR VGG-Transformer architecture,

LASR LKD—Trans LTrans
A A A

Softmax

Textual
- Decoder
Linear

J Cross-Attention

Softmax

Acoustic
Decoder

Cross-Attention

====> Lgp—crc
Acoustic Target
Encoder > Lere Te?(t
T Textual
Speech *{ Adaptor H Encoder }»
Features

Figure 1: The architecture of Stacked Acoustic-and-
Textual Encoding extension (SATE-ex).

which consists of 2 layers of VGG and 16
layers of Transformer. The decoder of VGG-
T is 6 layers of Transformer with embedding
size of 1024, attention head of 16 and FFN
size of 8192.

* VGG-T-init: The VGG-Transformer encoder
is initialized by the ASR VGG-Transformer
architecture. The decoder is 6 layers of Trans-
former, initialized by NMT E15D6-v2 variant.

3.4 Stacked Acoustic-and-Textual Encoding
Extension

To further improve the performance of end-to-end
ST, we propose Stacked Acoustic-and-Textual En-
coding extension (SATE-ex) based on SATE (Xu
et al., 2021).

SATE. The MT encoder captures the long-distance
dependency structure, while ASR encoder focuses
on local dependencies in the input sequence. Thus,
the encoder-decoder model initialized with the
ASR encoder and the MT decoder may have in-
consistent on intermediate representations.

SATE stacks two encoders, an acoustic encoder
and a textual encoder. The acoustic encoder pro-
cesses the acoustic input, while the textual encoder
generates global attention representations for trans-
lation. Moreover, an adapter is designed after the
acoustic encoder, which maps the acoustic repre-
sentation to the latent space of the textual encoder
while retaining acoustic information. By doing so,
SATE can maintain consistency in representation
across different pre-trained components. Besides,
the multi-teacher knowledge distillation has been
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developed to preserve pre-training knowledge dur-
ing fine-tuning (Hinton et al., 2015).

SATE-ex. Figure 1 shows the SATE-ex architec-
ture, comprising the acoustic encoder, acoustic de-
coder, textual encoder, and textual decoder compo-
nents. Theses components are initialized with their
corresponding components in cascade ASR and
MT models. Notably, the textual decoder in SATE-
ex has a Cross-Attention module (highlighted in
yellow) that processes the acoustic decoder’s out-
put. By doing so, this approach fuses the last layer
decoding hidden states of the ASR decoder into the
textual decoder, alongside Connectionist Tempo-
ral Classification (CTC) decoding hidden states of
ASR that are injected through adaptor and textual
encoder. Similar to (Zhang et al., 2020), this idea
facilitates to fuse and complement different decod-
ing strategies, which can improve inner recognition
accuracy, reduce the propagation of intermediate
representation errors, and thereby enhance transla-
tion performance.

The loss function of SATE-ex, similar to SATE
(Xu et al., 2021), computes CTC loss Lorc, ASR
loss L sk, and translation loss Lp,qns. Addi-
tionally, the losses Lxp_crc and L p_7rans Of
multi-teacher knowledge distillation are used to
preserve pre-trained knowledge during fine-tuning.
Adaptation Training. To further eliminate the in-
termediate representation mismatch in pre-trained
ASR and MT, before end-to-end training, we adopt
adaptation training to fine-tune the MT part of
SATE-ex (including the textual encoder and tex-
tual decoder). Specifically, we first generate greedy
CTC decoding without removing duplicates and
blanks through the acoustic encoder. Then, we pair
these CTC decoding with text in target language to
fine-tune the textual encoder and textual decoder.
Please note that the textual decoder here does not
contain the Cross-Attention module (highlighted in
yellow) in Figure 1.

4 Experiments

Our experimental results are presented in Table 5
and Table 6. All experiments are performed using
the Fairseq (Ott et al., 2019) toolkit. We report
case-sensitive SacreBLEU scores (Post, 2018) for
speech translation. The performance of the sys-
tems is evaluated on MuST-C-v2 tst-COMMON
(tst-COM) and Development set (Dev). Addition-
ally, we set two values for the parameters of SHAS
(min, max, threshold), namely (1,18,0.5) and

System  tst2018 tst2019 tst2020 tst2022 tst-COM
ASR* 95.59 97.55 95.71 96.67 98.04
Whisper  95.75 98.34 97.17 97.86 97.01

Table 5: The recognition accuracy of the ASR fusion
model and pre-trained Whisper. ASR* indicates the
ASR fusion model.

(5,54,0.1). We also provide the results of MT as
reference (System #1-5).

4.1 Automatic Speech Recognition

We evaluate the recognition performance of ASR
fusion model and pre-trained Whisper. The ASR fu-
sion model comprises three model structures, each
trained with and without Text-to-Speech (TTS)
data, resulting in a total of six ASR models. These
models are fused to obtain the final ASR* model.
The three ASR structures are presented below.

* VGG-Conformer: 2 layers of VGG and 12
layers of Conformer in encoder, 6 layers of
Transformer in decoder.

* VGG-Transformer: 2 layers of VGG and 16
layers of Transformer in encoder, 6 layers of
Transformer in decoder.

* GateCNN-Transformer: 6 layers of GateCNN
and 12 layers of Conformer in encoder, 6 lay-
ers of Transformer in decoder.

The recognition results of the ASR fusion model
and pre-trained Whisper are presented in Table 5.
The results indicate that Whisper has a superior
recognition performance compared to the ASR fu-
sion model, with an average improvement of 0.51%.
However, the ASR fusion model outperforms Whis-
per slightly on the tst-COM dataset, which could be
due to the ASR fusion model upsampling, making
its data distribution closer to tst-COM.

4.2 Cascaded Systems

We construct two cascaded systems, one consisting
of six-model fusion ASR and six-model fusion MT
(System #6), and the other consisting of Whisper
and six-model fusion MT (System #7).

For ASR in System #6, we employ the ASR
fusion model described in Section 4.1. For MT in
System #6, we train the four MT models described
in Section 3.2. E18D6 and Macaron are both saved
with two different checkpoints, resulting in six MT
models that are fused to obtain MT*.
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Official SHAS SHAS
#  System Segment (1,18, 0.5) (5,54,0.1)
Dev tst-COM  Dev tst-COM Dev tst-COM
MT
1 E15D6-vl 27.23 30.19 - - - -
2  E15D6-v2 27.14 29.95 - - - -
3 EI8D6 27.53 30.48 - - - -
4 Macaron 27.48 30.71 - - - -
5 ensemble (1-4) 27.81 31.03 - - - -
Cascaded
6  ASR*+MT* 26.40 29.83 26.05 29.69 26.45 29.62
7  Whisper+MT#* 26.72 29.42 27.00 29.55 26.82 29.03
End-to-End
8  SATE-ex-T (w/ TTS) 24.78 28.17 24.43 27.43 23.30 26.49
9  SATE-ex-T (w/o TTS) 25.27 28.00 25.19 27.81 24.37 27.39
10 SATE-ex-M (w/ TTS)  24.52 28.18 23.61 26.62 22.08 24.67
11 SATE-ex-M (w/o TTS) 24.18 27.26 23.96 27.51 20.91 25.66
12 VGG-C-init 24.62 28.74 24.61 28.50 24.12 28.06
13 VGG-T-init 24.59 28.28 24.51 27.84 23.89 27.59
14 VGG-C 24.75 28.68 24.70 28.35 24.29 27.65
15 VGG-T 24.72 28.42 24.60 27.93 24.09 27.77
16 ensemble (8-11) 25.85 29.00 25.50 28.45 24.22 27.54
17 ensemble (12-15) 25.53 28.86 25.54 28.68 25.36 28.68
18 ensemble (8-15) 26.42 29.29 26.22 29.11 25.92 28.92
Ensemble of cascaded and e2e
19 ensemble (6, 18) 26.85 29.46 26.65 29.19 26.28 29.41
20 ensemble (7, 18) 27.09 29.53 26.82 29.35 26.62 29.45

Table 6: The BLEU scores of machine translation (MT), cascaded, end-to-end, and ensemble systems. * indicates
fusion models. The parameter of SHAS is (min, mazx, threshold).

System #7 uses the large version of Whisper?
as ASR, while the MT* is consistent with System
#6. As shown, on Dev set, using Whisper to reduce
errors in the source language text has improved
the performance of ST. However, on tst-COM, the
cascade model with ASR* performs better, pre-
sumably due to the closer match between the data
distribution of ASR* and that of tst-COM.

4.3 End-to-End Systems

In the end-to-end setting, we adopt the encoder-
decoder and SATE-ex architectures. Systems #12-
15 are built based on the encoder-decoder, with spe-
cific parameters referred to Section 3.3. Systems
#8-11 adopt the SATE-ex architecture. SATE-ex-T
uses the VGG-Conformer ASR model in Section
4.2 to initialize the acoustic encoder and decoder,

3https://github.com/openai/whisper

and the E18D6 MT model in Section 3.2 to initial-
ize the textual encoder and decoder. SATE-ex-M
uses the Macaron MT model in Section 3.2 to ini-
tialize the textual encoder and decoder.

It can be seen that the results of ensemble SATE-
ex (System #16) outperform those of ensemble
encoder-decoder (System #17). However, the per-
formance of a single SATE-ex model is slightly
worse than that of a single encoder-decoder model,
which we attribute to the lack of fine-tuning for the
single SATE-ex model. In future work, we will
discuss SATE-ex in detail.

4.4 Ensemble Systems

We ensemble the two cascade models (Systems #6
and #7) and the end-to-end model (System #18)
separately. The results are shown in Systems #19
and #20 in Table 6. It can be seen that the ensemble

199



systems achieves excellent performance.

4.5 System Description

Our system is primarily based on the full dataset
allowed by IWSLT 2022, supplemented with Whis-
per large and SHAS for audio segmentation, which
is trained on MUSTC. We have trained six ASR
models and six MT models based on the IWSLT
2022 training data for model fusion. Additionally,
we have trained four end-to-end ST models and
four SATE-ex end-to-end ST models for end-to-
end model fusion.

For the end-to-end system, we use a fusion of
the above-mentioned eight end-to-end models. For
the cascaded systems, we build two cascades: one
with ASR based on Whisper and the other with
ASR based on six-model fusion. The MT side used
six-model fusion for both cascades. The submit-
ted systems are based on these two cascades, each
combined with the eight-model fusion end-to-end
system.

The system structure and SHAS parameter
(min, max, threshold) settings of the five submit-
ted systems are shown below.

* Primary Cascade: System #7 with SHAS pa-
rameters set to (5,54, 0.1).

* Contrastivel: System #20 with SHAS param-
eters set to (1,18,0.5).

* Contrastive2: System #19 with SHAS param-
eters set to (1,18,0.5).

* Contrastive3: System #6 with SHAS parame-
ters set to (5,54, 0.1).

* Primary e2e: System #18 with SHAS parame-
ters set to (1, 18,0.5).

5 Conclusion

This paper summarizes the results on the IWSLT
2023 Offline Speech Translation task. We employ
various model architectures and data augmentation
techniques to build speech translation systems in
cascaded and end-to-end settings. The experimen-
tal results demonstrate the effectiveness of strate-
gies such as pre-trained Whisper models, adapta-
tion training, and the Stacked Acoustic-and-Textual
Encoding extension (SATE-ex). In future work, we
will further investigate SATE-ex and explore multi-
modal representation learning in speech translation.
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