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Abstract

Compositionality and inference are essential
features of human language, and should hence
be simultaneously accessible to a model of
meaning. Despite being theory-grounded, dis-
tributional models can only be directly tested
on compositionality, usually through similarity
judgements, while testing for inference requires
external resources. Recent work has shown
that knowledge graph embeddings (KGE) ar-
chitectures can be used to train distributional
models capable of learning syntax-aware com-
positional representations, by training on syn-
tactic graphs. We propose to expand such work
with Multi-Graphs embedding (MuG) models,
anew set of models learning from syntactic and
knowledge-graphs. Using a phrase-level infer-
ence task, we show how MuGs can simultane-
ously handle syntax-aware composition and in-
ference, and remain competitive distributional
models with respect to lexical and composi-
tional similarity.

1 Introduction

Drawing an inference over structured text is con-
sidered to be a basic aspect of natural language
understanding (Pavlick and Callison-Burch, 2016).
To build structured meaning, humans rely on com-
positionality (Frege, 1892; Mollica et al., 2020).
For this reason, much work has underlined the con-
nection between composition, the construction of
complex meaning from smaller units, and inference
(MacCartney and Manning, 2008; Baroni et al.,
2012; Pavlick and Callison-Burch, 2016; Pavlick
and Kwiatkowski, 2019). With respect to recently
popularised large language models (LLMs) like
BERT (Devlin et al., 2019), the literature has pro-
duced contrasting evidence, both against (Keysers
et al., 2020; Do and Pavlick, 2021; Bertolini et al.,
2022) and in support (Brown et al., 2020; Nie et al.,
2020) of these models being able to simultane-
ously handle composition and inferences with lit-
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tle to no supervision. However, most of the work
has focused on sentence-level inference. Multiple
pieces of evidence have shown that, when solv-
ing such tasks, models strongly rely on biases and
spurious correlations in the benchmarks (Poliak
et al., 2018; Dasgupta et al., 2018; McCoy et al.,
2019). To address this issue, authors proposed to
focus on phrase-level tasks (e.g., Yu and Ettinger
(2020, 2021); Bertolini et al. (2022)). In particular,
Bertolini et al. (2022) showed that LLMs learn to
make robust compositional inferences regarding
adjective-noun phrases only with direct supervi-
sion, and linked this ability to non-lexical subword
units. While computationally effective, this solu-
tion is poorly grounded in linguistic and cognitive
theories.

Recently, Bertolini et al. (2021) showed how
training knowledge-graph embedding (KGE) archi-
tectures on syntactic graphs leads to distributional
models able to learn syntax-aware compositional
representations. While these models theoretically
satisfy the compositionality principle (Frege, 1892;
Partee et al., 1995), like LLMs, they still require
external resources or training to be evaluated on
inference. In this work, we propose to expand
syntactic-graphs distributional models (SyG) with
knowledge-graph, and propose Multi-Graph (MuG)
models. We argue that, by training on both data
sources, MuG could inherit compositional abili-
ties from SyGs, and learn to manipulate the hyper-
nym relation from KGE. Thus, MuG models should
be able to handle both composition and inference
simultaneously in the form of compositional en-
tailment, in a fully unsupervised manner. Since
previous results found rotation to better encode
hierarchical relations (Chami et al., 2020) such
as entailment, and reflection to be most suitable
to represent syntactic information (Bertolini et al.,
2021), we hypothesize that an attention-based hy-
brid model will be the best architecture to simulta-
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neously handle compositionality and inference.

Our contributions are four-fold. First, we in-
troduce Multi-Graph (MuG) models, a new set
of embedding models trained on syntactic and
knowledge-graphs. Second, we provide evidence
that, under the correct combination of training
method and architecture, MuG models can tackle
compositional entailment, using a syntax-aware
composition. Third, we propose a detailed analysis
describing the behaviour of the best MuG model,
clearly showing how the three macro classes of
adjectives and the structure of the inference shape
the behaviour of the model. Fourth, we investi-
gate which abilities, in terms of distributional and
knowledge-based, are inherited by MuGs. We show
that MuGs are competitive distributional models,
but struggle under a graph-related task, likely due
to an incompatibility with respect to negative sam-
ples rate during training.

The paper is organised as follows. Section 2, re-
views the related work on compositional entailment
and different embedding models. In Section 3, we
lay out the methodology behind MuG models, in
terms of training methods, compositional entail-
ment predictions, and model’s parameters (such
as the composition strategy). Section 4 describes
training and evaluation datasets, and other imple-
mentation details. In Section 5, we present and
analyse results on compositional entailment, graph
completion and distributional similarity. Section 6
presents a discussion on the overall findings of the
work, and how they fit in the current literature.

2 Background and Related Work

Compositional entailment A niche of work ex-
ists on phrase-level entailment, mostly focusing
on adjective-noun (AN) phrases (e.g., brown dog
entails (=) animal). Baroni et al. (2012) used non-
intensional adjectives solely in the form of AN
= N. Kober et al. (2021) used AN phrases as a
data augmentation technique to improve lexical en-
tailment classification. Recently, Bertolini et al.
(2022) introduced PLANE, a benchmark to train
and evaluate models on phrase-level adjective-noun
entailment, which will be used in this work. All in-
stances of the dataset are built out of true (noun (N),
hypernym (h(N))) pairs, modified by an adjective
(A). Items can take three entailment structures (or
inference types (ITs)): AN = N, AN = h(N), and
AN = Ah(N). Instances are then automatically an-
notated using rules defined by the three classes of
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English adjectives: intersective (I), subsective (S)
and intensional (O). Table 1 summarises PLANE’s
instances, classes, and annotation schema. The
work showed how LLMs struggle to solve PLANE
without supervision, and that the mechanism sup-
porting out-of-distribution generalisation is poorly
linguistically grounded, as it notably depends on
non-linguistic subword tokens.

Inference Type Intersective Subsective Intensional
1 AN =N 4 4 X
2 AN = h(N) 4 4 X
3 AN = Ah(N) v X v

Table 1: PLANE annotation rules. Schema of how the
interaction between each adjective class and inference
type shapes the positive (v') - negative (X) value of a
true noun (N) — hypernym (h(N))) entailment (|=) pair.

Knowledge-graph Embedding (KGE) Models
Multiple ways of encoding hypernymy and other
entailment relationships with different transforma-
tions, including rotation and reflection, have been
investigated (BalaZevi¢ et al., 2019; Chami et al.,
2020). Proposed models learn representations of
entities and representations that encode a mapping
of entities to their hypernyms. For example, we
can learn representations of the entities dog and
animal and the relationship ISA such that when
the ISA transformation is applied to the represen-
tation of dog, we would expect to be close to the
representation of animal. Among all, hierarchical
relationships such as hypernymy were found to be
best modelled by rotations (Chami et al., 2020).

Bertolini et al. (2021) showed that syntax-
sensitive composition of adjective-noun phrases
can be carried out by modelling syntactic relation-
ships with geometric transformations. To form a
phrase’s encoding, such as brown dog, one or more
of the constituent representations (according to the
syntactic relationship between them) is transformed
before combination. The work also tested multi-
ple transformations, including attention, and found
reflection to best model syntax.

Joint-Embedding models (JEM) Our work
bears resemblances with work merging textual and
KG data (Alsuhaibani et al., 2018; Roy and Pan,
2020; Wang et al., 2020). A more detailed survey of
recent work in this area is provided in Roy and Pan
(2020). Here, we note that Toutanova et al. (2015)
add specific syntactic-triplets extracted from text,
like (Obama, nsub j, President) to the original



KG. These injected triplets are hence used only as
a form of data augmentation. Alsuhaibani et al.
(2018) expand G1loVe’s (Pennington et al., 2014)
loss to incorporate knowledge from a KG, creating
a new joint objective function. In contrast to our
work, the scope was to use KG data to enhance
distributional embeddings. Wang et al. (2020) pro-
pose a robust attention-based model that incorpo-
rates textual and KG information in parallel, using
one encoder for each source. A mutual attention
component is then used to combine the outputs of
the two encoders. In this case, similarly to our ex-
perimental setting, the scope was to improve the
performance from the KGE perspective. Shwartz
et al. (2016) propose to augment a hypernym classi-
fication model using a PathLSMT, based on syntac-
tic relations. Vashishth et al. (2019) incorporated
syntactic and semantic graphs using a large graph
convolutional network. However, the two modali-
ties were never mixed within the same architecture,
since joint models produced poor results.

3 Methodology

3.1 Multi-Graph (MuG) Models

Most mixed-sourced approaches use different ar-
chitectures or objectives to model each source of
data. Here, we propose to use the same model to en-
code two types of graphs, syntactic and knowledge-
based. Specifically, we propose the Multi-Graph
(MuG) Model which will be used to simultaneously
encode entailment relationships from knowledge-
graphs and distributional relationships from syntac-
tic corpus data. While previous work has shown
that these relationship types can be encoded inde-
pendently in models based on geometric transfor-
mations (Chami et al., 2020; Bertolini et al., 2021)
we propose a training method which will allow a
single model to encode both types of relationship
and thus use each to generalise the other. For exam-
ple, if a model knows that vehicle is a hypernym of
car, can it learn from the syntactic relationships in
parsed corpus data, what predictions to make about
the hypernyms of red car, small car and fake car?

To investigate which architecture is better suited
to learn a MuG model, we study the three KGE
architectures introduced by Chami et al. (2020),
namely RotE (rotation), RefE (reflections) and
AttE (which uses attention to combine rotations
and reflections). Since rotation was found to best
encode KG relations (Chami et al., 2020), and re-
flection to better model syntax (Bertolini et al.,
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2021), we expect that an AttE combining both rota-
tion and reflection will be the best architecture for
a MuG model.

3.2 Training Methods

To train Multi-Graph models (MuGs), we propose
two training methods, static and altern, us-
ing the same architecture and weights, yet sepa-
rately considering the two data sources in the train-
ing phase.

static Straightforwardly, static trains a
MuG model by feeding it first one complete data
source and then the other. Specifically, a selected
model is first trained with syntactic graphs and then
with the knowledge-graph.

altern The altern method takes a dynamic
approach to the training. Training is alternated
at regular intervals between the two different data
sources. This adds an extra hyperparameter to the
model, every, which we have kept stable at 5 sam-
ples, that dictates the frequency with which the two
training data sources alternate. All other model
hyperparameters (e.g., total epochs) are kept sta-
ble and equally distributed across the data sources.
Note that static could be considered as an ex-
treme version of altern where every is set to the
size of the first training data source multiplied by
the number of epochs.

3.3 Predicting compositional entailment

Compositional entailment is framed as a binary
classification task where models have to label
(c1, ¢2) tuples such as (red car, vehicle). To score
these tuples we propose to make use of each archi-
tecture’s scoring s(head, relation, tail) and sig-
moid (o(-)) functions. The proposed classification
function is presented in Equation 1:

1
0

Clersr, ca) = { ifo(s(ci,r ) >=0.5
else

(1)
s(h,r,t) is the model-specific scoring function (see
Chami et al. (2020); Bertolini et al. (2021)). r
is always considered to be the hyponym relation.
Given the nature of the task, one or both of each
(c1, c2) tuple components can contain a phrase. To
generate these, we use the composition strategies
from Bertolini et al. (2021) (adopting average in-
stead of simple sum):

add simple addition: constructed by averaging the
base representations of the constituent words



Rh Root-as-head: the syntactic root of the phrase
is seen as the head of the dependency triple
(e.g., <dog,amod,brown>) and is modified
by the geometric transformation in the com-
position process

Rt Root-as-tail: the syntactic root of the phrase is
seen as the tail of the dependency triple (e.g.,
<brown,amod,dog>) and is not modified by
the geometric transformation in the composi-
tion process

BiD Bi-directional: constructed by adding the rep-
resentations obtained using Rh and Rt

3.4 Syntax Modelling

In contrast to Bertolini et al. (2021), we consider
the composition strategy as another interchange-
able aspect of a MuG model. The decision traces
back to the difference between the two forms of the
compositionality principle (Partee et al., 1995). If
syntax is indeed a crucial feature of compositional-
ity, then a model with a syntax-aware composition
will yield better results. Otherwise, no differences
should be observed.

4 Experimental Setup

Our investigation focuses on two main questions.
First, can MuGs in fact manipulate both composi-
tion and inference? To test this, we will compare
MuG and KGE models on a compositional entail-
ment task. Second, what ability, if any, will be
penalised or completely sacrificed, in order for a
model to tackle compositional entailment? To an-
swer this question, MuGs will be compared to KGE
on a standard graph completion task, and to distri-
butional models trained on syntactic graphs (SyGs)
on multiple similarity benchmarks.

4.1 Tasks and Benchmarks

PLANE To test MuG and KGE on compositional
entailment, we sample five validation and test splits
from the portion of PLANE (Bertolini et al., 2022)
that contains items also included in WN18RR (Bor-
desetal., 2013) and text 8, available here!. Since
preliminary experiments showed all models heuris-
tically assigned a positive label to items with in-
ference type 3 (e.g. red car |= red vehicle), we
only sampled items with inference types 1 (AN =
N) and 2 (AN = h(N)). In each split, the ratio of

'https://github.com/lorenzoscottb/
IWCS_2023
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positive and negative items is kept balanced, and so
is each (noun, hypernym) tuple for every adjective.

KG and Similarity Judgements To compare
MuG and KGE models on the uni-gram level, we
adopt a standard filtered graph completion task
(Chami et al., 2020). The performance of SyG
and MuG models is compared using the same
benchmarks from Bertolini et al. (2021). These
include four lexical similarity tasks (Simlex (Hill
etal.,2015), MEN (Bruni et al., 2014), WS353-sim,
WS353-rel (Agirre et al., 2009)), and a composi-
tional one (ML10) (Mitchell and Lapata, 2010), fur-
ther divided into three syntactic classes (Adjective-
Nouns, Verb-Objects, Noun-Nouns).

4.2 Implementation

We adopt the source code from Chami et al. (2020)
to train each model. Using the hyperparame-
ters from Chami et al. (2020) and Bertolini et al.
(2021), we trained a set of three architectures:
AttE, RefE, RotE. As training data for each MuG
model, we follow Bertolini et al. (2021) and adopt
a sense-stripped version of WN18RR as KG, and
a parsed version of text8 as syntactic graph.
We use PLANE validation splits to tune hyperpa-
rameters for each combination of training method
(KGE, MuG-altern, MuG-static), architec-
ture (AttE, RefE and RotE), and composition strat-
egy (add, Rh, Rt, BiD). Best hyperparameters are
presented in Appendix A. Experiments are run on
an NVIDIA GeForce RTX 3090 GPU.

5 Results

5.1 Compositional entailment

Table 2 reports average accuracies (+ standard er-
ror) obtained by different models on the five test
sets generated from PLANE. The close-to-random
performance (50%) observed for KGE models —
trained solely with the knowledge-graph — is to
be expected, since the overlap between training
data and PLANE is fairly scarce, especially with
respect to adjectives. Furthermore, Bertolini et al.
(2021) already showed how KGE models perform
poorly on compositional benchmarks, especially
with respect to adjective-noun phrases.

Overall, MuG models perform only marginally
better than KGEs. The best-performing model is
based on the attention architecture, trained with the
altern method and makes use of a syntax-aware
composition strategy (Rh). These results are in
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Figure 1: Models analysis. Break-down of the different AttE-altern models performance (mean accuracy +
standard error from different test splits), divided by adjective class (hue), composition strategy (columns) and

inference type (IT, x-axis).

Method Model Composition Accuracy
AttE add 498 +0.2

KGE RefE add 51.1+0.2
RotE add 509 +0.2

add 53.9+04

Rh 56.2 +0.5

ARE e 50.7+0.1

BiD 49.1+0.2

add 51.3+0.5

Rh 51.6+04

MuG-altern RefE Rt 501400
BiD 451+04

add 51.1+0.3

Rh 51.7+04

ROE gt 50.2 % 0.0

BiD 452 +0.7

add 51.9+04

Rh 53.3+0.3

AtE o 5154023

BiD 47.1+03

add 53.3+0.3

. Rh 53.4+0.2
MuG-static RefE Rt 509+ 0.1
BiD 477+04

add 53.6+0.3

Rh 542 +0.2

RotE gt 50.7 0.1

BiD 474 +04

Table 2: Compositional entailment results. Accuracy
scores (mean % standard error) obtained by different
combinations of training methods, architectures and
composition strategies on different test—splits, generated
from PLANE.

line with the two main hypotheses, suggesting that
attention would better handle the two sources of
data and that explicitly modelling syntax leads to
more reliable compositional representations. In-
terestingly, the very same syntax-aware strategy
(Rh) is also used by RotE-static, which seems
to be the second-best performing model. However,
aside from AttE-altern-Rh (and RotE-static-
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Rh) MuG models seem to generally struggle to
correctly classify an item for compositional entail-
ment. Hence, we now propose an in-depth analysis
of what seems to be the best MuG model, compar-
ing its behaviour to other AttE-altern models
(i.e., tuned with different composition strategies),
to better understand its prediction processes.

Model analysis Figure 1 breaks down the perfor-
mance of AttE-altern models by composition
strategies (columns), adjective class (hue) and in-
ference type (x-axis). Overall, the figure shows
that aside AttE-altern-Rh, models present a
strongly heuristical behaviour, as suggested by the
widespread lack of per-split variance (error bars).
More specifically, add and Rt models produce al-
most exclusively positive predictions, as suggested
by the very high performance with intersective (I)
and subsective (S) adjectives. AttE-altern-BiD
predictions seem to be slightly affected by the infer-
ence types (IT), fluctuating between random (under
IT 1), and only-negative predictions (under IT 2).
On the contrary, AttE-altern-Rh’s results appear
notably more complex, and suggest a strong inter-
action between inference type and adjective class,
at least with respect to subsective and intensional
adjectives. Recall that, since we have focused on
IT 1 (AN = N) and 2 (AN = h(N)), intersective (I)
and subsective (S) adjectives always have a positive
label, while intensionals (O) are always associated
with a negative label. As shown, when dealing with
intersective (I) adjectives, the model is minimally
impacted by the I'T. The performance remains well
above chance with items like red car |= car (IT 1)
and a red car |= vehicle (IT 2).

On the other hand, the performance is signifi-
cantly shaped by the inference type when instances
contain subsective (S) or intensional (O) adjectives.
More specifically, the performance of intensional
(O) adjectives, always associated with negative la-
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Figure 2: Distribution of the predicted scores of AttE-altern-Rh, divided by adjective class (columns), inference
type (x-axis), and labels (hue). Dashed lines indicate the decision threshold, as in Equation 1.

bels, jumps from random to 60% moving from IT 1
to IT 2. In other words, the model better identifies
scenarios like fake car [~ vehicle than fake car =
car. The opposite happens for subsective (S) items.
The model is better at classifying instances like big
car |= car than big car |= vehicle. The fact that
intersective (I) and intensional (O) adjectives pro-
duce virtually identical results on IT 2 instances,
despite carrying opposite labels, while subsective’s
(S) performance drops to chance (although having
the same label as intersective’s adjectives) suggests
two conclusions. First, the model’s behaviour is
not random or heuristical. Second, in contrast with
previous evidence (Boleda et al., 2013), the theoret-
ical distinction between adjective classes is likely
reflected in the model’s representations.

To understand if similar results derive from sim-
ilar behaviours, Figure 2 summarises the model’s
prediction distribution after applying the sigmoid
function in Equation 1. The plots of Figure 2 show
two distinct patterns. Considering inference type
1 (i.e., AN = N), a large number of scores are to-
wards the boundaries of the interval, generating
peaky distributions. Distributions become increas-
ingly bimodal moving through the three adjective
classes (I, S and O). This suggests the model is of-
ten reasonably confident about the decision being
made. On the other hand, the predictions under
IT 2 (i.e., AN = h(N)) generate notably flatter
distributions. Intersective (I) and intensional (O)
adjectives do maintain a peak towards one of the
boundaries, but the model is much less confident
about decisions on IT 2 for all adjective classes.

We will now investigate if MuG models in gen-
eral (i.e., not just AttE-altern-Rh) remain com-
petitive with their KGE and SyG counterparts, start-
ing with graph completion (Section 5.2), followed
by distributional similarity benchmarks (Sections
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5.3 and 5.4).

5.2 Graph completion

Figure 3 compares the performance of KGE and
MuG models on the graph completion task. Er-
ror bars report the standard error obtained from
collapsing MuG models tuned on different com-
position strategies. Overall, KGEs always outper-
form MuG models, while MuGs trained with the
static method appear to notably outperform the
ones trained with the altern method. This sug-
gests that the recency of the KG training (i.e., the
static method) is indeed influential in obtaining
good results in the graph completion task. Figure
6 further breaks down the results, and compares
the performance of MuGs against the amount of
negative samples used in training. For comparison
with the main results (Figure 3), a dashed grey line
reports the best score obtained by a KGE model.

0.5
==

0.4 I
§O.3 — - ModAviLE
=

0.2 RefE

mEmm RotE
0.1
0.0
KGE MuG-altern MuG-Static
Method

Figure 3: Mean reciprocal rank (MRR) scores of KGE
and MuG models on the graph completion task. Error
bars report standard error, obtained collapsing models
trained with different composition strategies.

The figure shows how the optimal performance
of the two training methods is reached at very dif-
ferent amounts of negative samples. Mug-static
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Figure 5: Lexical similarity with respect to the negative samples used during training. For comparison with Figure
4, a dashed black line outlines best results obtained by a SyG model.
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Figure 6: Graph completion analysis with respect to
negative samples used during training.

models require few negative samples and are nega-
tively affected by increasing amounts. On the other
hand, the performance of models trained with the
altern method increases with the number of neg-
ative samples used for training. However, other
than a seemingly spurious peak at 20 negative sam-
ples, the performance obtained by altern models
remains far from competitive. In line with results
from Chami et al. (2020), RotE and RefE outper-
form AttE with the static method. Lastly, we
note that the best AttE model from Table 1 is not
the outlier observed in Figure 6.

5.3 Lexical similarity

We now consider whether MuGs remain competi-
tive with SyGs (i.e., distributional models trained
with syntactic graphs). Spearman’s p is used to
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measure the correlation between model’s predic-
tions and human judgements on similairty bench-
marks. The first comparison is presented in Fig-
ure 4. Results are divided with respect to training
methods (x-axis) and trained models (hue). Error
bars reflect the standard error produced by MuG
models tuned with different composition strategies.
Overall, MuGs tend to outperform SyGs, especially
MuG-static, suggesting that KG data helps with
lexical similarity tasks. A notable exception is
WS353-rel, which uses relatedness (e.g., journey
is related to car) rather than similarity. The KG
training data is taken from WordNet, thus includ-
ing many examples of hypernym/hyponym pairs
which one might expect to help more with similar-
ity. However, Bertolini et al. (2021) found a gener-
ally poor performance of KGE models on lexical
similarity tasks. Altogether, these results suggest
that, even in the static training, the KG data
and distributional information were successfully
merged, leading to a performance which cannot be
achieved by one of the data sources on their own.

Similarly to Section 5.2, Figure 5 shows how
the number of negative samples impacts the per-
formance. In this case, both training methods
are positively impacted by higher negative sam-
ples, although the effect remains more marked for
altern models. WS353-rel aside, stat ic mod-
els appear to consistently outperform SyGs and
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with Figure 7, a dashed black line outlines best results obtained by a SyG model.

seem notably more robust, while altern models
require a high number of negative samples.

5.4 Compositional similarity

A similar analysis is proposed for compositional
similarity. Figure 7 summarises the results of best-
performing models on PLANE against SyG models
on the ML10 datasets. Results are split between the
adjective-noun (AN), verb-object (VO), and noun-
noun (NN) subsets. In this case, the focus is on
training methods (x-axis) and composition strategy
(hue). Compared to lexical similarity results, MuG
models don’t seem to outperform SyG models, but
they remain a competitive alternative. Contrary to
the previous results, the best performance with re-
spect to MuG models is achieved via the altern
training method. With respect to composition strat-
egy, results seem to support Bertolini et al. (2021)
findings: add and BiD are the best and most stable
composition strategies, with BiD outperforming
add. It is interesting to note that ML10 is based
on bi-gram instances (e.g., how similar hot tea is
to cold water), which is comparable to PLANE
instance having inference type 3 (e.g., hot tea |=
hot liquid), that no model could solve in the compo-
sitional entailment task (see Section 4.1). The fact
that MuG-altern models remain competitive to
SyGs on ML10 suggests that their issue under IT

57

3 is more related to the manipulation of the hyper-
nym relation, rather than a systematic problem of
each model.

Figure 8 presents a last negative samples analy-
sis. For comparison, a dotted line signals the best
SyGs’ results. As for lexical similarity, results in-
dicate once more that performance improves with
the negative samples’ rate. Note that, contrary to
the results on compositional entailment, Rh’s per-
formance is fairly poor across the board.

6 Discussion

Our work introduced MuGs, a set of embedding
models learnt from multiple graph-based sources.
Under specific and predicted conditions (i.e., using
an attention-based model and syntax-aware com-
position), MuGs can be shown to simultaneously
tackle compositionality and inference with some
success. Experiments revealed that MuGs tuned
for compositional entailment are competitive dis-
tributional models, with respect to both lexical and
compositional similarity, yet struggle with graph
completion. Our analysis suggests that a consid-
erable part of the trade-off can be explained by
the negative samples rate used for training. The
best MuG model at compositional entailment, AttE-
altern-Rh, was tuned on validation data to 35
negative samples. As summarised by the analy-



sis in Figures 6, 5, and 8, whilst similarity tasks,
especially compositional ones, also benefit from
high negative samples rate, graph completion tends
to require low negative samples (and the static
training method) to achieve the best performance.

Of note, the compositional entailment experi-
ment presented in this work can also be interpreted
with respect to knowledge-graphs. Despite a differ-
ent evaluation method (accuracy instead of rank),
the proposed task is a type of graph completion.
The evaluation is still binary and requires the ma-
nipulation of hierarchical structures through the hy-
pernym relation. Hence, MuGs can be interpreted
as compositional KGE models.

Indeed, an LLM like BERT can achieve better
results on compositional entailment as defined by
PLANE. However, it can only do so with direct
supervision, and relying on an effective yet not
theoretically-sound mechanism (Bertolini et al.,
2022). Since MuG are trained only with uni-grams,
our approach to phrase-level inference (i.e., com-
positional entailment) is fully unsupervised, re-
quires significantly less training data, and has a
deeper connection with the principle of composi-
tionality (Partee et al., 1995). On each composi-
tional task, linguistically-sound word encodings
composed with a syntax-aware non-linear compo-
sition strategy yielded the best performance. More-
over, when a model does not present a strongly
heuristical behaviour, we found that the three ad-
jective classes pose as many different challenges to
the models, similarly to what already observed in
Bertolini et al. (2022).

7 Conclusions and Future Work

In this work, we introduced Multi-Graph embed-
ding models (MuGs), a set of models trained on
syntactic and knowledge-graphs. Under specific
conditions, MuGs can partially tackle composi-
tional entailment, making use of syntax-aware com-
position, based on attention. We provided evidence
that MuGs are competitive with distributional coun-
terparts on lexical and compositional similarity
benchmarks. Our analysis suggested that compo-
sitionality is supported by a higher number of neg-
ative samples, and connected this evidence to the
low performance of MuGs on graph completion.
Future work will have to primarily focus on devel-
oping a training strategy to overcome the negative
samples issue, able to obtain a better integration
of the two sources of data and produce a more sta-
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ble performance across tasks. Lastly, MuG models
will have to be tested on other types of composi-
tional entailment (e.g., noun-noun or verb-object
phrases), as well as full sentences.
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A Hyperparameters

Method  Architecture Composition Negative Samples

KGE RefE add 10

KGE RotE add 10

KGE AttE add 10
static RefE add 20
static RefE Rh 20
static RefE Rt 40
static RefE BiD 35
static RotE add 40
static RotE Rh 40
static RotE Rt 35
static RotE BiD 20
static AttE add 30
static AtE Rh 30
static AtE Rt 40
static AtE BiD 10
altern RefE add 40
altern RefE Rh 40
altern RefE Rt 35
altern RefE BiD 40
altern RotE add 40
altern RotE Rh 40
altern RotE Rt 35
altern RotE BiD 15
altern AtE add 40
altern AtE Rh 35
altern AtE Rt 40
altern AtE BiD 35

Table 3: Final hyperparameters for each model.



