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Introduction

Publication of negative results is difficult in most fields, and the current focus on benchmark-driven per-
formance improvement exacerbates this situation and implicitly discourages hypothesis-driven research.
As a result, the development of NLP models often devolves into a product of tinkering and tweaking,
rather than science. Furthermore, it increases the time, effort, and carbon emissions spent on developing
and tuning models, as the researchers have little opportunity to learn from what has already been tried
and failed.
Historically, this tendency is hard to combat. ACL 2010 invited negative results as a special type of
research paper submissions1, but received too few submissions and did not continue with it. The Journal
for Interesting Negative Results in NLP and ML2 has only produced one issue in 2008.
However, the tide may be turning. The fourth iteration of the Workshop on Insights from Negative Results
attracted 25 submissions and 10 from EACL 2023 Findings.
The workshop maintained roughly the same focus, welcoming many kinds of negative results with the
hope that they could yield useful insights and provide a much-needed reality check on the successes of
deep learning models in NLP. In particular, we solicited the following types of contributions:

• broadly applicable recommendations for training/fine-tuning, especially if X that didn’t work is
something that many practitioners would think reasonable to try, and if the demonstration of X’s
failure is accompanied by some explanation/hypothesis;

• ablation studies of components in previously proposed models, showing that their contributions
are different from what was initially reported;

• datasets or probing tasks showing that previous approaches do not generalize to other domains or
language phenomena;

• trivial baselines that work suspiciously well for a given task/dataset;

• cross-lingual studies showing that a technique X is only successful for a certain language or lan-
guage family;

• experiments on (in)stability of the previously published results due to hardware, random initializa-
tions, preprocessing pipeline components, etc;

• theoretical arguments and/or proofs for why X should not be expected to work;

• demonstration of issues with data processing/collection/annotation pipelines, especially if they are
widely used;

• demonstration of issues with evaluation metrics (e.g. accuracy, F1 or BLEU), which prevent their
usage for fair comparison of methods.

In terms of topics/themes, 6 papers from our accepted proceedings discussed “Representation Learning
/ Pre-training”; 1 discussed “Entity Detection/Resolution”; 1 paper examined text classification; 1 dealt
with issues of robustness, generalizability, error analysis; 2 on the topic of “text comprehension / VQA”;
2 papers focused on text generation such as summarization, machine translation; 1 on replication of
human evaluations in NLP. Some submissions fit in more than one category.
We accepted 14 short papers (56.0% acceptance rate) and 10 papers from EACL 2023 Findings.
We hope the workshop will continue to contribute to the many reality-check discussions on progress in
NLP. If we do not talk about things that do not work, it is harder to see what the biggest problems are and
where the community effort is the most needed.

1https://mirror.aclweb.org/acl2010/papers.html
2http://jinr.site.uottawa.ca/
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ix



Keynote Talk: Three lessons from negative results in NLP
research

Rachel Rudinger
University of Maryland, USA

Bio: Rachel is an assistant professor at university of Maryland. Her research is focused on problems in
natural language understanding, including knowledge acquisition, commonsense reasoning, an semantic
representation.

x



Table of Contents

Missing Information, Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing the
Reproducibility of Previous Human Evaluations in NLP

Anya Belz, Craig Thomson, Ehud Reiter, Gavin Abercrombie, Jose Alonso-Moral, Mohammad
Arvan, Anouck Braggaar, Mark Cieliebak, Elizabeth Clark, Kees Deemter, Tanvi Dinkar, Ondrej Dušek,
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Abstract

We report our efforts in identifying a set of pre-
vious human evaluations in NLP that would
be suitable for a coordinated study examin-
ing what makes human evaluations in NLP
more/less reproducible. We present our results
and findings, which include that just 13% of
papers had (i) sufficiently low barriers to re-
production, and (ii) enough obtainable infor-
mation, to be considered for reproduction, and
that all but one of the experiments we selected
for reproduction was discovered to have flaws
that made the meaningfulness of conducting
a reproduction questionable. As a result, we
had to change our coordinated study design
from a reproduce approach to a standardise-
then-reproduce-twice approach. Our overall
(negative) finding that the great majority of
human evaluations in NLP is not repeatable
and/or not reproducible and/or too flawed to
justify reproduction, paints a dire picture, but
presents an opportunity for a rethink about how
to design and report human evaluations in NLP.

1 Introduction

There is increasing awareness in Natural Language
Processing (NLP) that reproducibility of results,
most particularly of results from system evalua-
tions, matters greatly, and that currently the field

does not assess reproducibility of results rigorously
enough, and lacks a common approach to it. Recent
work has made progress particularly with respect
to automatic evaluation (Pineau, 2020; Whitaker,
2017), but reproducibility of human evaluation,
widely considered the litmus test of quality in NLP,
has received less attention. It could be argued that
if it is not known how reproducible human evalu-
ations are, it is not known how reliable they are;
and if it is not known how reliable they are, then
it is not known how reliable automatic evaluations
meta-evaluated against them are either.

The work reported in this paper forms part of the
ReproHum project1 in which our aim is to build
on existing work on recording properties of human
evaluations datasheet-style (Shimorina and Belz,
2022), and assessing how close results from a re-
production study are to the original study (Belz
et al., 2022), to investigate systematically what
factors make a human evaluation more—or less—
reproducible. In this paper, we present the findings
from our work on the project so far which necessi-
tated a rethink of our entire approach to designing
such an investigation.

Section 2 outlines our motivation for carrying

1https://gow.epsrc.ukri.org/
NGBOViewGrant.aspx?GrantRef=EP/V05645X/1
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out a multi-lab multi-test (MLMT) study of factors
affecting reproduciblity in NLP, and our original
design for the study. Section 3 describes our paper
selection, annotation and filtering process which
yielded a surprisingly small number of candidate
papers for reproduction. In Section 4 we describe
the numerous further issues with original evalua-
tion studies we encountered in the process of set-
ting up reproductions of them with partner labs.
Section 6 summarises our negative findings regard-
ing the infeasibilty of assessing the reproducibility
of previously conducted human evaluations in NLP
as they are, and outlines the changes to our multi-
lab multi-test study necessitated by the findings.

2 Motivation and Overall Study Design

Individual studies can tell us how close a repro-
duction study’s results are to those in the original
study. A large number of such studies can show
general tendencies regarding what kinds of evalua-
tions have better reproducibility. However, we do
not currently have a large number of reproduction
studies in NLP and because of their cost and lack
of appeal, this is unlikely to change. Moreover,
accumulations of individual studies do not provide
the conditions in which the effect size and signif-
icance of specific factors on reproducibility, and
interactions between them, can be measured.

To create such conditions, a controlled study of
equal numbers of reproductions with and without
factors of interest is needed. Moreover, we know
from existing work (Belz et al., 2022; Huidrom
et al., 2022) that different reproductions of the same
original work can produce very different results. Fi-
nally, while it is instructive to test for reproducibil-
ity under identical conditions, it is also of interest
to test how far good reproducibility can stretch –
e.g. is reproducibility affected by replacing, say, a
7-point quality scale with a 5-point one.

A study of factors that increase/decrease repro-
ducibility therefore needs to (i) conduct more than
one reproduction of each original study, (ii) carried
out by a good mix of different teams, and to (iii)
incorporate multiple rounds with decreasing simi-
larity of conditions. The steps in setting up such a
study would be as follows:

1. Identifying candidate evaluation experiments
from which to select experiments with bal-
anced factors to include in the MLMT study;

2. Recording properties of evaluation experi-
ments to make it possible to select factors and

ACL & TACL Papers (p)
identified through

ACL Anthology search
(p=177)

Papers after manually
checked for suitability.

(p=116)
Papers excluded (p=61)

Papers where
corresponding author

responded (p=45)
No response (p=71)

Papers where author
indicated that details

could be provided (p=20)

Author could not send
outputs/interface (p=16)

Correspondence stalled
(p=8)

Papers excluded (p=1)

Papers split into
individual experiments (e)

(e=28, from p=20)

Experiments successfully
annotated for all factors
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Figure 1: Flow diagram of the paper selection process,
showing the decreasing number of papers that were
suitable as more information was sought.

control for them;

3. Selecting factors to control for and corre-
sponding subsets of experiments; and

4. Carrying out reproductions for the selected
evaluation studies and factors.

We describe Steps 1 and 2 in Sections 3.1 and 3.2,
Step 3 in 3.3, and Step 4 up to the point where we
aborted the original study design in Section 4.

3 Selection and Assessment of Candidate
Evaluation Experiments

Figure 1 shows the selection and annotation pro-
cess in the form of a flow diagram showing the de-
creasing number of remaining papers/experiments.
The first step was to conduct a search on the ACL
Anthology for papers published in ACL (main con-
ference) or TACL in the 2018–2022 period2 which
included the phrases “human evaluation” and “par-
ticipants;” we found 177 such papers.

3.1 High-level paper annotation
In a first round of annotating papers with properties
of human evaluations, we used the following paper-
level properties, annotated using only information
from the paper or supplementary material:

2Search performed in July 2022, so some TACL papers
from later that year are not included.
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1. How many systems were evaluated;

2. How many datasets were used;

3. Type of participant (e.g. MTurk);

4. How many unique participants;

5. Rough estimate of how many judgments;

6. Type of NLP task implemented by the sys-
tem(s) evaluated (e.g. summarisation);

7. Input/output language(s) used (e.g. English).

During this first annotation, we manually filtered
out papers only discussing human evaluation rather
than including one (e.g., surveys of human evalu-
ation), longitudinal studies, any that used highly
specialised participants such as medical doctors,
and any that we roughly estimated to be too expen-
sive for us to repeat (threshold $2,000 in evaluator
payments). This left 116 papers. For these papers,
Table 3 in the appendix shows the counts3 of the
most common values for each property annotated.
English was dominant as system language, used in
over 90% of papers. The second most common lan-
guage was Chinese, which was used in just under
10% of experiments. Language generation tasks
were most common, with summarisation the most
frequent task, followed by dialogue and MT.

About a third of papers did not specify type of
participant. Among papers that did specify this,
60% used crowd-sourcing, with the vast majority
of these being run on Mechanical Turk. It was
generally difficult to find information about par-
ticipants, with about half of papers not reporting
the total number of participants. Very few papers
included a clear description of the relationship be-
tween systems, data sets, items, and participants;
number of judgments is therefore an estimate.

It became clear during high-level annotation that
fewer than 5% of the 116 papers remaining after
filtering were repeatable from publicly available in-
formation alone. Fundamental details like number
and type of evaluators, instructions and training,
and data evaluated are often omitted. Our next step
was therefore to contact authors in the hope of ob-
taining the missing information. Lack of informa-
tion about human evaluations has been commented
on a number of times recently (van der Lee et al.,
2019; Howcroft et al., 2020; Belz et al., 2020).

3Because some papers include multiple properties, for
example, multiple languages in machine translation systems,
some rows will not sum to 116.

Training or expertise neither only one both
11 13 4

Number of participants small not small
14 14

Complexity low medium high
9 11 8

Table 1: Frequency of control-factor annotations.

3.2 More detailed annotation of experiments

In the next stage we carried out detailed annotation
of evaluation properties preparatory to selecting a
subset of such properties to control in our multi-lab
multi-test study. We emailed the corresponding au-
thor (defaulting to first author) for each of the 116
papers to ask if they would support reproduction
studies and, if they could provide more detailed
information about their experiments.

The requested information included the user in-
terface from the evaluation and the set of outputs
shown to the evaluators (complete list see Ap-
pendix A.2). We received replies for just 39% of
papers, even after sending reminders. Many of
those who did reply were unable to provide the in-
formation needed. In the end, only 20 authors (20
papers containing 28 experiments) gave us enough
information to progress the paper to the detailed
annotation stage.4 The most common reason for
authors responding but being unable to provide in-
formation was that they had moved on from their
(usually graduate student) position and files had not
been kept. In some cases, authors from commer-
cial research groups who were unable to provide
information for business reasons. There were also
eight papers where the authors responded initially,
but the correspondence stalled.

Using the author-provided information together
with paper, supplementary material and online re-
sources, we annotated the 20 papers that progressed
to this stage for the detailed properties of evalua-
tions shown in Section A.4, annotated at the level of
individual experiments (28), because at this more
fine-grained annotation level, properties can differ
between different experiments in the same paper.

One of the first three authors of the present pa-
per annotated the 28 experiments with the detailed
properties; the other two each checked half of the
annotations. Any differences were discussed and

4One further author did provide sufficient information, but
upon further analysis of the paper and the resources they sent,
we decided that the evaluation experiment reported in it was
too different from the other 20 papers; the systems detected
change in language use over time.

3



resolved. To complete these annotations, we had
to ask authors additional questions (usually in mul-
tiple rounds of questions and responses) for all
experiments except two. In the end, for 8 of the 28
experiments we did not succeed in obtaining all the
information needed for the above properties.

Note that the last two properties in Section A.4
(evaluation task complexity, interface complexity)
have a different status from the others, in that they
are secondary properties, subjectively assessed dur-
ing annotation, rather than deriving from author-
provided information. We found we tended to ei-
ther agree on what their value should be, and when
there was disagreement, values were adjacent. We
used discussion rather than attempting to formalise
rules to resolve disagreement, as it would seem an
impossible task to exhaustively capture the latter.

Table 1, and Table 4 in the Appendix, show the
frequency of the most common property values
across the 28 experiments (here including unclear
values). We found that most of the annotated prop-
erties have one or two values that are the most
frequent by large margins. For example, assess-
ments were intrinsic in 26 out of 28 experiments,
subjective in 26 out of 28, and absolute in 20 out
of 28. Only two experiments were extrinsic and
objective evaluations, the other 26 were intrinsic
and subjective. There was large variation in the
number of participants, with a low of 2 and a high
of 233. None of the experiments provided explicit
training sessions for participants, and only one in-
cluded a practice session. About three quarters
of experiments provided instructions and/or crite-
rion definitions.5 Around half of the experiments
used subjects with specialist expertise, which was
usually linguistics or NLP.

3.3 Choosing properties to control for

The issues discussed in previous sections posed se-
rious problems for selecting papers for a controlled
study: we had only 20 fully annotated experiments;
and we were left with very skewed distributions
for many of the properties we had annotated, with
many property combinations not occurring at all, or
only occurring in one or two cases. Given the above
issues it was clear that we were only going to be
able to select a small set of properties to control for.
We therefore whittled down the set of properties
we had annotated to three that were both feasible

5We cannot be precise because this information was in
some cases not provided even after we interacted with authors.

and had a reasonable likelihood, based on exist-
ing work, of affecting reproducibility. For these,
we created between two and three bins from the
original value ranges, as follows:

1. Number of evaluators (small, not small): Ex-
periments with 1–5 evaluators were assigned
the small value, those with more than 5 evalu-
ators the not small value.

2. Cognitive complexity of assessment per-
formed by evaluators (low, medium, high):
Experiments were assigned to one of the three
possible values on the basis of the task com-
plexity and interface complexity properties
listed in Section A.4.

3. Training and/or expertise of evaluators (both,
one, neither): Experiments that had both
trained, and required specific expertise from,
evaluators were assigned both; those that ei-
ther trained evaluators or required expertise
(but not both) were assigned one; the remain-
der were assigned neither.

Even for this much reduced set of control factors,
we did not have enough experiments to cover all
2×3×3 combinations of values, so we settled for
a final set of 6 experiments, where there was an
equal quantity of the pairwise combinations of the
Number of evaluators and Training/expertise prop-
erties, as well as equal pairwise combinations of the
Number of evaluators and Complexity properties.

4 Setting up Reproductions

Beginning the process of reproduction of the six
experiments finally selected for reproduction (for
common agreed approach to reproduction see Ap-
pendix A.5) necessarily involved delving into full
implementational details for each of them. One par-
ticularly troubling finding has been the number of
experimental flaws, errors and bugs we unearthed
in the process. The more we dug into the properties
of evaluation experiments that we needed in order
to repeat an evaluation experiment, the more we
uncovered flaws which made us question whether
it made sense to repeat the experiment at all, in
some cases because any conclusions drawn on the
basis of the flawed experiments would be unsafe.
Six specific issues are listed in Section A.6.6 Note

6Note that we report these in anonymised form, because
of the reputational risks involved. See also the Responsible
Research Checklist included in the appendix.
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Num. Evaluators Cognitive Complexity Training and/or Experise
Task small not small low medium high neither either both
Dialogue 1 0 0 1 0 0 1 0
Generation 6 5 4 5 2 4 5 2
Summarisation 3 1 2 1 1 1 3 0
Other 2 2 1 0 3 2 0 2

Table 2: Counts of control property values per NLP task for the 20 experiments (from 15 papers) where all properties
were clear.

that only one of our six selected experiments had
none of these issues. We are still discovering more.

The structure we designed for our original study
is shown in the Appendix Section A.1, Figure 2.

5 Discussion

The reasons why we decided to abandon our orig-
inal study design were as follows. One, we strug-
gled to find enough papers that did not have (i) pro-
hibitive barriers to reproduction, and/or (ii) unavail-
able information that would be needed for repeating
experiments, and/or (iii) experimental flaws and er-
rors. Two, no matter how much effort we put into
obtaining full experimental details from authors,
there still remained questions, albeit increasingly
fine-grained, that we did not have the answer to,
such as if the presentation order of evaluated items
was randomised, or what instructions/training par-
ticipants were given. In some cases, information
about additional things that had been done, but
could not be guessed from previously provided in-
formation, transpired coincidentally, necessitating
further changes to experimental design.

A potential solution to not having enough pa-
pers at the end is selecting more papers at the start
(more years, more events). However, given the
inordinate amount of work we put into obtaining
enough information from authors, simply tripling
or quadrupling our initial pool of papers was not
a viable solution. Similarly, there was little we
were able to do about the reproduction barriers of
excessive cost and highly specialised evaluators.

On the other hand, accepting to work from less
than complete experimental information would
have been problematic because information for dif-
ferent papers is incomplete in different ways, and
we would not have been comparing like with like.

Correcting flaws and errors would similarly have
introduced differences between original and repro-
duction studies, moreover different ones in differ-
ent cases. In this case we would strictly speaking
no longer have been conducting reproductions.

We considered designing new evaluations from

scratch with the properties we wanted for our
MLMT study. However, it would have been very
difficult to ensure that newly created studies were
somehow representative of the kind of studies that
are actually being conducted in NLP.

We have now opted for a solution incorporat-
ing elements from most of the above, where we
select a somewhat larger set of existing studies in
a process similar to before, reduce the number of
different values of factors we control for, and then
standardise and where necessary correct studies
before reproduction. Reproducibility is then mea-
sured between two new studies, rather than between
them and the original study.

6 Conclusion

The track record of NLP as a field in recording
information about human evaluation experiments
is currently dire (Howcroft et al., 2020). We saw
in the paper-level annotations (Appendix Table 3)
that in 37 out of 116 papers the type of partici-
pant was unclear, in 59 the number of participants
was unclear, and in 15 the number of judgements
was unclear. Even after prolonged exchanges with
authors during the experiment-level detailed an-
notation stage, very fundamental details were in
some cases not obtainable: number of participants,
details of training, instruction and practice items,
whether participants were required to be native
speakers, and even the set of outputs evaluated.

Our overall conclusion is that, on the basis of the
unobtainability of information about experiments,
barriers to reproduction and/or experimental flaws
in our sample of 177 papers, only a small fraction
of previous human evaluations in NLP can be re-
peated under the same conditions, hence that their
reproducibility cannot be tested by repeating them.
The way forward would appear to be to accept the
overhead of detailed recording of experimental de-
tails, e.g. with HEDS (Shimorina and Belz, 2022),
in combination with substantially increased stan-
dardisation in all aspects of experimental design.
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monly used to refer to non-automatic forms of eval-
uation, there is a chance that we may have missed
papers because they used a different term.
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sample of experiments are limited by their sam-
ple size in terms of how representative they are of
current human evaluations in NLP more generally.
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A Appendix

A.1 Original study design

Figure 2 shows the original design of the multi-lab
multi-test study.

A.2 Initial information requested from
authors

Our initial email to authors asked if they would be
able to provide the following information:

1. The system outputs that were shown to partic-
ipants.

2. The interface, form, or document that partici-
pants completed; the exact document or form
that was used would be ideal.

3. Details on the number and type of participants
(students, researchers, Mechanical Turk, etc.)
that took part in the study.

4. The total cost of the original study.

A.3 Counts for high-level annotations

Table 3 shows counts for the first round of annotat-
ing paper-level properties.

A.4 Details of experiment-level annotation

All of the property names and values from our de-
tailed annotations are listed below, along with de-
scriptions of what was recorded for each property:

1. Specific data sets used;

2. Specific evaluation criteria names used; the
criterion names as stated in the paper if possi-
ble, otherwise a criterion name that represents
what is being assessed.

3. System languages; the language(s) used by
the system as either input or output.

4. System task; the NLP task that the system
is tackling. Values from the 28 experiments
were cross-lingual summarisation, data-to-
text generation, definition generation with
controllable complexity, dialogue summari-
sation, dialogue turn generation, explana-
tion generation, fact-check justification gen-
eration, machine translation error prediction,
prompted generation, question generation,
question-answer generation, referring expres-
sion generation, simplification, summarisa-
tion, text to speech.

5. Evaluator type; the type of evaluator, val-
ues included colleagues, commercial in-house
evaluators, crowd-sourced, mix of author and
colleague, mix of colleague and students, pro-
fessional, student.

6. Evaluation modes (Belz et al., 2020):

(a) Intrinsic vs. extrinsic;
(b) Absolute vs. relative;
(c) Objective vs. subjective.

7. Number of participants; the total number of
unique participants that took part in the study,

8. Number of items evaluated; in the case of an
absolute evaluation this is one system output.
In the case of a relative evaluation, it refers
to the set of outputs, e.g., a pair, that is being
compared.

9. How many participants evaluated each item;
for some experiments, this varied.

10. How many items were evaluated by each par-
ticipant; for some experiments, this varied. In
particular, for the 13 of 28 experiments that
were crowd-sourced, 5 were known integers,
4 varied, and 4 could not be determined (we
suspect these also varied).

11. Were training and/or practice sessions pro-
vided for participants; see the discussion be-
low.

12. Were participants given instructions? Were
they given definitions of evaluation criteria;
see the discussion below.

13. Were participants required to have a specific
expertise? If so, what type, and was this self-
reported or externally assessed?; see the dis-
cussion below.

14. Were participants required to be native speak-
ers? If so, was this self-reported or exter-
nally assessed?; For the first part we used the
options yes, no, crowd-source region filters,
and in one case that the experiment was per-
formed with students at a university where
the language was native. The latter two are
inherently self-reported, although with some
limited control by the researchers. Only for
one of the experiments with native speakers
did the researchers indicate that they had con-
firmed this, all others were self-reports.
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Structural design for a multi-lab, multi-test controlled study of experimental factors affecting reproducibility:

Round 1: Testing precision under repeatability conditions of measurement.

• Reproductions per experiment: 2 by two different labs;
• Conditions (experimental factors) to vary: evaluator cohort;
• If reproduction close enough, go to Round 2, else repeat Round 1 with improvements to experimental design, in terms

of increased number of evaluators, and decreased cognitive complexity of evaluation task;
• For Round 1 repeats, if reproducibility is increased between reproduction studies (compared to each other, not the

original study), proceed to Round 2, else stop.

Round 2: Testing reproducibility under varied conditions.

• Reproductions per experiment: 2 by two different labs;
• Conditions (experimental factors) to vary: evaluator cohort, and either number of evaluators or task complexity;
• If reproduction close enough, go to Round 3, else repeat Round 2 with improvements to experimental design, in terms

of increased number of evaluators, and decreased cognitive complexity of evaluation task.
• For Round 2 repeats, if reproducibility is increased between reproduction studies (compared to each other, not the

original study), proceed to Round 3, else stop.

Round 3: Testing reproducibility under increasingly varied conditions.

• Reproductions per experiment: 2 by two different labs;
• Conditions (experimental factors) to vary: evaluator cohort, number of evaluators and complexity.

Figure 2: Original design for the multi-lab, multi-test controlled study with a set of original human evaluation
experiments with balanced experimental factors.

System language(s) English Chinese German other
109 11 9 5

NLP Task summarisation dialogue systems machine translation other
33 22 9 55

Number of systems 1-5 6-7 > 7 unclear
89 14 13 0

Number of datasets 1 2 > 3 unclear
83 25 8 0

Type of participant crowd (e.g., MTurk) author/colleague/student other unclear
47 21 14 37

Number of unique participants < 5 5-20 > 20 unclear
27 19 11 59

Number of judgments < 100 100-1000 > 1000 unclear
1 34 66 15

Table 3: Frequency of the high-level experimental properties in the 116 papers, at the paper level. Some papers have
multiple categorical properties therefore some rows will not sum to 116.

15. How complex was the evaluation task (low,
medium, high); assessment by authors of this
paper.

16. How complex was the interface (low, medium,
high); assessment by authors of this paper.

Classifying the type of participant, training, in-
struction, and expertise was very difficult. Firstly,
not all experiments necessarily require detailed in-
structions but setting a threshold beyond which in-
structions become non-perfunctory is difficult. The
same is true for training. In the end, we decided
to record whether there non-perfunctory training,
instruction, practice, or criterion definition.

Expertise was also difficult to classify. Some
papers would have originally reported ‘expert an-

notators’, but following our queries stated partici-
pants were graduate students or colleagues. Such
participants were often called ‘NLP experts’. In
the end, we considered participants to be expert if
the authors of the original study indicated that they
were.

A.5 Common Approach to Reproduction

In order to ensure comparability between studies,
we agreed the following common-ground approach
to carrying out reproduction studies:

1. Plan for repeating the original experiment
identically, then apply to research ethics com-
mittee for approval.

2. If participants were paid during the original

8



Quality criteria names fluency coherence informativeness other
10 5 3 54

System language(s) English Chinese German other
26 3 2 0

NLP Task summarisation question answering explanation other
6 3 3 16

Type of participant crowd student colleague other
13 8 7 4

intrinsic extrinsicIntrinsic or extrinsic 26 2
absolute relativeAbsolute or relative 20 8
objective subjectiveObjective or subjective 2 26

Num. of unique participants < 5 5–20 > 20 unclear
11 4 8 5

Num. of items evaluated < 200 200–1000 > 1000 unclear
9 10 7 2

Num. of participants per item < 4 4–9 > 9 varies
17 3 3 5

Num. of items per participant < 50 50–200 > 200 varies/unclear
5 5 7 11

no unclearTraining given 24 4
yes no unclearInstructions given 8 15 5

Criterion definitions given yes no n/a unclear/mixed
17 3 4 4

yes no unclearPractice session held 1 23 4

Participant expertise type none researcher linguist domain
16 9 2 1

Participants native speakers yes no of region unknown
2 12 10 4

Table 4: Frequency of detailed experimental properties in set of 28 experiments.

experiment, determine pay in accordance with
the common procedure for calculating fair pay
(see appendix).

3. Complete HEDS datasheet.

4. Identify the following types of results reported
in the original paper for the experiment:

(a) Type I results: single numerical scores,
e.g. mean quality rating, error count, etc.

(b) Type II results: sets of numerical scores,
e.g. set of Type I results.

(c) Type III results: categorical labels at-
tached to text spans of any length.

(d) Qualitative conclusions/findings stated
explicitly in the original paper.

5. Carry out the allocated experiment exactly as
described in the HEDS sheet.

6. Report quantified reproducibility assessments
for 8a–c as follows:

(a) Type I results: Coefficient of variation
(debiased for small samples).

(b) Type II results: Pearson’s r, Spearman’s
ρ.

(c) Type III results: Multi-rater: Fleiss’s κ;
Multi-rater, multi-label: Krippendorff’s
α.

(d) Conclusions/findings: Side-by-side sum-
mary of conclusions/findings that are /
are not confirmed in the repeat experi-
ment.

A.6 Issues, flaws and errors found

1. Mistakes in the reported figures for the human
evaluation in the published paper, with the re-
sult that systems were reported as being better
or worse that they actually were.

2. Reporting a total number of items in the paper
which did not match the files that were sent.
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3. Failure to randomise the order of items to be
evaluated (when the stated intention was to
randomise) due to wrongly applied randomi-
sation.

4. Reporting that evaluators did equal numbers
of assessments but it’s clear from the files that
they did very different numbers.

5. Ad-hoc attention checks (exact nature of
which authors were unable to provide) applied
to some but not all participants who if they
failed the check were excluded from further
contributing to the experiment, but whose al-
ready completed work was kept.

6. Biased methods of aggregating judgments
(choosing a preferred participant rather than
using some form of average).

On a more general note, ambiguities in the report-
ing can be an issue. Even when checked against
the HEDS sheet, authors could feel like they have
mentioned all experimental details that are asked
for in HEDS, but often these are described at such a
high level that there is still room for misinterpreta-
tion, which means that authors still need to confirm
that their paper has been interpreted correctly. One
solution for NLP authors could be to let a third
party fill in the HEDS sheet and see where they get
stuck, but this does add a further overhead.

A.7 ARR Responsible Research Checklist

A. For every submission:

A1. Did you describe the limitations of
your work? Yes, e.g. we discuss the lim-
itations from having a self-selecting sub-
set of papers (where authors responded)
available for analysis rather than a com-
plete one.

A2. Did you discuss any potential risks
of your work? The work analy-
ses previously peer-reviewed and pub-
lished human evaluation experiments,
and while conventional risk considera-
tions don’t apply, we do mention the po-
tential harm to individual authors from
non-anonymously reporting experimen-
tal flaws and/or low reproducibility in
their work.

A3. Do the abstract and introduction sum-
marise the paper’s main claims? Yes,
abstract, introduction and conclusion

summarise main aims and conclusions
from the work.

B. Did you use or create scientific artefacts?
No new data or computational resources were
created.

C. Did you run computational experiments?
No experiments were run.

D. Did you use human annotators (e.g., crowd-
workers) or research with human partici-
pants? No human annotation or evaluations
were carried out for this paper (other than by
the authors).
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Abstract

Embedding representations of text are useful
for downstream natural language processing
tasks. Several universal sentence representa-
tion methods have been proposed with a partic-
ular focus on self-supervised pre-training ap-
proaches to leverage the vast quantities of unla-
belled data. However, there are two challenges
for generating rich embedding representations
for a new document. 1) The latest rich embed-
ding generators are based on very large costly
transformer-based architectures. 2) The rich
embedding representation of a new document
is limited to only the information provided with-
out access to any explicit contextual and tem-
poral information that could potentially further
enrich the representation. We propose efficient
retrieval-augmented text embeddings (ERATE)
that tackles the first issue and offers a method
to tackle the second issue. To the best of our
knowledge, we are the first to incorporate re-
trieval to general purpose embeddings as a new
paradigm, which we apply to the semantic sim-
ilarity tasks of SentEval. Despite not reaching
state-of-the-art performance, ERATE offers key
insights that encourages future work into inves-
tigating the potential of retrieval-based embed-
dings.

1 Introduction

State-of-the-art sentence embedding models (Raf-
fel et al., 2020; Neelakantan et al., 2022) have com-
peted against one another to approach human-like
performance in several NLP tasks. Despite the
gains observed in performance of sentence embed-
dings on public benchmarks such as SentEval (Con-
neau and Kiela, 2018a), the progress has come at
a large computational expense. For example, the
largest model amongst the Sentence-T5 series con-
sists of up to billions of parameters while GPT-3

∗Work done during internship.

based sentence embedding model released by Nee-
lakantan et al. (2022) has 175 billion parameters
with marginal gains observed in performance when
compared against older, smaller models. Models of
these sizes are compute intensive and very difficult
to host and use for most downstream use cases.

We propose a new paradigm that aims to main-
tain the benefits of high-complexity rich embed-
ding models at reduced computational require-
ments. Our novel paradigm investigates whether
retrieval can be used to bypass the compute in-
tensive embedding model in a similar manner to
the application of retrieval for generation (Lewis
et al., 2020; Cai et al., 2022) tasks for real world
large scale use cases with latency and compute
constraints. We propose to use a lightweight re-
trieval model combined with rich pre-computed
representations, in order to approximate the richer
representations of a large embedding model.

We find retrieval-based embeddings struggle
against standard text embedding models but their
performance can be improved by aggregating
neighbours from different light embedding repre-
sentations and increasing the size of the datastore
of precomputed embeddings.

To our knowledge, this is the first attempt to use
retrieval approaches for developing general pur-
pose sentence embeddings. Our main contributions
can be summarised as follows:

• Introduction of a novel paradigm for gen-
erating sentence embeddings by exploiting
retrieval-based approaches.

• Releasing efficient retrieval augmented text
embeddings (ERATE) baseline systems with
an exploration of methods that work well and
don’t work as well to assess the scope of re-
trieval to recover the performance of rich em-
bedding models with low compute.
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We hope other researchers will engage in this novel
setup to develop more efficient sentence embed-
dings that will allow high-performing representa-
tions to be accessible to a broader community.

Our work focuses on developing lightweight em-
beddings that out-compete existing lightweight em-
beddings but we believe ERATE can be used for
a wider range of applications. Specifically, input
documents often lack the full contextual informa-
tion or temporal relevance to generate the necessary
high-quality text embedding. ERATE offers the op-
portunity for the embedding of a given document
to encapsulate information from other similar doc-
uments to increase the information content whilst
also being more up-to-date with more recent docu-
ments added to a datastore.

2 Related Work

Reimers and Gurevych (2019) introduced Sentence-
BERT as an improvement to the sentence represen-
tations from BERT (Devlin et al., 2019) by explic-
itly training Siamese BERT-networks using pairs
of similar/dissimilar sentences. Yan et al. (2021)
released ConSERT to learn sentence representa-
tions in an unsupervised manner by applying var-
ious forms of augmentations to a sentence to cre-
ate its pair for contrastive learning. In a similar
vain, SimCSE (Gao et al., 2021) relied on unsuper-
vised contrastive learning by using dropout masks
as the augmentation technique. DiffCSE (Chuang
et al., 2022) further incorporated masked language
modelling as an augmentation technique. Ni et al.
(2022), released a family of sentence-T5 models
that finetuned the T5 (Raffel et al., 2020) architec-
ture in a supervised manner with pairs of naturally
occurring similar sentences. Most recently, Nee-
lakantan et al. (2022) developed a model finetuned
using GPT-3 (Brown et al., 2020).

Several works have looked at approaches to
make less expensive sentence embedding represen-
tations. For example, embedding recycling (Saad-
Falcon et al., 2022) for language models is pro-
posed as a reduced compute approach for down-
stream tasks. This involves caching activations
from intermediate layers in large pre-trained mod-
els such that when similar inputs are seen during in-
ference time, the cached output can be used in order
to skip a part of the model structure. Embedding
recycling has been demonstrated to out-compete
distilled models, such as DistilBERT (Sanh et al.,
2019). In contrast, we investigate whether fixed em-

bedding representations can be generated more effi-
ciently using retrieval without any additional train-
ing, relying only on pre-computed embeddings.

Other works have investigated efficient methods
for retrieval from a large set of documents such as
ColBERT (Khattab and Zaharia, 2020) and PLAID
(Santhanam et al., 2022) interaction models that
use offline encoding of documents. Rather than
making the retrieval step more efficient, our work
focuses on using retrieval as a tool for enhancing
the development of general purpose embeddings.

Text generation and language modelling has
seen several works involving performance boost
with retrieval. Khandelwal et al. (2019) inves-
tigates extending a pre-trained language model
by including the k-nearest neighbours, which
Kassner and Schütze (2020) applies to question-
answering. Similarly, Lewis et al. (2020) intro-
duced retrieval-augmented generation (RAG) mod-
els where a pre-trained retriever and a pre-trained
sequence-to-sequence model are fine-tuned end-to-
end. Borgeaud et al. (2022) released RETRO as a
successor of REALM (Guu et al., 2020) where an
autoregressive language work is retrieval-enhanced
by making the training documents explicitly avail-
able at inference time. Finally, Izacard et al. (2022)
present ATLAS for retrieval-enhanced language
modelling where the sequence-to-sequence model
takes the retrieved documents and the query to
generate the output text for knowledge-intensive
tasks. We probe whether retrieval-incorporated
approaches can bring similar benefits for the de-
velopment of fixed embedding representations, not
end-to-end sequence-to-sequence models.

3 Retrieval for text embeddings

This section explains how efficient retrieval aug-
mented text embeddings are developed. The main
idea is that a query document only needs to be
embedded using a light embedder and by outlin-
ing the nearest neighbours in the light space, the
corresponding pre-computed embeddings can be
combined to generate the rich query embedding.

Let d̂ denote a new document, for which we want
to determine the rich embedding representation, x̂.
Let flight(·) and frich(·) be embedding generators
that map a given document to the light and rich
embedding spaces respectively:

h = flight(d) x = frich(d) (1)

Note, we assume that the operation frich(d) is pro-
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Figure 1: Schematic for ERATE embedding generation.

hibitively compute intensive while ĥ = flight(d̂) is
feasible. Instead, there exists a set of documents
{d}Kk=1 for which the rich embeddings, {x}Dk=1,
have been pre-computed. Let granker(·) denote a
retrieval system that ranks all embeddings (with
pairwise cosine distance) in a set based upon a
query embedding. Hence, the ranks are:

{r}Kk=1 = granker(ĥ; {h}Kk=1) (2)

The final rich embedding can then be calculated as
a combination of the rich embedding representa-
tions of the top R documents:

x̂ =
1

R

K∑

k=1

1rk≤R · xk (3)

The process is depicted in the pipeline of Figure 1.
Alternative approaches can be considered for the
combination process of Equation 3 1.

3.1 Dropout masks
The proposed set-up for ERATE relies on identify-
ing neighbours to the query document in the light
space. However, the set of neighbours identified in
the light space are correlated with the light embed-
ding model that may not necessarily align with the
desired neighbours in the rich space. Consequently,
it is useful to create a neighbour set curated from
multiple light embedding models which reduces
the bias to a single light embedder (see Figure 2).

Dropout (Srivastava et al., 2014) is a common
regularisation technique that has been extended to
create diverse outputs at inference time such as
Monte Carlo dropout (Gal and Ghahramani, 2016).
Similarly, randomly dropping out embedding di-
mensions can be used to create a diverse set of light
embedders that can expect to have different, poten-
tially complementary, neighbour sets. Therefore

1Empirical experiments indicated that weighing the im-
portance of a retrieved embedding by its inverse distance to
the query in the light space did not improve performance and
hence the simplest approach of a linear average was adopted.

dropout masks are applied to the light embeddings
prior to performing retrieval in the ERATE process
to create enchanced neighbour sets.

4 Experiments

4.1 Setup
SentEval (Conneau and Kiela, 2018b) is a popular
benchmark dataset for assessing the quality of sen-
tence embeddings, consisting of semantic text sim-
ilarity (STS) tasks STS-12 to STS-16 and STS-B,
SICK-R. These tasks evaluate how well the cosine
distances of embeddings from pairs of sentences
correlate with human annotated similarity scores
using Spearman’s rank correlation coefficient2.

For ERATE to work effectively, a large datas-
tore of documents/sentences must exist for which
the sentence embeddings must be pre-calculated
using both a light embedder and a rich embedder.
We select the average GloVe word embeddings3

(Pennington et al., 2014) as the light embedder as
the model involves a simple lookup for each word
in the sentence to determine its word embedding
and hence low compute. State-of-the-art perfor-
mance on the STS tasks of SentEval is achieved
by Sentence-T5-xxl4 (Ni et al., 2022). Hence, we
adopt this Sentence-T5 model as our rich embedder.
Additionally, we consider an Oracle ERATE model
to breakdown the retrieval and combination stages
of ERATE embeddings. Oracle embeddings are
calculated by retrieving the closest neighbours in
the rich space instead of the light space.

Wiki SNLI MNLI CC

# sentences 1M 629K 519K 100M
avg. words 19±12 8±4 12±9 25±19

Table 1: Statistics for unique datastore sentences.

The datastore of sentences with pre-computed
embeddings is constructed from combining the 1
million Wikipedia (Wiki) sentences that acted as
the unsupervised training data for SimCSE (Gao
et al., 2021) and DiffCSE (Chuang et al., 2022)
with the unique sentences of the premise and hy-
pothesis from the SNLI (Bowman et al., 2015) and

2Consistent with previous works, the ‘all’ setting that ag-
gregates the subsets in a given STS task is used from https:
//github.com/facebookresearch/SentEval.

3Available at: https://huggingface.co/
sentence-transformers/average_word_
embeddings_glove.840B.300d

4Available at: https://huggingface.co/
sentence-transformers/sentence-t5-xxl
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MNLI (Williams et al., 2018) datasets. An addi-
tional 100 million sentences sampled from com-
mon crawl (CC)5 are included in an expanded data-
store to investigate the impact of increasing the
datastore size. Table 1 details the statistics for each
of these subsets. Sentences from STS on average
have 13±10 words, which is of a similar length to
the sentences that are being used for the datastore
as well as in terms of the diversity of topics.

4.2 Results

For a 512 token sentence the vanilla ERATE model
(with a datastore size of 1 million) requires 3 ×
109 floating point operations (FLOPs) while the
Sentence-T5 model requires 8.7× 1012 FLOPs.

Table 2 presents the performance of the baseline
ERATE system against the existing state-of-the-art
performance from Sentence-T5. Using the com-
pute intensive rich embeddings directly achieves
an average correlation coefficient of 84.8% across
all the STS tasks while the light embedding model
achieves a performance of 62.8% at a fraction of
the compute. In contrast, the ERATE embeddings
(100 closest neighbours are selected in the retrieval
step), which have a similar compute to the light
embedder, only achieve 55.3%. This low perfor-
mance is underwhelming as let alone being close
to state-of-the-art, it is not able to compete against
the light embedding model.

Avg. sts12 sts13 sts14 sts15 sts16 stsB sickR

Rich 84.8 78.9 88.9 84.9 89.3 84.7 86.7 80.4
Light 62.8 57.5 71.0 60.7 70.8 63.8 60.9 54.8

Oracle 72.3 66.8 76.9 70.9 73.6 73.7 75.2 69.1
ERATE 55.3 57.2 59.7 47.3 59.9 54.5 53.8 54.7
+drop. 57.4 60.8 62.0 52.8 59.8 54.4 56.5 55.4
+expand 57.9 55.4 60.0 52.9 64.1 60.0 58.8 53.8

Table 2: Performance with Sentence-T5 (Rich), GloVe
(Light), oracle neighbours and vanilla ERATE with
dropout and an expanded datastore.

The significant boost in performance to 72.3%
from the Oracle suggests that the combination pro-
cess by averaging is somewhat successful and the
loss in performance comes from a mismatch in
the surrounding neighbours for the light vs rich
space. Further work would benefit from investigat-
ing alignment between the light and rich spaces.

Figure 2a further depicts an example PCA plot
(using the two most dominant dimensions). Here,
the rich embedding of an example query sentence
is compared to the rich embeddings of the closest

5https://commoncrawl.org/

(a) Query vs neighbours. (b) Neighbours with dropout.

Figure 2: PCA on rich embeddings showing the query
is closer to the centroid with multiple neighbour sets.

neighbours identified from the light space. On
observation 6, the query lies on the periphery of
the neighbours, which leads to the the centroid of
the neighbours being afar from the desired query’s
position. We confirm the anisotropy hypothesis as
the ratio of the distance between the query to the
centroid and the averaged neighbour distance to
the centroid (averaged across all test examples) is
1.1±0.4 while the equivalent ratio using the Oracle
neighbours is 0.5±0.2 - about twice as close.

Consequently, as discussed in Section 3.1, an
expanded neighbour set is considered by applying
different dropout masks on 50% of the dimensions.
Visually, Figure 2b suggests that the neighbour set
from each dropout mask is somewhat different and
hence the centroid of all the neighbours is more
likely to approach the query’s rich embedding. The
hypothesis is supported by Table 2 where the per-
formance increases to 57.4% by using 10 dropout
masks simultaneously.

The performance can expect to be higher if the
neighbours of the query are from a dense region as
the combination of the embeddings will have less
error. Therefore, Table 2 details the performance
when using an expanded datastore size consisting
of an additional 100 million sentences from Com-
mon Crawl (see Table 1). The baseline ERATE
system performance is boosted by 2.5%.

5 Ablations

This section presents three ablations: (1) using an
alternative light embedder; (2) an attempt to align
the light and rich embedding spaces; (3) distillation
of a rich embedder onto a light embedder.

Table 2 presents the results of ERATE where the
average GloVe embeddings are used for the light
embedder and the Sentence-T5-xxl model is used
as the rich embedder. Here, an alternative light
embedder is considered: the embedding associated

6Observed on several examples.
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with the [CLS] token of the DistilBERT (Sanh
et al., 2019) model7. From Table 3, the ERATE ap-
proach successfully out-competes the DistilBERT
light embedder by an encouraging 3.7% but it is
still worse performing than the ERATE approach
with the average GloVe embedder from Table 2.

Avg. sts12 sts13 sts14 sts15 sts16 stsB sickR

Rich 84.8 78.9 88.9 84.9 89.3 84.7 86.7 80.4
Light∗ 39.6 32.1 38.0 31.3 44.1 52.8 31.0 47.7

ERATE∗ 45.0 37.6 34.3 51.1 47.0 43.1 50.1 44.0

Table 3: Performance with Sentence-T5 (Rich), Distil-
BERT (Light∗), oracle neighbours and vanilla ERATE∗.

ERATE relies on combining the rich embeddings
of the neighbours identified from a light embedding
space. Table 2 showed that the Oracle neighbours
from the rich space substantially out-compete ER-
ATE. Hence, it is expected that if the neighbour
sets between the light and rich spaces have greater
agreement, there will be improved performance for
ERATE. A projection system is trained from the
average GloVe embedding space to the ST5-xxl
embedding space for better alignment.

Spaces P@1 P@10 P@100

GloVe vs ST5 13.31 13.92 15.64
Projected[GloVe] vs ST5 12.51 13.10 14.33

Table 4: Impact of aligning light and rich spaces
with a projection layer using Precision@K for K ∈
{1, 10, 100}.

The projection model consists of an input layer
followed by a ReLU followed by a single hidden
layer that predicts an embedding in the target em-
bedding space with a cosine embedding loss. The
vanilla datastore embeddings are used as the train-
ing data with 10% of the data cut-out for valida-
tion. Table 4 assesses the improved alignment
by applying the projection layer. The averaged
Precision@K is used as an assessment metric that
measures the fraction of the closest K neighbours
that match in each space for a given query. Despite
that the model is trained to project the light space
onto the rich space, there is degradation in the align-
ment of neighbours, possibly because the ordering
of surrounding neighbours is not maintained in the
training regime that impacts the retrieved neigh-
bours.

A distillation inspired approach is considered
where a light embedding model aims to mimic the

7Available at: https://huggingface.co/
distilbert-base-uncased

embeddings of the rich Sentence-T5 model as an
alternative strategy to ERATE. DistilBERT is se-
lected as the light model8. For every datastore
embedding, the light model is finetuned (all pa-
rameters) to predict the output embedding from
the rich model. The distilled model achieves an
average score on the STS tasks of 45.6% which
is lower than the light model from Table 3. The
lower performance may occur due to no emphasis
on maintaining semantic similarity explicitly.

6 Conclusions

Retrieval-based embeddings are proposed as ER-
ATE that bypass inference through an expensive
embedding generation model but hope to leverage
its richness. However, the current set-up for ER-
ATE achieves subpar performance on text similarity
tasks with some gains observed from combining
neighbours of a unique dropout mask approach and
extending the datastore size of pre-computed light
and rich embeddings for retrieval. We highlight
multiple areas of future work.

Future work should investigate ERATE-based
approaches in a hybrid setting: ERATE embed-
dings are used for sentences where they are likely
to work effectively (neighbours are in a dense space
allowing accurate approximations) while the de-
fault expensive embedder can be used when ER-
ATE is unlikely to be effective. ERATE can be in-
creasingly effective when only partial information
is available in a query for which an embedding is
desired as combining the embeddings of neighbour-
ing documents can enrich the information content.
However, sentence-level embeddings offer little
opportunity to explore the gains by additional infor-
mation and hence future work should investigate
the scope of ERATE at the document-level; MTEB
(Muennighoff et al., 2022) potentially offers suit-
able tasks. We should also investigate alternative
approaches for aligning the light and rich spaces
and better combining neighbours’ embeddings e.g.
self-attention.
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Appendix A Limitations

The experiments for ERATE are currently limited
to the semantic text similarity tasks of SentEval.
More comprehensive experiments should investi-
gate the applicability of ERATE against benchmark
text embedding representations for a wide range of
downstream NLP tasks.

Appendix B Computational resources

All experiments were conducted using NVIDIA
A100 graphical processing units.

Appendix C Reproducibility

The experiments conducted in this work has only
relied on publicly available data and publicly avail-
able models. There was no additional training of
models. Additional hyperparameters for ERATE
embeddings (e.g. the size of the datastore, the num-
ber of neighbours, the dropout rate) is detailed in
the relevant sections of the main paper.

Appendix D Licenses

This section details the license agreements of the
scientific artifacts used in this work. The Stan-
ford Natural Language Inference (SNLI) Corpus
is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License. For MNLI,
the majority of the corpus is released under the
OANC’s license, which allows all content to be
freely used, modified, and shared under permissive
terms. The data in the FICTION section falls under
several permissive licenses; Seven Swords is avail-
able under a Creative Commons Share-Alike 3.0
Unported License, and with the explicit permission
of the author, Living History and Password Incor-
rect are available under Creative Commons Attribu-
tion 3.0 Unported Licenses; the remaining works of
fiction are in the public domain in the United States
(but may be licensed differently elsewhere). SentE-
val is released under the BSD License. Common
Crawl is released under the MIT License.

Appendix E Additional experiments

In the main paper, ERATE relies on combining the
rich embedding representations of the neighbours
that have been identified using the light embedding
representations. The number of neighbours was set
to 100. In this section, the impact on the down-
stream STS tasks is investigated when a different

number of neighbours are considered instead. Ta-
ble Appendix E.1 details the performance when
using a different number of neighbours from the
datastore. The best averaged results are observed
empirically when 100 neighbours are used from
the datastore.

#neigh. Avg. sts12 sts13 sts14 sts15 sts16 stsB sickR

1 40.9 30.2 40.7 35.1 50.8 43.7 39.8 46.0
10 52.4 51.6 52.9 43.5 61.9 49.1 53.8 54.0
100 55.3 57.2 59.7 47.3 59.9 54.5 53.8 54.7
1000 54.7 54.2 58.8 48.6 61.3 54.0 52.3 53.8
10,000 52.4 51.2 57.3 46.9 59.1 50.9 49.1 52.4

Table Appendix E.1: Varying the number of neighbours
for ERATE.
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Abstract

Low-quality data can cause downstream prob-
lems in high-stakes applications. Data-centric
approach emphasizes on improving dataset
quality to enhance model performance. High-
quality datasets are needed for general-purpose
Large Language Models (LLMs) training, as
well as for domain-specific models, which
are usually small in size as it is costly to en-
gage a large number of domain experts for
their creation. Thus, it is vital to ensure
high-quality domain-specific training data. In
this paper, we propose a framework for en-
hancing the data quality of original datasets1.
We applied the proposed framework to four
biomedical datasets and showed relative im-
provement of up to 33%/40% for fine-tuning of
retrieval/reader models on the BioASQ dataset
when using back translation to enhance the orig-
inal dataset quality.

1 Introduction

Data-centric approach emphasizes the collection of
high-quality data as a centrally important step in the
model development (Jarrahi et al., 2022). While
model-centric approaches were more prominent
in the past, recently data-centric approaches are
also gaining importance (Xu et al., 2021; Liu et al.,
2021). This trend was especially emphasized since
2021 when Andrew Ng launched his campaign for
a more data-centric approach to AI by starting the
data-centric competition2, which encouraged par-
ticipants to increase accuracy by solely improving
the datasets while keeping the model fixed.

Large Language Models (LLMs), such as Gen-
erative Pre-trained Transformer 3 (GPT-3) (Floridi
and Chiriatti, 2020), generate text that is grammat-
ically correct, fluent, and informative. However,
there is little to no control over the data that were

1Code and dataset are available at
https://github.com/IvaBojic/framework

2https://https-deeplearning-ai.github.
io/data-centric-comp

used for model training. Consequently, LLMs are
prone to hallucinating and providing untruthful out-
puts (Evans et al., 2021). Ironically, this reflects
LLMs’ ability to be better at learning the training
distribution and consequently follow inverse scal-
ing law (Lin et al., 2021). And while some of the
recent research efforts are focused on providing
explanations of where the LLM’s outputs came
from (Menick et al., 2022), such research is in its
infancy.

In this work, we focus on language models with
a Transformer encoder architecture such as BERT
(Devlin et al., 2018), that extract relevant outputs
from a domain-specific evidence-based text corpus.
Deep neural networks trained on domain-specific
datasets, including those used in Natural Language
Processing (NLP), are most heavily dependent on
the quality of the training dataset, which is usually
small in size (Zarcone et al., 2021) as it is costly
to engage a large number of domain experts for an-
notation. It is thus important to create high-quality
training data for language models to perform bet-
ter. In this paper, we propose a data-centric frame-
work for Machine Reading Comprehension (MRC)
datasets that increases the original dataset quality
by both (i) keeping the size of the original dataset
fixed, and (ii) augmenting the original dataset by
adding new training samples.

MRC is a Natural Language Understanding
(NLU) task. Its goal is to answer questions based
on the information provided in a passage (Zhang
et al., 2020). Training datasets for MRC models
come in the form of triplets: passage (i.e., positive
context), question, and answer. Typically, the MRC
pipeline works in two phases, where a passage re-
triever is followed by a passage reader (Chen et al.,
2017). For a given question, the retriever first ex-
tracts a set of relevant passages from a knowledge
base (i.e., text corpus), and then the reader selects
an answer (e.g., text span) from one of the retrieved
passages (Zhu et al., 2021).
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2 Related Work

Data-centric approaches can be divided into (i) data
quality enhancement methods that keep the original
size of the dataset fixed (e.g., data filtering or label
consistency checking), and (ii) data augmentation
methods that increase the original dataset size (i.e.,
adding more training samples). Results from the lit-
erature on using data-centric approaches to improve
model performance in MRC are inconclusive.

Several studies have reported that data filtering
can lead to significant model improvements (Dou
et al., 2020; Sanyal et al., 2021; Mollá, 2022). How-
ever, this might not hold if data are filtered in a ran-
dom way (Firsanova, 2021). Additionally, while
increasing labelling consistency and excluding or
cleaning noisy data points were shown to improve
model performance on the BioASQ dataset (Yoon
et al., 2022), shortening answers in AASDQA led
to a decrease of F1-score by 4% (Firsanova, 2021).

Adaptation of data augmentation is still compara-
tively less explored in NLP (Feng et al., 2021), with
a body of work presenting positive results (Kaushik
et al., 2019; Khashabi et al., 2020; Qin et al., 2020;
Pappas et al., 2022) as well as papers showing little
or no improvements for the given task (Huang et al.,
2020; Chopard et al., 2021; Okimura et al., 2022).

To the best of our knowledge, this paper is the
first that proposes framework for data quality en-
hancement for improving domain-specific MRC
datasets by (i) keeping the original dataset size of
data the same and (ii) increasing the original dataset
size using augmentation methods. Our framework
includes methods for (i) a better selection of neg-
ative passages for retriever training, and (ii) re-
formulating questions using paraphrasing, word
substitution, and back translation.

Paraphrasing, word substitution, and back trans-
lation were previously used as data augmentation
methods in various NLP tasks (Liu and Hulden,
2021; Pappas et al., 2022; Ishii et al., 2022). How-
ever, those papers did not look at how each of these
methods enhanced the original dataset without in-
creasing its size. Keeping the size of the dataset
fixed is necessary in resources-constrained scenar-
ios, as the resources (e.g., time) needed for fine-
tuning are proportional to the size of training sets.
Moreover, previous studies did not present a cost-
benefit analysis of the resources needed to gener-
ate extended training sets and perform fine-tuning
processes in comparison with the performance in-
crease.

3 A Data-centric Framework for MRC

In our framework, we first generate new training
sets using four data quality enhancement methods.
We then fine-tune retrieval and reader models on
each new training set individually. Secondly, we
fine-tune retrieval/reader models continually start-
ing from the best individual checkpoint using en-
hanced training sets that showed improvements in
the first step. Finally, we create new augmented
datasets by concatenating all training sets if they
show fine-tuning improvements in the first step.

Labels in MRC datasets are triplets which in-
clude a passage, a question, and an answer. In
MRC datasets, an answer is part of a passage which
is also called a positive context. To fine-tune a
retrieval model as proposed in (Karpukhin et al.,
2020), it is necessary to not only provide a positive
context of passages that contains the answer to a
given question, but also negative contexts. Some
previous work employed a method of randomly se-
lecting negative contexts from a text corpus (Bojic
et al., 2022). Here we propose a method to improve
the random selection of negative contexts.

One of the problems with manually collecting
labels for MRC datasets is that questions are too
similar to their answers (Rajpurkar et al., 2018). To
solve this, we investigate the use of three different
methods applied to the original set of questions:
(i) paraphrasing - we use two different language
models fine-tuned for paraphrasing; (ii) word sub-
stitution - we use two libraries: one to extract a
keyword from a given question and another to ob-
tain a list of synonyms for the chosen keyword;
and (iii) back translation - we use 25 different ma-
chine translation language models to translate a
source text into another language, and back into
the original language.

3.1 Negative Contexts

To enhance the quality of the negative contexts for
each passage, we implemented the following pro-
cedure. For each positive context, passages were
sorted in ascending order of BERTScore (Zhang
et al., 2019) similarity with the positive context,
and the ones with the lowest score were kept to
form negative contexts. A global counting dictio-
nary was maintained to prevent the replication of
negative contexts across different training exam-
ples. This ensured that each negative context did
not exceed the threshold for number of occurrences
in total in the whole dataset.
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3.2 Questions
In this section, we describe the various techniques
used to augment the questions from MRC datasets.

For question paraphrasing, we used two models:
T53 and Pegasus4. To enhance the data quality of
an original dataset, for each original question, we
used the two aforementioned methods to generate
up to five paraphrased questions. Subsequently,
we created five different training sets in which we
grouped the most, second most, up to the least sim-
ilar paraphrases for each original question together.
The word similarity was calculated using a word
vector model from spaCy5. We also generated a
sixth set comprising a randomly-selected question
from the list of five unique paraphrases generated.

In word substitution process, we extracted a
keyword from each question with the help of the
spaCy library and obtained a list of synonyms for
each keyword using Natural Language Tool Kit
(NLTK)’s English dictionary, WordNet6. The top
five synonyms were extracted from this list in de-
scending order of word similarity calculated using
the aforementioned word vector model from spaCy.
We then generated five versions of the training data
for each dataset such that in set 1, the keyword for
each question was replaced by its most similar syn-
onym; in set 2, the keyword for each question was
replaced by its second most similar synonym and
so forth, with set 5 containing the questions with
the least similar synonyms as substitutes. For key-
words with n < 5 synonyms, we kept the question
unchanged in the first (5 - n) versions and used the
synonyms as substitutes in the remaining n versions.
We also created a sixth set in which we randomly
selected one of the top five (or n) synonyms to
substitute the keyword for each question.

We used Hugging Face Helsinki model7 for back
translation. In total, we generated 25 different
training sets based on the number of downloads
for translation from English to the respective lan-
guages, followed by the availability of translation
models from the respective languages to English.
We selected checkpoints based on the number of
downloads, taking the top 25 most downloaded.

3https://huggingface.co/Vamsi/T5_
Paraphrase_Paws

4https://huggingface.co/tuner007/
pegasus_paraphrase

5https://spacy.io/models/en#en_core_
web_lg

6https://www.nltk.org/howto/wordnet.
html

7https://huggingface.co/Helsinki-NLP

To understand how different the resulting ques-
tions obtained from each of the enhancement meth-
ods are, we performed pairwise comparisons be-
tween questions from each method using ROUGE-
1. Results are shown in Appendix B.6. Back-
translation overall yields the questions most dif-
ferent to the baseline and the other enhancement
methods.

3.3 Answers

Since MRC relies on extracting the exact answer
(i.e., text span) from a passage, we could not ap-
ply any of the automatic data quality enhancement
methods that we applied to questions (as explained
in the previous section). However, we created new
training datasets in which we manually shortened
the original answers wherever appropriate. We ex-
plained further in Appendix A.3.

4 Datasets

To test our framework, we made adjustments (see
Appendix A) to four biomedical datasets: BioASQ
(Lamurias et al., 2020), COVID-QA (Möller et al.,
2020), cpgQA (Mahbub et al., 2023) and SleepQA
(Bojic et al., 2022). We refer the reader to Table 1
for statistics on the final version of datasets that we
used in all experiments: original/final size of text
corpus, original/final number of labels and finally,
train/dev/test split.

Original BioASQ dataset contained over 3k
manually-annotated biomedical labels. Questions
in these datasets came in four different flavours:
factoid, list, yes/no, and summary. We extracted
only factoid questions for which the exact answer
can be found in the positive context. Original
COVID-QA dataset was annotated by biomedical
experts and contained 2k labels on COVID-19
pandemic-related topics. Original cpgQA dataset
contained 1k manually annotated labels in the
domain of clinical practice guidelines. Original
SleepQA was a manually annotated dataset in the
sleep domain with 5k labels.

Table 1: Dataset statistics, for original and final ver-
sions.

Dataset Original
corpus

Final
corpus

Original
labels

Final
labels

Final
train/dev/test

BioASQ 4265 957 5821 957 765/96/96
COVID-QA 2079 1121 1327 1102 896/112/113
cpgQA 190 235 1097 1097 877/110/110
SleepQA 7000 7000 5000 5000 4000/500/500
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5 Evaluation

We evaluated our framework by performing fine-
tuning of retrieval and reader models using Bi-
oLinkBERT (Yasunaga et al., 2022) and BioBERT
BioASQ8 respectively. We used BioLinkBERT for
retrieval model fine-tuning as it was recently shown
to achieve state-of-the-art performance on low-
resource bio-MRC tasks (Mahbub et al., 2023).
BioBERT BioASQ was used for fine-tuning of
reader model as proposed in (Bojic et al., 2022).
Intrinsic evaluation of fine-tuned models was done
using automatic metrics on test sets: recall@1 for
retrieval and Exact Match (EM) for reader models.

5.1 Fine-tuning on Enhanced Training Sets

Table 2 and Table 3 show recall@1/EM scores re-
spectively for fine-tuned retrieval/reader models
after enhancing the method of selecting negative
contexts (i.e., using BertScore) for the retrieval
training datasets, as well as reformulation of ques-
tions using paraphrasing, word substitution, back
translation and answer shortening for the training
datasets of both models. More specifically:

• The first row (baseline) in each table shows
the results of BioLinkBERT/BioBERT BioASQ
models fine-tuned on the original datasets (i.e.,
baselines).

• Each subsequential row shows the best results
for each dataset using the four aforementioned
methods for negative contexts (only for the
retrieval models) and questions (for both mod-
els) enhancement.

• The following row (answer shortening) shows
recall@1/EM scores for fine-tuning of models
on the training datasets in which the original
answers were manually shortened if needed.

• The following row (continual) shows the re-
sults of continual fine-tuning: starting from
the best individual checkpoint, we fine-tune
on the second-best training set, and so on. For
example, for reader fine-tuning on the BioASQ
dataset, we first took the checkpoint of fine-
tuning on the training set created using para-
phrasing and then continued fine-tuning on
training sets created using back translation.
Finally, we took the newest checkpoint and

8https://huggingface.co/gdario/
biobert_bioasq

continued fine-tuning on the training set cre-
ated using word substitution.

• The last row (augmentation) shows re-
call@1/EM scores for fine-tuning of models
on the training datasets created by concate-
nating all data enhanced training sets if they
showed fine-tuning improvements when us-
ing individually (i.e., rows 2-6 for retrieval
models and rows 2-5 for reader models).

For retrieval fine-tuning (Table 2), the most sig-
nificant improvement of +8.3 (+33%) from baseline
was achieved for BioASQ dataset when using back
translation on the Catalan language. The enhanced
methods of selecting negative contexts and word
substitution improved all four datasets, while para-
phrasing and back translation caused a decrease in
recall@1 scores for SleepQA dataset. Continual
retrieval fine-tuning showed improvements when
compared to baselines for all datasets, however,
only for the COVID-QA and cpgQA datasets it was
better than the best results of individual fine-tuning.

Table 2: Evaluation of fine-tuned retrieval models.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 25.0 42.5 66.4 46.8
negatives 32.3 48.7 67.3 48.4
paraphrasing 31.2 54.0 66.4 46.6
word substitution 30.2 50.4 69.1 48.4
back translation 33.3 49.6 66.4 45.8
answer shortening 29.2 45.1 66.4 44.8
continual 29.2 62.8 70.9 47.2
augmentation 31.2 60.2 65.5 45.0

For fine-tuned reader models (Table 3), the most
significant improvement of 2.1 (+40%) from base-
line was achieved for BioASQ dataset when using
back translation on the Dutch language, as well
as paraphrasing. Continual reader fine-tuning in-
creased the EM score only for cpgQA dataset com-
pared with the corresponding baselines. Lastly,
augmentation was better than the best results of
individual fine-tuning only for the SleepQA dataset
with the total increase of 2.6 (+4%).

Table 3: Evaluation of fine-tuned reader models.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 5.2 22.1 50.9 58.6
paraphrasing 7.3 23.9 50.9 59.0
word substitution 6.3 22.1 50.9 59.4
back translation 7.3 23.0 46.4 59.4
answer shortening 5.2 23.0 49.1 60.8
continual 5.2 23.9 N/A 58.0
augmentation 5.2 23.9 N/A 61.2

22

https://huggingface.co/gdario/biobert_bioasq
https://huggingface.co/gdario/biobert_bioasq


Greater relative improvements with back-
translation compared to other methods could
be supported by this method creating more di-
verse questions (Appendix B.6). However, back-
translation gains are inconsistent from a dataset to
the other. Moreover, we noticed that translation and
paraphrasing with Pegasus gave questions notice-
ably more difference than the other data enhancing
techniques.

5.2 Cost-benefit Analysis
In total, the data-centric methods that we described
previously enabled us to generate 28 and 24 en-
hanced training sets for retrieval fine-tuning and
reader fine-tuning respectively. Subsequently, we
fine-tuned all retrieval/reader models on a single
NVIDIA-A40 GPU with 46GB of GPU RAM. Ta-
ble 4 and Table 5 shows time spent on fine-tuning.
For example, we used one GPU for five hours
to fine-tune retriever model on BioASQ dataset
to achieve 33% improvement in recall@1 score.
Meanwhile, we used one GPU for 22 hours to fine-
tune retriever model on SleepQA dataset only to
achieve a decrease in recall@1 score of 2%.

The last two rows in tables show the time needed
for continual/augmentation fine-tuning only. How-
ever, in order to determine the order in which to
fine-tune for continual learning, or which datasets
to use for concatenation, all individual checkpoints
need to be created. Hence, to obtain the total time
for continual learning/augmentation, one needs to
add up times from all previous rows as well.

Table 4: Total time spent (in hours) vs. maximum im-
provements of retrieval fine-tuning.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 0.2 0.2 0.2 0.9
negatives 0.9 (29%) 1.1 (15%) 1.0 (1%) 9.9 (3%)
paraphrasing 4.3 (25%) 3.7 (27%) 3.6 (0%) 25.4 (1%)
substitution 2.5 (21%) 1.4 (19%) 1.8 (4%) 6.1 (3%)
translation 4.9 (33%) 6.3 (17%) 4.9 (0%) 22.0 (2%)
answer shortening 0.4 (17%) 0.4 (6%) 0.4 (0%) 1.6 (4%)
continual 1.6 (17%) 1.7 (48%) 0.7 (7%) 1.1 (1%)
augmentation 0.9 (25%) 1.0 (42%) 0.6 (1%) 2.6 (4%)

Table 5: Total time spent (in hours) vs. maximum im-
provements of reader fine-tuning.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 0.1 0.1 0.1 0.3
paraphrasing 1.0 (40%) 0.9 (8%) 0.9 (0%) 5.0 (1%)
substitution 0.3 (21%) 0.5 (0%) 0.3 (0%) 1.1 (1%)
translation 1.0 (40%) 1.2 (4%) 1.7 (9%) 4.0 (1%)
answer shortening 0.1 (0%) 0.1 (4%) 0.1 (4%) 0.2 (4%)
continual 0.2 (0%) 0.3 (8%) N/A 1.4 (1%)
augmentation 0.1 (0%) 0.1 (8%) N/A 0.5 (4%)

6 Discussion and Conclusions

It is estimated that over 92% of data scientists who
work in the Artificial Intelligence field encountered
the “data cascades” phenomenon, which denotes
downstream problems resulting from low-quality
data (Sambasivan et al., 2021). One way to im-
prove the original dataset quality is data-centric
approach. In this paper, we showed that by enhanc-
ing the quality of original datasets, one can achieve
model fine-tuning performance improvements for
small datasets (e.g., biomedical datasets). However,
the results suggest that the effects of data quality
enhancement methods on performance improve-
ments are small, and the performance of the test
data deteriorates in many cases.

Despite the inconsistency of data-centric meth-
ods used in this paper in yielding improvement,
two positive conclusions can be drawn. First, when
taking into consideration the time needed to cre-
ate data enhanced training sets as well as perfor-
mance improvements in fine-tuning, word substitu-
tion method is the best, supporting previous find-
ings (Feng et al., 2019; Pappas et al., 2022). Un-
like other methods, word substitution is not model-
based and thus is run for a few minutes, rather than
a few hours like back translation and paraphras-
ing. Second, the best relative improvements were
achieved for the BioASQ dataset with the smallest
number of labels, a similar finding presented in
(Okimura et al., 2022).

In addition to the data-centric methods discussed
in this work, there are other techniques such as
pseudo-labelling (Abney, 2007; Ruder and Plank,
2018; Cui and Bollegala, 2019; Zhu and Goldberg,
2022), data selection (Axelrod et al., 2011; Plank
and Van Noord, 2011; Ruder and Plank, 2017), and
pre-training methods (Han and Eisenstein, 2019;
Guo et al., 2020). In future work, we will in-
vestigate whether those techniques would produce
more reliable and consistent results across differ-
ent datasets. Moreover, we will also consider ap-
proaches that incorporate aspects of multiple tech-
niques, resulting in hybrid data-centric techniques
as proposed in (Ramponi and Plank, 2020).
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A Datasets

A.1 Dataset Construction
In this subsection, we describe how we built the
final version of datasets from Table 1. Where nec-
essary, we divided passages from the original text
corpus into one or more parts, so their length was
less than 300 words. This step was done so that all
passages were of a similar length across different
datasets and that the same model hyperparameters
can be used for fine-tuning retrieval and reader
models. We then removed those labels for which
the answer could not be found in the corresponding
positive context. Finally, we divided each original
dataset into three parts (in the ratio of 80:10:10) to
create training, development, and test sets. Table 1
shows the original number of passages in each text
corpora, the original number of labels, and the fi-
nal numbers after the aforementioned adjustments
were done.

A.2 Data Cleaning
BioASQ: The original dataset did not include pos-
itive passages, but instead contained links to the
journal articles where the answers can be found.
To obtain positive passages, we first retrieved them
from the individual links provided in the dataset,
and then divided them into passages of no longer
than 300 words. Only triplets that contain the exact
answers in the retrieved passages were included
in the final dataset. We encountered a challenge
that, of the 5,821 triplets of the factoid type identi-
fied, only 16% had the exact answers that could be
found in the provided passages.

COVID-QA: We first divided the original corpus
into passages containing no more than 300 words.
We also removed redundant keywords, such as
’introduction:’, ’introductions:’, ’objective:’, ’ob-
jectives:’, ’conclusion:’, ’conclusions:’, ’method:’,
’methods:’, ’background:’, ’backgrounds:’, ’re-
sult:’, ’results:’, ’result(s):’, and ’aim:’. Addition-
ally, we eliminated leading and trailing spaces and
changed all letters to lowercase. To ensure dataset
accuracy, further manual cleaning was carried out.
This includes filling in incomplete words, remov-
ing medical abbreviations, and correcting missing
brackets such as "()" and "[]".

cpgQA: To prepare the text corpus, we parti-
tioned passages into segments of no more than
300 words, resulting in a corpus of 235 passages.

Unfortunately, this division caused some answers
to be separated from their corresponding positive
contexts due to issues such as inaccurate sentence
tokenization and answer fragmentation between
two adjacent passages. These discrepancies were
addressed through manual intervention. It should
be noted that no labels were excluded from the orig-
inal dataset as a result of this cleaning procedure.

SleepQA The original dataset already contained
passages shorter than 300 words, and all answers
were found in their provided passages. We elimi-
nated leading and trailing spaces and changed all
letters to lowercase.

A.3 Shortening Answers
BioASQ: The original answers varied from two to
more than 120 words in length. Our focus was
on shortening the answers which were excessively
long, and thus all answers longer than 30 words
were manually reviewed. The primary adjustments
made to the answers involved isolating the main
response to the corresponding question, thereby
truncating lengthy sentences into shorter phrases.
This approach effectively reduced answer length
for both the test and training sets by a significant
degree. The mean answer length for the training set
decreased from 30.9 to 17.6 words (Figure 1), while
the mean answer length for the test set decreased
from 26.1 to 18.4 words (Figure 2).
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Figure 1: Answer length (in number of words) before
and after shortening answers for BioASQ training set.
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Figure 2: Answer length (number of words) before and
after shortening answers for the BioASQ test set.

COVID-QA: In the original dataset, the length of
the answers was not more than 120 words. How-
ever, some answers contained incomplete words at
the beginning and/or end of sentences. To improve
the dataset’s accuracy, these words were either man-
ually removed or completed. Moreover, scientific
abbreviations were eliminated manually to improve
the accuracy of exact matches. Unfortunately, this
had no significant effect on the mean length of an-
swers for both the training and test sets. This result
can be attributed to the training set’s prevalence of
sentences with only one or two abbreviations. In
other cases, completing the incomplete words also
had no effect on the mean word count.
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Figure 3: Answer length (in number of words) before
and after shortening answers for COVID-QA training
set.

cpgQA: In both the training and test sets, answers
were shortened manually by removing extraneous
phrases and articles (such as "a/an/the") from the
beginning of the responses. After shortening, the
mean answer length in the training set reduced
from 12.7 words to 12.4 words, whereas for the
test set, the mean answer length reduced from 12.1
words to 11.6 words. The minimal difference in
the mean number of words is due to the fact that
most answers in the original dataset were clear and
concise.
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Figure 4: Answer length (in number of words) before
and after shortening answers for COVID-QA test set.
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Figure 5: Answer length (in number of words) before
and after shortening answers for cpgQA training set.
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Figure 6: Answer length (in number of words) before
and after shortening answers for cpgQA test set.

sleepQA: The initial average answer lengths for
the sleepQA dataset are 10.15 and 9.13 for the
train and test set respectively, making it the dataset
with the shortest average answer length among all
datasets studied. We focused on cutting down an-
swers more than 15 words long, which range up
to 40 words long. The was done by extracting the
main phrases of the answers that directly respond
to the associated questions. The resulting cleaned
answers are in the form of shorter, more concise
phrases instead of wordy full sentences. The final
average answer lengths after the cleaning process
are 9.11 and 8.01 for the train and test set respec-
tively.
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Figure 7: Answer length (in number of words) before
and after shortening answers for SleepQA training set.
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Figure 8: Answer length (in number of words) before
and after shortening answers for SleepQA test set.

B Evaluation

B.1 Model Hyperparameters
Hyperparameters of retrieval models fine-tuning
are shown in Table 6, and of reader models in Ta-
ble 7. When fine-tuning retrieval models on train-
ing sets in which method of selecting the nega-
tive contexts for each passage was enhanced, we
changed other negatives hyperparameters to reflect
the number of negative contexts in the correspond-
ing training set (e.g., 1 to 5). Additionally, when
fine-tuning reader models on different datasets, we
set eval step to 50 for BioASQ, COVID-QA and
cpgQA datasets and 500 for the SleepQA dataset.
The reason behind this is because the SleepQA
dataset has 4,000 labels in the train set, while the
other datasets have less than 1,000 labels. For con-
tinual retrieval fine-tuning, we set the num train
epochs to 60, and for reader to 30. Other parame-
ters were left the same.

B.2 Negative Contexts
Using the enhanced method of selecting negative
contexts, we produced five different training sets
for each dataset (see Table 8). Although generally,
this method produced enhanced training sets for
each dataset, it is not possible to conclude which
number of negatives improved the fine-tuning pro-
cess the best, as this is very much dataset-specific.
The last row in Table 8 shows the time (in hours)
needed to generate all five training sets for each
dataset using A100 GPU 40GB. While for most
of the datasets, the generation process took around
one hour, for SleepQA it took more than one day.
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Table 6: Hyperparameters of retrieval model fine-tuning.

Hyperparameter Value

batch size 32
dev batch size 32
adam eps 1e− 8
adam betas (0.9, 0.999)
max grad norm 1.0
log batch step 100
train rolling loss step 100
weight decay 0.0
learning rate 1e− 5
warmup steps 100
gradient accumulation steps 1
num train epochs 30/60*
eval per epoch 1
hard negatives 0
other negatives 1(2,3,4,5)*
val av rank hard neg 0
val av rank other neg 10
val av rank bsz 128
val av rank max qs 10000

Table 7: Hyperparameters of reader model fine-tuning.

Hyperparameter Value

eval step 50/500*
batch size 32
dev batch size 32
adam eps 1e− 8
adam betas (0.9, 0.999)
max grad norm 1.0
log batch step 100
train rolling loss step 100
weight decay 0.0
learning rate 1e− 5
warmup steps 0
gradient accumulation steps 1
num train epochs 10/30*

Table 8: Automatic evaluation of fine-tuned retrieval
models using recall@1 scores when using the enhanced
method of selecting negative contexts.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 25.0 42.5 66.4 46.8
BertScore (1 neg) 31.2 41.6 66.4 47.2
BertScore (2 neg) 28.1 48.7 67.3 45.8
BertScore (3 neg) 32.3 45.1 67.3 47.4
BertScore (4 neg) 29.2 45.1 63.6 46.6
BertScore (5 neg) 30.2 48.7 61.8 48.4
generation time 1.3 1.3 0.7 28.3

B.3 Paraphrasing
For question paraphrasing, we used T5 and Pega-
sus as they are based on Transformer architecture
and utilize transfer learning, in which resource-rich
sources can be efficiently adapted for resource-poor
target fields, such as the domain-specific datasets
(Yu et al., 2018).

Table 9: Average similarity index of each training set
for each dataset, calculated using a word vector model
from spaCy for paraphrasing.

Methods set 1 set 2 set 3 set 4 set 5 set 6
BioASQ (T5) 0.997 0.991 0.979 0.962 0.927 0.970
BioASQ (Pegasus) 0.953 0.932 0.917 0.886 0.846 0.903
COVID-QA (T5) 0.996 0.987 0.970 0.949 0.904 0.959
COVID-QA (Pegasus) 0.959 0.940 0.918 0.890 0.849 0.909
cpgQA (T5) 0.995 0.987 0.973 0.954 0.920 0.967
cpgQA (Pegasus) 0.960 0.946 0.930 0.910 0.883 0.925
SleepQA (T5) 0.996 0.985 0.969 0.947 0.906 0.960
SleepQA (Pegasus) 0.974 0.957 0.938 0.915 0.880 0.933

Previous research showed that the Pegasus
method produces paraphrases that are semantically
more different, while the T5 method is found to
keep more of the original meaning (Martín Galván
et al., 2023). We found that the Pegasus consis-
tently produces the same set of paraphrased ques-
tions, regardless of the number generated. For
T5, we generated paraphrased questions up to 50
times, after which we took the first five unique para-
phrases. For several questions (between 3% for
cpgQA dataset and 12% for COVID-QA dataset),
T5 failed to produce the required number of unique
paraphrases, for which cases we added the original
question to the set of five paraphrased questions.
Although we used two different libraries, question
paraphrasing failed to enhance training set quality
for cpgQA dataset altogether. Generating training
sets took around 15 hours for SleepQA dataset and
3 hours for other datasets on one NVIDIA TESLA
P100 GPU 16GB (Kaggle).

Table 10: Automatic evaluation of fine-tuned retrieval
models using recall@1 scores for paraphrasing. Base-
line recall@1 scores for BioASQ, COVID-QA, cpgQA
and SleepQA datasets are: 25.0, 42.5, 66.4, and 46.8.

Methods set 1 set 2 set 3 set 4 set 5 set 6
BioASQ (T5) 25.0 29.2 26.0 26.0 24.0 24.0
BioASQ (Pegasus) 28.1 31.2 31.2 29.2 31.2 30.2
COVID-QA (T5) 49.6 48.7 44.2 47.8 46.0 54.0
COVID-QA (Pegasus) 45.1 44.2 43.4 43.4 46.9 46.9
cpgQA (T5) 65.5 65.5 65.5 66.4 65.5 66.4
cpgQA (Pegasus) 63.6 62.7 60.0 62.7 65.5 69.0
SleepQA (T5) 43.6 46.6 42.4 46.4 44.2 43.6
SleepQA (Pegasus) 43.2 39.8 45.0 39.0 38.0 41.0
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Table 11: Automatic evaluation of fine-tuned reader
models using EM scores for paraphrasing. Baseline EM
scores for BioASQ, COVID-QA, cpgQA and SleepQA
datasets are: 5.2, 22.1, 50.9, and 58.6.

Methods set 1 set 2 set 3 set 4 set 5 set 6
BioASQ (T5) 4.2 6.2 4.2 3.1 6.2 4.2
BioASQ (Pegasus) 6.2 7.3 7.3 6.2 6.2 6.2
COVID-QA (T5) 21.2 19.5 20.4 23.9 20.4 19.5
COVID-QA (Pegasus) 22.1 18.6 18.6 20.4 23.0 19.5
cpgQA (T5) 50.9 49.1 48.2 50.9 48.2 50.0
cpgQA (Pegasus) 46.4 46.4 47.3 44.5 46.4 49.1
SleepQA (T5) 57.4 57.6 58.2 58.4 58.8 58.2
SleepQA (Pegasus) 58.2 57.8 58.0 58.2 57.2 59.0

B.4 Word Substitution
Word substitution is the process of substituting sim-
ilar words (such as synonyms or words with sim-
ilar embeddings) from the original data (Pappas
et al., 2022). This method for enhancing the origi-
nal training sets increased almost all recall@1/EM
scores for all datasets for both retrieval/reader fine-
tuning, except for the reader models for cpgQA and
COVID-QA datasets. In cases where applying word
substitution on the original dataset did not increase
the EM scores for the reader fine-tuning, the scores
stayed the same as the corresponding baselines (i.e.,
this method did not worsen them). Moreover, the
generation of training sets took only 11 minutes for
SleepQA dataset and around two minutes for other
datasets on one NVIDIA TESLA P100 GPU 16GB
(Kaggle).

Table 12: Average similarity index of each training set
for each dataset, calculated using a word vector model
from spaCy for word substitution.

Datasets set 1 set 2 set 3 set 4 set 5 set 6
BioASQ 0.999 0.998 0.997 0.996 0.994 0.997
COVID-QA 0.997 0.996 0.995 0.993 0.988 0.993
cpgQA 0.998 0.997 0.996 0.994 0.989 0.995
SleepQA 0.996 0.993 0.992 0.990 0.986 0.991

Table 13: Automatic evaluation of fine-tuned retrieval
models using recall@1 for word substitution. Baseline
recall@1 scores for BioASQ, COVID-QA, cpgQA and
SleepQA datasets are: 25.0, 42.5, 66.4, and 46.8.

Datasets set 1 set 2 set 3 set 4 set 5 set 6
BioASQ 28.1 24.0 28.1 27.1 30.2 21.9
COVID-QA 49.6 49.6 50.4 46.9 48.7 48.7
cpgQA 63.6 68.2 67.3 69.1 67.3 66.4
SleepQA 45.8 48.4 46.4 46.8 43.0 46.0

B.5 Back Translation
The main idea behind back translation method
is to use machine translation from a source to a
pivot language and back, obtaining paraphrases. In
total, we generated 25 different training sets for
Spanish (es), French (fr), German (de), Russian
(ru), Chinese (zh), Arabic (ar), Dutch (nl), Finnish
(fi), Hungarian (hu), Multiple Languages (mul),
Ukrainian (uk), Hindi (hi), Danish (da), Czech (cs),
Romance Languages (roa), Bulgarian (bg), Cata-
lan (ca), Afrikaans (af), Estonian (et), Turkic Lan-
guages (trk), Slavik Languages (sla), Indonesian
(id), Slovak (sk), Tagalog (tl), and Kinyarwanda
(rw) pivot languages. Back translation has been
used as a data augmentation method for several dif-
ferent NLP tasks (Feng et al., 2021; Shorten et al.,
2021). Generally, it produced the best results for
BioASQ dataset. The generation of training sets
took 10 hours for SleepQA dataset and around two
hours for other datasets on one NVIDIA TESLA
P100 GPU 16GB (Kaggle). Results are in Table 15
and Table 16.

Table 14: Automatic evaluation of fine-tuned reader
models using EM scores for word substitution. Base-
line EM for BioASQ, COVID-QA, cpgQA and SleepQA
datasets are: 5.2, 22.1, 50.9, and 58.6.

Datasets set 1 set 2 set 3 set 4 set 5 set 6
BioASQ 5.2 6.2 5.2 5.2 6.2 6.2
COVID-QA 21.2 21.2 21.2 22.1 21.2 19.5
cpgQA 50.0 50.0 50.9 50.0 50.9 50.9
SleepQA 57.8 58.6 58.8 59.4 58.0 58.0
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Table 15: Automatic evaluation of fine-tuned retrieval
models using recall@1 for back translation. Baseline
recall@1 scores for BioASQ, COVID-QA, cpgQA and
SleepQA datasets are: 25.0, 42.5, 66.4, and 46.8.

Methods BioASQ COVID-QA cpgQA SleepQA
en-es-en 31.2 48.7 62.7 45.4
en-fr-en 29.2 47.8 60.9 44.8
en-de-en 27.1 45.1 61.8 41.6
en-ru-en 31.2 40.7 54.5 39.8
en-zh-en 30.2 46.9 61.8 42.2
en-ar-en 30.2 49.6 56.4 41.2
en-nl-en 31.2 40.7 64.5 44.8
en-fi-en 27.1 48.7 61.8 40.6
en-hu-en 29.2 49.6 66.4 41.6
en-mul-en 25.0 43.4 57.3 39.4
en-uk-en 28.1 45.1 64.5 40.8
en-hi-en 27.1 44.2 59.1 38.4
en-da-en 29.2 44.2 60.0 43.8
en-cs-en 27.1 43.4 63.6 45.8
en-roa-en 29.2 47.8 60.9 42.0
en-bg-en 29.2 43.4 58.2 40.0
en-ca-en 33.3 41.6 60.0 41.2
en-af-en 30.2 46.9 61.8 37.2
en-et-en 29.2 46.0 58.2 40.2
en-trk-en 18.8 23.9 35.5 19.6
en-sla-en 25.0 45.1 63.6 43.6
en-id-en 30.2 47.8 63.6 40.4
en-sk-en 30.2 48.7 57.3 44.2
en-tl-en 30.2 41.6 64.5 40.8
en-rw-en 28.1 29.2 50.0 34.4

Table 16: Automatic evaluation of fine-tuned reader
models using EM scores for back translation. Base-
line EM scores for BioASQ, COVID-QA, cpgQA and
SleepQA datasets are: 5.2, 22.1, 50.9, and 58.6.

Methods BioASQ COVID-QA cpgQA SleepQA
en-es-en 4.2 21.2 40.0 58.2
en-fr-en 6.2 20.4 45.5 58.4
en-de-en 7.3 21.2 46.4 57.4
en-ru-en 3.1 18.6 45.5 58.4
en-zh-en 6.2 21.2 43.6 58.8
en-ar-en 5.2 23.0 44.5 58.2
en-nl-en 7.3 21.2 45.5 57.6
en-fi-en 6.2 20.4 44.5 58.0
en-hu-en 6.2 19.5 43.6 58.2
en-mul-en 3.1 19.5 43.6 57.0
en-uk-en 6.2 18.6 40.9 59.4
en-hi-en 5.2 20.4 40.9 57.4
en-da-en 6.2 23.0 43.6 59.4
en-cs-en 4.2 19.5 43.6 58.0
en-roa-en 6.2 18.6 43.6 57.6
en-bg-en 6.2 21.2 43.6 59.2
en-ca-en 5.2 18.6 43.6 58.2
en-af-en 7.3 20.4 44.5 59.0
en-et-en 6.2 20.4 43.6 58.0
en-trk-en 4.2 15.9 39.1 56.4
en-sla-en 6.2 18.6 44.5 57.6
en-id-en 3.1 17.7 44.5 57.2
en-sk-en 5.2 21.2 44.5 58.6
en-tl-en 4.2 22.1 46.4 58.4
en-rw-en 5.2 17.7 40.0 56.2

B.6 Mean and Standard Deviation
Table 17 shows the mean and standard deviation
for different data quality enhancement methods for
retrieval fine-tuning. Table 18 shows the mean
and standard deviation for different data quality
enhancement methods for reader fine-tuning.

Table 17: Mean and standard deviation of different data
quality enhancement methods for retrieval fine-tuning.

Methods BioASQ COVID-QA cpgQA SleepQA
negatives 30.2± 1.7 45.8± 3.0 66.0± 2.4 47.1± 1.0

paraphrasing (T5) 25.7± 1.9 48.4± 3.4 65.8± 0.5 44.5± 1.7
paraphrasing (Pegasus) 30.2± 1.3 45.0± 1.6 64.0± 3.1 41.0± 2.7

substitution 26.6± 3.1 49.0± 1.2 67.0± 1.9 46.1± 1.8

translation 28.7± 2.8 44.0± 6.0 59.6± 6.2 40.6± 5.1

Table 18: Mean and standard deviation of different data
quality enhancement methods for reader fine-tuning.

Methods BioASQ COVID-QA cpgQA SleepQA
paraphrasing (T5) 4.7± 1.3 20.8± 1.6 49.6± 1.2 58.1± 0.6
paraphrasing (Pegasus) 6.6± 0.5 20.4± 1.8 46.7± 1.5 58.1± 0.6

substitution 5.7± 0.5 21.1± 0.8 50.5± 0.5 58.4± 0.6

translation 5.4± 1.3 20.0± 1.7 43.6± 2.0 58.0± 0.8

B.7 Similarity Between Enhancement
Methods

In the following tables, we show the average
similarity computed with ROUGE-1 metric be-
tween questions generated through each of the
enhancement techniques, over all four datasets
{BioASQ,CovidQA,cpgQA,SleepQA}, with Re-
trieval (first four tables) then Reader (next four).

Table 19: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
BioASQ retrieval datasets. Base. stands for baseline,
Para/PG for paraphrasing with PEGASUS, Para/T5
for paraphrasing with T5, Subst. for substitution and
Transl. for translation.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 80.44 100.0

Para/T5 91.49 76.73 100.0

Subst. 95.11 76.25 86.98 100.0

Transl. 57.68 51.10 56.98 55.01 100.0
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Table 20: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
CovidQA retrieval datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 74.63 100.0

Para/T5 83.33 66.06 100.0

Subst. 95.33 70.89 79.73 100.0

Transl. 76.44 62.60 69.50 72.97 100.0

Table 21: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
cpgQA retrieval datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 71.08 100.0

Para/T5 80.96 62.79 100.0

Subst. 94.62 67.01 76.93 100.0

Transl. 71.06 58.85 64.82 67.36 100.0

Table 22: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
SleepQA retrieval datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 77.43 100.0

Para/T5 86.30 70.98 100.0

Subst. 92.95 71.09 79.79 100.0

Transl. 79.05 65.98 73.53 73.20 100.0

Table 23: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
BioASQ reader datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 80.44 100.0

Para/T5 91.49 76.73 100.0

Subst. 97.71 78.51 89.46 100.0

Transl. 86.72 72.32 82.66 84.86 100.0

Table 24: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
CovidQA reader datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 72.11 100.0

Para/T5 83.33 64.65 100.0

Subst. 93.84 67.50 78.59 100.0

Transl. 66.01 54.99 60.87 61.55 100.0

Table 25: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
cpgQA reader datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 79.46 100.0

Para/T5 86.09 72.62 100.0

Subst. 95.58 75.34 82.15 100.0

Transl. 80.67 68.91 75.40 77.41 100.0

Table 26: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
SleepQA reader datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 68.15 100.0

Para/T5 85.57 62.76 100.0

Subst. 90.92 61.59 77.38 100.0

Transl. 63.06 51.40 59.00 57.15 100.0
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Abstract

Context-aware translation can be achieved by
processing a concatenation of consecutive sen-
tences with the standard Transformer archi-
tecture. This paper investigates the intuitive
idea of providing the model with explicit in-
formation about the position of the sentences
contained in the concatenation window. We
compare various methods to encode sentence
positions into token representations, including
novel methods. Our results show that the Trans-
former benefits from certain sentence position
encodings methods on En→Ru, if trained with
a context-discounted loss (Lupo et al., 2022b).
However, the same benefits are not observed
on En→De. Further empirical efforts are nec-
essary to define the conditions under which the
proposed approach is beneficial.

1 Introduction

Current neural machine translation (NMT) systems
have reached human-like quality in translating stan-
dalone sentences, but there is still room for im-
provement when it comes to translating entire doc-
uments (Läubli et al., 2018; Castilho et al., 2020).
Researchers have attempted to close this gap by
developing various context-aware NMT (CANMT)
approaches, where context refers to the sentences
preceding or following the current sentence to be
translated. A common approach to CANMT is
sentence concatenation (Tiedemann and Scherrer,
2017; Agrawal et al., 2018; Junczys-Dowmunt,
2019). The current sentence and its context are con-
catenated into a unique sequence that is fed to the
standard Transformer architecture (Vaswani et al.,
2017). Despite its simplicity, the concatenation
approach has been shown to achieve competitive or
superior performance to more sophisticated, multi-
encoding systems (Lopes et al., 2020; Lupo et al.,
2022a). However, learning with long concatena-
tion sequences has been proven challenging for the
Transformer architecture, because the self-attention

can be "distracted" by long context (Zhang et al.,
2020; Bao et al., 2021).

Recently, Lupo et al. (2022b) introduced the
segment-shifted position embeddings as a way to
help concatenation approaches discerning the sen-
tences concatenated in the processed sequence and
improve attention’s local focus. Explicitly telling
the model which tokens belong to each sentence is
not a new idea, but an intuitive one that was already
tested successfully in other tasks and approaches
(Devlin et al., 2019; Voita et al., 2018; Zheng et al.,
2020). We believe that encoding into token repre-
sentations explicit information about the position of
the sentences in the concatenation sequence can im-
prove translation quality. The temporal structure of
the document constitutes essential information for
its understanding and for the correct disambigua-
tion of inter-sentential discourse phenomena. This
work investigates this intuitive idea by comparing
various approaches to encoding sentence position
in concatenation approaches.

Our contributions are the following: (i) we com-
pare segment-shifted position embeddings with
three kinds of segment embeddings, evaluating
their impact on the performance of the concatena-
tion approach; (ii) we propose and evaluate making
sentence position encodings persistent over layers,
adding them to the input of every layer in addition
to the first; (iii) we propose and evaluate fusing
position embeddings and segment embeddings into
a single vector where token and sentence positions
are encoded in two orthogonal sets of dimensions,
allowing a clearer distinction between them, along
with memory savings.

To the best of our knowledge, this is the first
comparative study on the employment of sentence
position encodings for CANMT. The sentence po-
sition encoding variants proposed are not found
to improve the performance of the concatenation
approach except for one specific setting where a
context-discounted training loss is employed (Lupo
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et al., 2022b). More empirical studies are needed to
clearly define the conditions under which the pro-
posed approaches are beneficial to CANMT with
concatenation. Nonetheless, we find it useful to
share these preliminary results with the scientific
community. In fact, the proposed approaches are
intuitive and easy to implement, hence something
that many practitioners would presumably try. We
hope that our findings can guide future research
on sentence position encodings, by avoiding redun-
dant experiments on failing settings.

2 Proposed approach

A common method for training a concatenation
model and translating is by sliding windows (Tiede-
mann and Scherrer, 2017). The sliding concatena-
tion approach sKtoK translates a window xj

K =
xj−K+1xj−K+2 · · ·xj−1xj , of K consecutive sen-
tences belonging to the source document, including
the current (jth) sentence and K − 1 context sen-
tences, into yj

K . In this work we only consider past
context, although future context can also be present
in the concatenation window. At training time, the
standard NMT loss is calculated over the whole
output yj

K . At inference time, only the translation
yj of the current sentence is kept, while the context
translation is discarded. Then, the window is slid
by one sentence forward to repeat the process for
the (j + 1)th sentence and its context.

2.1 Sentence position encodings

To improve the discernability of the sentences con-
catenated in the window, we propose to equip the
sKtoK approach with sentence position encodings.
In particular, we experiment with segment-shifted
position embeddings and three segment embedding
methods. Segment-shifted position embeddings
(Lupo et al., 2022b) consist in a slight modification
of the Transformer’s token position scheme, where
the original token positions are shifted by a con-
stant factor every time a new sentence is encoun-
tered in the concatenation window. The resulting
positions are encoded with sinusoidal embeddings
as for Vaswani et al. (2017).

We also experiment with one-hot, sinusoidal,
and learned segment embeddings, like BERT’s
segment embeddings (Devlin et al., 2019). Seg-
ment embeddings encode the position k of each
sentence within the window of K concatenated sen-
tences into a vector of size d. We attribute sentence
positions k = 1, 2, ...,K starting from right to left.

The underlying rationale is always to attribute the
position k = 1 to the current sentence, no matter
how many sentences are concatenated as context.
The simplest strategy to integrate segment embed-
dings (SE) with position embeddings (PE) and to-
ken embeddings (TE) is by adding them (Devlin
et al., 2019). This operation requires that all three
embeddings have same dimensionality dmodel:

Hey bud [sep] You ok ? [end]

TEHey TEbud TE[sep] TEYou  TEok  TE? TE[end]

SE2 SE2 SE2 SE1 SE1 SE1 SE1

PE1 PE2 PE3 PE4 PE5 PE6 PE7

Input

Token 
Embeddings
Segment 
Embeddings
Position 
Embeddings

2.2 Persistent encodings
We propose to make sentence position encodings
persistent across Transformer’s blocks, as Liu et al.
(2020) did for position embeddings. In other words,
we propose adding segment-shifted position em-
beddings or segment embeddings to each block’s
input instead of limiting to the first one.

2.3 Position-segment embeddings (PSE)
In the Transformer, position embeddings are sinu-
soidal. Their sum with the learnable token em-
beddings is based on the premise that the model
can still distinguish both signals after being added
up. This distinction is accomplished by learning
token embeddings in a way that guarantees them
to be distinguishable. Adding non-learnable seg-
ment embedding to this sum, however, rises the
question whether they can be distinguished from
the sinusoidal position embeddings. In some cases,
learning to distinguish these two sources of infor-
mation after their sum might be impossible. For
instance, if segment embeddings are sinusoidal too,
their sum with sinusoidal position embeddings is
not bijective.1

Instead, concatenating PE and SE would make
them perfectly distinguishable because they would
belong to orthogonal spaces. Unfortunately, con-
catenating two dmodel-dimensional embeddings
would then oblige to project the resulting vector
back to a dmodel-dimensional space. To avoid this
expensive operation, we propose to reduce the di-
mensionality of PE and SE from dPE = dSE =
dmodel to values that sum up to the model dimen-
sion, i.e., dPE + dSE = dmodel. Thus, each

1Consider, for example, the equivalence between, PEt +
SEk and PEk + SEt.
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Figure 1: Cumulative ratio of the variance explained by
the principal components of the of the sinusoidal posi-
tion embedding matrix PE ∈ R1024×512, representing
1024 positions with 512 dimensions. Less than half of
the principal components can explain the entirety of the
variance represented in the sinusoidal embeddings. In
other words, 1024 positions can be represented with the
same resolution using less than half the dimensions.

PE-SE pair can be concatenated into a unique
vector named position-segment embedding (PSE):
PSEt,k = [PEt, SEk], of size dmodel.
Reducing the dimensionality of PE and SE can be
made without loss of information up to a certain
degree, as it can be shown with a Principal Com-
ponent Analysis (Jolliffe and Cadima, 2016) of the
sinusoidal position embedding matrix (Figure 1).

In the experimental section, we will empirically
evaluate the impact of representing token and sen-
tence positions with PSE, where the former are
encoded with sinusoids and the latter with either
one-hot, sinusoidal, or learned representations.

3 Experiments

We experiment with two models: base, a context-
agnostic Transformer-base (Vaswani et al., 2017),
and s4to4, a context-sensitive concatenation ap-
proach with the same architecture as base. s4to4
process sliding windows of 4 concatenated sen-
tences in input and decodes the whole window
into the target language. We equip s4to4 with the
sentence position encoding options presented in
the previous Section, and we evaluate their impact
on performance. When experimenting with PSE,
we allocate 4 dimensions to segment embeddings
(dSE = 4), which is enough to encode the position
of each of the 4 sentences in the concatenation win-
dow, with both one-hot and sinusoidal encodings.
Since dmodel = 512, this leaves dPE = 508 dimen-
sions available to the sinusoidal representation of
token positions.

The models are trained and evaluated on two lan-

guage pairs covering different domains: En→Ru
movie subtitles prepared by Voita et al. (2019),
and En→De TED talk subtitles released by
IWSLT17 (Cettolo et al. (2012), see Table 6 for
statistics). In addition to evaluating the aver-
age translation quality with BLEU2, we employ
two contrastive sets to evaluate the translation
of context-dependent anaphoric pronouns. For
En→Ru, we adopt Voita et al. (2019)’s set for the
evaluation of inter-sentential deixis, lexical cohe-
sion, verb-phrase ellipsis, and inflectional ellipsis.
For En→De, we evaluate the models on the trans-
lation of context-dependent ambiguous pronouns
with ContraPro (Müller et al., 2018), a large set of
contrastive translations of inter-sentential pronom-
inal anaphora. Appendix B includes more setup
details. The implementation of our experiments is
open-sourced on GitHub.3

3.1 Results

First, we study the impact of sentence position en-
codings in the En→Ru setting. In Table 1, we
compare models equipped with different combina-
tions of encodings (Enc.) and integration methods:
persistency (Pers.) and fusion with position encod-
ings (PSE). We primarily focus on the contrastive
evaluation of discourse translation since average
translation quality metrics like BLEU have been
repeatedly shown to be ill-equipped to detect im-
provements in CANMT (Hardmeier, 2012). Indeed,
BLEU displays negligible fluctuations throughout
the whole table. However, the performance on the
contrastive sets is not encouraging either: most of
the encoding variants degrade s4to4’sperformance.
The one-hot encoding helps, but only by a thin mar-
gin. Making encoding persistent or concatenating
them into PSE does not help either. The only ex-
ception is s4to4+lrn+pers+PSE (last line), which
gains more than two accuracy points over base-
line. However, this result is solely driven by the
net improvement on deixis disambiguation (almost
+5 points, see Table 10), while the performance is
degraded on the other three discourse phenomena.
In conclusion, sentence position encodings do not
seem to benefit the vanilla s4to4 approach.

3.1.1 Training with context-discounted loss
Following Lupo et al. (2022b), we hypothesize
that sentence position encodings can be leveraged

2Moses’ multi-bleu-detok (Koehn et al., 2007) for De,
multi-bleu for lowercased Ru as Voita et al. (2019).

3https://github.com/lorelupo/focused-concat
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System Enc. Pers. PSE Voita BLEU

base 46.64 31.98
s4to4 72.02 32.45

s4to4 shift 71.28 32.27
s4to4 shift ✓ 71.80 31.93

s4to4 1hot 72.52 32.61
s4to4 1hot ✓ 71.44 32.42
s4to4 1hot ✓ 71.24 32.33
s4to4 1hot ✓ ✓ 71.16 32.41

s4to4 sin 71.92 32.39
s4to4 sin ✓ 71.20 32.38
s4to4 sin ✓ 71.26 32.56
s4to4 sin ✓ ✓ 71.68 32.38

s4to4 lrn 71.80 32.56
s4to4 lrn ✓ 71.40 32.50
s4to4 lrn ✓ 70.36 32.37
s4to4 lrn ✓ ✓ 73.20 32.38

Table 1: En→Ru models’ accuracy on Voita’s con-
trastive set and BLEU on the test set. s4to4 models
are equipped with sentence position encodings (Enc.) of
four kinds: segment-shifted position embeddings, one-
hot segment embeddings, sinusoidal segment embed-
dings, or learned segment embeddings. Persistent encod-
ings (Pers.) are added to the input of each Transformer’s
block. Alternatively to being added, segment embed-
dings can be concatenated with position embeddings
(PSE). Values in bold are the best within their block of
rows and outperform the baselines (base, s4to4).

more effectively by training the concatenation ap-
proach with a context-discounted objective (see
Appendix A for details). Indeed, the context-
discounted objective function incentivizes distin-
guishing among different sentences. Table 2 dis-
plays the results of the s4to4+CD model equipped
with the various combinations of encodings tested
before, except the non-persistent PSE.4 In this case,
too, vanilla sentence encoding methods do not sig-
nificantly help the s4to4+CDmodel. However, mak-
ing the encodings persistent boosts performance
in the case of segment-shifted positions (+2.52
accuracy points over s4to4+CD) and learned em-
beddings (+2.14). One-hot segment embeddings
benefit only slightly (+0.48) from being persistent,
while no improvement is measured in the case of
sinusoidal segment embeddings. As discussed in
Section 2.3, this was expected since one-hot or
sinusoidal segment embeddings might not be dis-

4Since preliminary experiments where not encouraging,
we do not provide results for the non-persistent PSE combina-
tion in order to economize experiments.

System Enc. Pers. PSE Voita BLEU

base 46.64 31.98
s4to4 72.02 32.45
s4to4+CD 73.42 32.37

s4to4+CD shift 73.56 32.45
s4to4+CD shift ✓ 75.94 31.98

s4to4+CD 1hot 73.06 32.35
s4to4+CD 1hot ✓ 73.90 32.56
s4to4+CD 1hot ✓ ✓ 74.50 32.33

s4to4+CD sin 73.48 32.53
s4to4+CD sin ✓ 73.40 32.52
s4to4+CD sin ✓ ✓ 74.68 32.27

s4to4+CD lrn 73.68 32.45
s4to4+CD lrn ✓ 75.56 32.43
s4to4+CD lrn ✓ ✓ 74.48 32.35

Table 2: En→Ru context-discounted s4to4’s accuracy
on Voita’s contrastive set and BLEU. Values in bold are
the best within their block of rows and outperform the
baselines (base, s4to4, s4to4+CD).

tinguishable from sinusoidal position embeddings
once they are added together. Instead, when one-
hot and sinusoidal segment embeddings are con-
catenated to position embeddings into a unique
PSE and made persistent, they boost s4to4+CD by
+1.08 and +1.26 accuracy points, respectively.

With the aim of evaluating the generalizability
of these results to another language pair and do-
main, we train the context-discounted approach
on the En→De IWSLT17 dataset and evaluate
it on ContraPro (Müller et al., 2018).5 Table 3
summarizes the results. Unfortunately, the im-
provements achieved on En→Ru do not transfer to
this setting. The s4to4+CD slightly benefits from
segment-shifted position embeddings, but the other
approaches degrade its performance. We hypothe-
size that the model does not undergo sufficient train-
ing in this setting to reap the benefits of sentence
position encodings. In En→De IWSLT17, the train-
ing data volume is smaller than in the En→Ru
setting by an order of magnitude: 0.2 million sen-
tences versus 6 million (see Table 6). Therefore,
we extended the experiments on En→De by train-
ing models on millions of sentences. The details
and results are presented in Appendix C and Ta-
ble 7. Unfortunately, even in this case, the En→De
s4to4+CD does not benefit from the proposed sen-
tence position encoding options.

5We don’t experiment again with one-hot encodings since
it was the less promising approach on the En→Ru setting.

36



System Enc. Pers. PSE ContraPro BLEU

base 43.57 29.63
s4to4 72.12 29.48
s4to4+CD 74.78 29.32

s4to4+CD shift 74.56 29.20
s4to4+CD shift ✓ 71.46 27.50

s4to4+CD sin 74.46 29.23
s4to4+CD sin ✓ 74.35 29.26
s4to4+CD sin ✓ ✓ 74.02 28.73

s4to4+CD lrn 72.49 28.35
s4to4+CD lrn ✓ 71.07 27.87
s4to4+CD lrn ✓ ✓ 71.89 28.63

Table 3: Accuracy on ContraPro of models trained on
En→De IWSLT17, and BLEU on the test set.

System6 Voita

Chen et al. (2021) 55.61
Sun et al. (2022) 58.13
Zheng et al. (2020) 63.30
Kang et al. (2020) 73.46
Lupo et al. (2022b) 73.56
Zhang et al. (2020) 75.61
s4to4 + shiftpers + CD 75.94

Table 4: Benchmarking on En→Ru (accuracy).

4 Benchmarking

In Tables 4 and 5, we compare our best perform-
ing systems with other CANMT systems from the
literature. For En→Ru (Table 4), we compare
with works that adopted the same experimental
conditions as ours. Our s4to4 concatenation ap-
proach trained with context discounting and per-
sistent segment-shifted positions achieves the best
accuracy on Voita’s contrastive set. For En→De
(Table 5), we compare to the works adopting Müller
et al. (2018)’s contrastive set for evaluation, even
if the training conditions are not comparable. Our
s4to4+CD trained on the high resource setting (see
Appendix C) is second of the list, by a negligi-
ble margin. Notably, Huo et al. (2020)’s system
is also a concatenation approach, but trained on
x10 parallel sentences with respect to our system.
This comparison indicates that context discounting
(Lupo et al., 2022b) makes training efficient.

6Whenever the cited works present and evaluate multiple
systems, we compare to the best performing one. For the
majority of these works, BLEU scores are not available for
comparison on the same test set.

7Reported in Müller et al. (2018).

System6 ContraPro

Maruf et al. (2019) 45.04
Voita et al. (2018)7 49.04
Stojanovski and Fraser (2019) 57.64
Müller et al. (2018) 59.51
Lupo et al. (2022a) 61.09
Lopes et al. (2020) 70.8
Lupo et al. (2022b) 74.56
Majumder et al. (2022) 78.00
Fernandes et al. (2021) 80.35
Huo et al. (2020) 82.60
s4to4 + CD 82.54

Table 5: Benchmarking on En→De (accuracy).

5 Conclusions

Intending to improve concatenation approaches to
context-aware NMT (CANMT), we investigated
an intuitive idea: encoding into token represen-
tations the position of their sentence within the
processed sequence. Besides adopting existing en-
coding methods (segment-shifted position embed-
dings and segment embeddings), we proposed a
novel approach to integrate token and sentence
position embeddings in a unique vector called
position-segment embedding (PSE). We also pro-
pose to make sentence position encodings persis-
tent throughout the model’s layers.

We compared these encoding approaches on the
En→Ru/De language pairs. Consistent improve-
ments were observed on En→Ru when persistent
sentence position encoding methods were used in
conjunction with the context-discounted training
objective proposed by Lupo et al. (2022b). How-
ever, results on En→De were negative.

Further research is needed to clearly define the
conditions under which the proposed approaches
are beneficial to CANMT with concatenation. We
encourage practitioners to test the most promising
sentence-position encodings - persistent segment-
shifted positions - should they want to get the
most out of their CANMT systems, but only in
conjunction with context discounting.
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A Context-discounted loss

In CANMT with sliding concatenation windows
we should prioritize the quality of the translation of
the current sentence because the context translation
will be discarded during inference. Therefore, the
standard NMT objective function is not suitable
in this case. Lupo et al. (2022b) propose to en-
courage the concatenation approach to focus on the
translation of the current sentence xj by applying
a discount 0 ≤ CD < 1 to the loss generated by
context tokens:

LCD(x
j
K ,yj

K) = CD·Lcontext + Lcurrent (1)

= CD·L(xj
K ,yj−1

K−1) + L(x
j
K ,yj).

with L(x,y) being the standard NMT objective
function:

L(x,y) =
|y|∑

t=1

logP (yt|y<t,x), (2)

The authors demonstrate the efficacy of this loss
function, that leads to a self-attentive mechanism
that is less influenced by noisy contextual informa-
tion. As a result, they show a marked improvement
in the translation of inter-sentential discourse phe-
nomena.

B Details on experimental setup

All experiments are implemented in fairseq (Ott
et al., 2019). All models follow the Transformer-
base architecture (Vaswani et al., 2017): hidden
size of 512, feed forward size of 2048, 6 layers,
8 attention heads. They are trained on 4 Tesla
V100, with a fixed batch size of approximately
32k tokens for En→Ru and 16k for En→De, as it
has been shown that Transformers need a large
batch size to optimize performance (Popel and
Bojar, 2018). We stop training after 12 consec-
utive non-improving validation steps (in terms of
loss on dev), and we average the weights of the
best-performing checkpoint and the 4 checkpoints
that follow it. We train models with the optimizer

configuration and learning rate (LR) schedule de-
scribed in Vaswani et al. (2017). The maximum
LR is optimized for each model over the search
space {7e − 4, 9e − 4, 1e − 3, 3e − 3}. The LR
achieving the best loss on the validation set after
convergence was selected. We use label smoothing
with an epsilon value of 0.1 (Pereyra et al., 2017)
for all settings. We adopt strong model regular-
ization (dropout=0.3) following Kim et al. (2019)
and Ma et al. (2021). At inference time, we use
beam search with a beam of 4 for all models. We
adopt a length penalty of 0.6 for all models. The
other hyperparameters were set according to the
relevant literature (Vaswani et al., 2017; Popel and
Bojar, 2018; Voita et al., 2019; Ma et al., 2021;
Lopes et al., 2020). When experimenting with
segment-shifted position embeddings, the shift is
equal to the average sentence length calculated over
the training data, following (Lupo et al., 2022b). In
particular, we set shift= 8 for En→Ru, shift= 21
for En→De.

B.1 Data pre-processing

Since Voita’s data have already been pre-processed
(Voita et al., 2019), we only apply byte pair en-
coding (Sennrich et al., 2016) with 32k merge
operations jointly for English and Russian. For
IWSLT17, instead, we tokenize data with the
Moses toolkit (Koehn et al., 2007), clean them by
removing long sentences, and encode them with
byte pair encoding. The byte pair encoding is
learned on the En→De training data released by
WMT17 for the news translation task using 32k
merge operations jointly for source and target lan-
guages, to be compatible with the experiments pre-
sented in the next section of the Appendix (C).

C Increasing training data for the English
to German pair

We hypothesize that the model does not undergo
sufficient training in the En→De setting to reap
the benefits of segment embeddings. Indeed, the
training data volume is smaller than in the En→Ru
setting: 0.2 million sentences versus 6 million
(see Table 6). Therefore, we choose to experi-
ment with more En→De training data, employ-
ing the same high-resource setting of Lupo et al.
(2022a). This setting expands the IWSLT17 train-
ing data (Cettolo et al., 2012) by adding the News-
Commentary-v12 and Europarl-v7 sets released
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Corpus Tgt Docs Sents Doc Length Sent Length Sent Length (BPE)

mean std max mean std max mean std max

Voita Ru 1.5M 6.0M 4.0 0.0 4 8.3 4.7 64 8.6 4.9 69
IWSLT17 De 1.7k 0.2M 117.0 58.4 386 20.8 14.3 153 23.3 16.3 195

High De 12.2k 2.3M 188.4 36.2 386 27.3 16.1 249 29.1 17.4 408

Voita Ru 10k 40k 4.0 0.0 4 8.2 4.8 50 8.5 5.0 58
Both De 62 5.4k 87.6 53.5 296 19.0 12.5 114 21.1 14.0 132

Voita Ru 10k 40k 4.0 0.0 4 8.2 4.8 42 8.5 5.0 50
Both De 12 1.1k 90.0 29.2 151 19.3 12.7 102 21.6 14.3 116

Table 6: Statistics for the training (1st block), validation (2nd block) and test set (3rd block) after pre-processing,
and after BPE tokenization. All figures refer to the English text (source side).

System Enc. Pers. PSE CP BLEU

s4to4+CD 82.24 31.69
s4to4+CD shift ✓ 80.45 30.71
s4to4+CD sin ✓ ✓ 80.85 31.40
s4to4+CD lrn ✓ 79.82 31.58

Table 7: Context-discounted s4to4 trained on the
En→De high-resource setting, evaluated with the ac-
curacy on ContraPro (CP) and BLEU on the test set.

by WMT178. The resulting training set comprises
2.3M sentences (see statistics in Table 6). Train-
ing on this data is more expensive than training on
the En→Ru setting, considering that the average
sentence length is 27.3 tokens versus 8.3 tokens,
respectively. Therefore, we only train the most
promising approaches.9 Their performances are
compared in Table 7. As expected, the s4to4+CD
model drastically improves its performance com-
pared to training on IWSLT17 alone: +7.93 accu-
racy points on ContraPro and +2.37 BLEU points
on the test set (c.f. Table 3). However, even with
larger training volumes, segment position encod-
ings do not seem to help s4to4+CD on the En→De
language pair.

D Allocating more space to segments in
PSE

For the En→Ru language pair, we have found that
one-hot and sinusoidal segment embeddings need
to be integrated into PSE for being leveraged by
s4to4+CD (Section 3.1.1). Instead, learned embed-

8http://www.statmt.org/wmt17/translation-task.html
9We set shift= 27 for segment-shifted position embed-

dings, consistently with the average sentence length of the
training data.

dings worked best when added to position embed-
dings.
Here, we evaluate whether PSE with learned seg-
ment embeddings would perform better if more
dimensions were allocated to segments. In partic-
ular, we let the model learn to represent sentence
positions in dSE = 128 dimensions, which leaves
dPE = dmodel − dSE = 384 dimensions to posi-
tion embeddings, largely enough as shown in Sec-
tion 2.3.
As shown in Table 8, increasing the number of
dimensions allocated to segment embeddings de-
teriorates the performance on Voita’s contrastive
set. The reason could simply be that adding more
learnable parameters makes the task harder.

E Persistent positions

Making sentence position encodings persistent
across the layers have been found beneficial
for context-discounted models on the En→Ru
setting (Table 2). The best-performing model,
s4to4+CD+shift+pers, shifts token positions by a
constant factor every time we pass from one sen-
tence to the next and makes the resulting position
embeddings persistent throughout Transformer’s
blocks. In Table 9, we benchmark this model
against models employing persistent token position
embeddings but without segment-shifting. Both
vanilla and context-discounted s4to4 perform better
when positions are persistent across Transformer’s
blocks, as suggested by Liu et al. (2020) and Chen
et al. (2021). Segment-shifting further enhances
performance, which confirms that the model bene-
fits from a sharper distinction between sentences.
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System Enc. Pers. PSE Deixis Lex co. Ell. inf Ell. vp Voita BLEU

s4to4+CD lrn ✓ 4 93.20 47.40 72.20 64.40 74.48 32.35
s4to4+CD lrn 128 83.88 46.33 65.20 50.20 67.38 32.43
s4to4+CD lrn ✓ 128 78.20 46.40 40.60 30.60 60.14 32.35

Table 8: s4to4 trained on En→Ru OpenSubtitles. Accuracy on Voita’s En→Ru contrastive set and BLEU on the test
set. The accuracy on the contrastive set is detailed on the left, with the accuracy on each subset corresponding to a
specific discourse phenomenon. Result: allocating more dimensions to segments in PSE deteriorates performance.

System Enc. Pers. PSE Voita BLEU

s4to4 72.02 32.45
s4to4 ✓ 72.44 32.29

s4to4+CD 73.42 32.37
s4to4+CD ✓ 74.10 32.12
s4to4+CD shift ✓ 75.94 31.98

Table 9: En→Ru: making positions persistent across
Transformer’s blocks improve discourse disambiguation
performance both for vanilla and context-discounted
s4to4. Segment-shifting positions further improves per-
formance.

F Details of the evaluation on discourse
phenomena

In Tables 10 and 11, we provide more details on
the evaluation of the models presented in the tables
of the paper, documenting their accuracy on the
different subsets of the contrastive sets employed.
For Voita’s En→Ru contrastive set (Voita et al.,
2019), we report the accuracy on each of the 4 dis-
course phenomena included in it; for the En→De
ContraPro (CP, Müller et al. (2018)), the accuracy
on anaphoric pronouns with antecedents at differ-
ent distances d = 1, 2, ... (in number of sentences).
We complement Voita/CP with two other metrics,
Voita/CPavg and CPd>0. Metrics are calculated as
follow:

Voita = 2500∗Deixis+1500∗Lex co.+500∗Ell. inf+500∗Ell. vp
5000

(3)

CPalld = 2400∗(d=0)+7075∗(d=1)+1510∗(d=2)+573∗(d=3)+442∗(d>3)
12000

(4)

CPd>0 =
7075∗(d=1)+1510∗(d=2)+573∗(d=3)+442∗(d>3)

9600
(5)

Voitaavg/CPavg =
(d=1) + (d=2) + (d=3) + (d=4)

4
(6)
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System Enc. Pers. PSE Deixis Lex co. Ell. inf Ell. vp Voita Voitaavg

base 50.00 45.87 51.80 27.00 46.64 43.67
s4to4 85.80 46.13 79.60 73.20 72.02 71.18

s4to4 shift 85.24 46.07 77.20 71.20 71.28 69.93
s4to4 shift ✓ 85.96 46.33 75.20 74.00 71.80 70.37

s4to4 sin 86.36 45.80 76.40 73.60 71.92 70.54
s4to4 sin ✓ 84.96 46.13 74.80 74.00 71.20 69.97
s4to4 sin ✓ 84.64 46.40 76.60 73.60 71.26 70.31
s4to4 sin ✓ ✓ 85.24 46.33 76.40 75.20 71.68 70.79

s4to4 lrn 85.48 46.27 76.20 75.60 71.80 70.89
s4to4 lrn ✓ 84.84 45.93 77.60 74.40 71.40 70.69
s4to4 lrn ✓ 83.60 46.67 74.80 70.80 70.36 68.97
s4to4 lrn ✓ ✓ 90.52 46.00 74.80 66.60 73.20 69.48

s4to4 1hot 86.08 47.07 78.00 75.60 72.52 71.69
s4to4 1hot ✓ 83.76 47.53 78.00 75.00 71.44 71.07
s4to4 1hot ✓ 84.56 46.13 78.20 73.00 71.24 70.47
s4to4 1hot ✓ ✓ 84.56 46.47 76.00 73.40 71.16 70.11

s4to4+CD 87.16 46.40 81.00 78.20 73.42 73.19

s4to4+CD shift 85.76 48.33 81.40 80.40 73.56 73.97
s4to4+CD shift ✓ 88.76 52.13 83.00 76.20 75.94 75.02

s4to4+CD sin 87.96 46.80 78.00 76.60 73.48 72.34
s4to4+CD sin ✓ 86.80 47.00 80.80 78.20 73.40 73.20
s4to4+CD sin ✓ ✓ 89.28 46.67 83.20 77.20 74.68 74.09

s4to4+CD lrn 88.12 46.47 81.20 75.60 73.68 72.85
s4to4+CD lrn ✓ 86.84 52.27 84.60 80.00 75.56 75.93
s4to4+CD lrn ✓ ✓ 93.20 47.40 72.20 64.40 74.48 69.30

s4to4+CD 1hot 86.40 46.73 82.00 76.40 73.06 72.88
s4to4+CD 1hot ✓ 87.68 46.80 81.60 78.60 73.90 73.67
s4to4+CD 1hot ✓ ✓ 88.88 47.67 82.20 75.40 74.50 73.54

Sample size 2500 1500 500 500 5000 5000

Table 10: Accuracy on the En→Ru contrastive set for the evaluation of discourse phenomena (Voita, %), and on its
4 subsets: deixis, lexical cohesion, inflection ellipsis, and verb phrase ellipsis. Voitaavg denotes the average on the 4
discourse phenomena, while Voita represents the average weighted by the frequency of each phenomenon in the test
set (see row "Sample size").
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System Enc. Pers. PSE d=0 d=1 d=2 d=3 d>3 CPd>0 CPavg CP

base 68.75 32.89 43.97 47.99 70.58 37.27 48.86 43.57
s4to4 75.20 68.89 74.96 79.58 87.78 71.35 77.80 72.12
s4to4+CD 76.66 72.86 75.96 80.10 84.38 74.31 78.33 74.78

s4to4+CD shift 75.25 72.56 77.15 80.27 86.65 74.39 79.16 74.56
s4to4+CD shift ✓ 72.41 69.15 74.23 77.13 86.42 71.22 76.73 71.46

s4to4+CD sin 76.75 71.83 76.82 80.97 87.55 73.88 79.29 74.46
s4to4+CD sin ✓ 76.50 72.08 76.35 79.23 85.97 73.82 78.41 74.35
s4to4+CD sin ✓ ✓ 77.25 71.22 76.42 78.88 86.87 73.22 78.35 74.02

s4to4+CD lrn 73.91 70.21 75.29 77.66 85.06 72.14 77.06 72.49
s4to4+CD lrn ✓ 73.66 68.53 72.51 75.74 86.65 70.42 75.86 71.07
s4to4+CD lrn ✓ ✓ 73.54 68.40 79.07 80.27 83.48 71.48 77.81 71.89

High Resource Setting

base 82.83 35.18 44.90 51.13 66.28 39.09 49.37 47.84
s4to4 82.41 80.66 81.72 84.29 88.00 81.38 83.67 81.59
s4to4+CD 83.70 81.79 82.11 82.19 90.04 82.24 84.03 82.54

s4to4+CD shift ✓ 81.70 79.61 81.45 83.42 86.65 80.45 82.78 80.70
s4to4+CD sin ✓ ✓ 84.12 79.85 82.38 84.46 86.87 80.85 83.39 81.50
s4to4+CD lrn ✓ 83.12 79.13 79.73 82.19 88.00 79.82 82.26 80.48

Sample size 2400 7075 1510 573 442 9600 9600 12000

Table 11: Accuracy on the En→De contrastive set for the evaluation of anaphoric pronouns (CP = ContraPro,
%). The columns titled d=* represent the accuracy for each subset of pronouns with antecedents at a specific
distance d ∈ [0, 1, 2, 3, > 3] (in number of sentences). CPavg denotes the average on the 4 subsets of pronouns
with extra-sentential antecedents (d > 0) while CPd>0 represents the average weighted by the size of each of the 4
subsets (see row "Sample size"). CP is equivalent to CPd>0, but it includes the accuracy on d = 0.
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Abstract
Pretrained language models (PLMs) on domain-
specific data have been proven to be effec-
tive for in-domain natural language process-
ing (NLP) tasks. Our work aimed to develop
a language model which can be effective for
the NLP tasks with the data from diverse so-
cial media platforms. We pretrained a lan-
guage model on Twitter and Reddit posts in En-
glish consisting of 929M sequence blocks for
112K steps. We benchmarked our model and 3
transformer-based models—BERT, BERTweet,
and RoBERTa on 40 social media text classifi-
cation tasks. The results showed that although
our model did not perform the best on all of
the tasks, it outperformed the baseline model—
BERT on most of the tasks, which illustrates
the effectiveness of our model. Also, our work
provides some insights of how to improve the
efficiency of training PLMs.

1 Introduction

In recent years, pretraining language models
(PLMs) such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) have proven to be
effective for a wide range of natural language
processing (NLP) tasks. Domain adaptive pre-
training (DAPT), also known as pretraining on
domain-specific data, has been a commonly em-
ployed approach to enhancing model performance
on tasks that are specific to a particular domain
(Gururangan et al., 2020). Numerous efforts have
been made to achieve this goal. For example, Lee
et al. (2019) proposed BioBERT by pretraining
BERT on a large biomedical corpus of PubMed
abstracts, and demonstrated that it outperformed
BERT on three representative biomedical text min-
ing tasks. Alsentzer et al. (2019) attempted to
adapt pretrained models for clinical text by train-
ing BioBERT on clinical notes, resulting in the
creation of BioClinical_BERT (Leroy et al., 2017).
Encouraged by the success of pretraining models
in different domains, recent studies have developed

pretrained models for social media NLP tasks. For
example, Dai et al. (2020) built a model by fur-
ther pretraining the model developed by Devlin
et al. (2019) by further training the model on En-
glish tweets. Nguyen et al. (2020a) pretrained a
transformer model named BERTweet by training
the model on a large scale of English tweets from
scratch. However, these models only involve Twit-
ter data and may not be effective enough for social
media data from other platforms such as Reddit and
Facebook. To fill this gap, we trained a language
model using both Twitter and Reddit data. We used
92GB text data including 20GB English tweets and
72GB Reddit comments. Our model was trained
from scratch for 112K steps following the model
architecture of RoBERTa-base. For evaluation, We
benchmarked our model and 3 transformer-based
models—BERT, BERTweet, and RoBERTa on 40
social media text classification tasks covering di-
verse health-related and non-health-related topics
and from 6 social media platforms. The results
showed that although our model did not perform
the best on all of the tasks, it outperformed the
baseline model—BERT on most of the tasks. It
showed that pretraining on the in-domain data can
benefit the model on the downstream tasks. To sum
up, our contributions are as follows:

• We pretrained and released a transformer-
based language model on Twitter and Reddit
data which outperformed BERT on most of
the benchmarking tasks.

• We benchmarked our model and 3 PLMs on
40 social media text classification tasks.

• We analyzed the influence of training time,
data source, and task domains to different
PLMs, which.

• Our work provided some insights of how to
improve the efficiency of training PLMs.
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We call our final pretrained model SocBERT—an
abbreviation of Social Media BERT.

2 Method

2.1 Data collection and preprocessing

We collected 92GB pre-training data including
20GB English tweets and 72GB English Reddit
comments. The Twitter data were collected via
Twitter streaming API and downloaded from the
Achive team 1, and the Reddit comments were
downloaded from Pushshift2. Because Reddit com-
ments are usually longer than the maximum se-
quence limitation of the language model, we chun-
ked the comments into sequence blocks, and each
sequence block is limited to the maximum se-
quence length. In addition, we used the open source
tool named preprocess-twitter (Paulus and Penning-
ton) to preprocessing the data. The preprocessing
includes lowercasing, normalization of numbers,
usernames, urls, hashtags and text smileys, and
adding extra marks for capital words, hashtags and
repeated letters. We applied fastBPE (Sennrich
et al., 2016) to tokenize the data and obtained a dic-
tionary including 74K subwords which was used
for the model pretraining.

2.2 Model architecture

We developed a masked language model (MLM)
for pretraining and a classification model for bench-
marking. MLM is an unsupervised task in which
some of the tokens in a text sequence are ran-
domly masked in the input and the objective of
the model is to predict the masked text segments.
The model architectures for the masked language
model (MLM) and classification are the same as
the work of Liu et al. (2019). Specifically, MLM
consists of an encoder layer that embeds the text
sequence as an embedding matrix consisting of to-
ken embeddings and an output layer with Softmax
activation that predict the masked token based on
the embeddings of the masked tokens. The classi-
fication model consists of the same encoder layer
and an output layer with Softmax activation to pre-
dict classes based on the embedding of the [CLS]
token.

1https://archive.org/details/
twitterstream

2https://files.pushshift.io/reddit/
comments/

3 Benchmarking Tasks

We utilized a total of 40 social media text clas-
sification tasks to establish a benchmark, which
represents the most extensive collection of social
media text classification tasks currently available
to us. Manually annotated data for all these tasks
were either publicly available or had been made
available through shared tasks. The tasks covered
diverse health-related and non-health-related topics
including, but not limited to, adverse drug reac-
tions (ADRs) (Sarker and Gonzalez, 2015a; Sarker
et al., 2018b), cohort identification for breast cancer
(Al-Garadi et al., 2020), non-medical prescription
medication use (NPMU) (Al-Garadi et al., 2021),
informative COVID-19 content detection (Nguyen
et al., 2020b), medication consumption (Sarker
et al., 2018a), pregnancy outcome detection (Klein
and Gonzalez-Hernandez, 2020), symptom clas-
sification (Magge et al., 2021), suicidal ideation
detection (Gaur et al., 2021), identification of drug
addiction and recovery intervention (Ghosh et al.,
2020b), signs of pathological gambling and self-
harm detection (Parapar et al., 2021), sentiment
analysis and factuality classification in e-health fo-
rums (Carrillo-de Albornoz et al., 2018), offensive
language identification (Zampieri et al., 2019), cy-
berbullying detection (Kumar et al., 2018; Bhat-
tacharya et al., 2020), sentiment analysis (Moham-
mad et al., 2018; Preoţiuc-Pietro et al., 2016), and
sarcasm language detection (Ghosh et al., 2020a).

The full details including the source, evaluation
metric, training and test set sizes, the number of
classes, and the inter-annotator agreement (IAA)
for each task, if available, are shown in Appendix A.
Seventeen tasks involved binary classification, 13
involved three-class classification, and 10 involved
four-, five-, six- or nine-class classification each.
The datasets combined included a total of 252,655
manually-annotated instances, with 204,989 (80%)
instances for training and 47,666 (20%) for eval-
uation. The datasets involved data from multiple
social media platforms—22 from Twitter, 6 from
MedHelp3, 6 from Reddit, 3 from Facebook, 2 from
Youtube, and 1 from WebMD4. For evaluation, we
used the F1-score of the positive class for binary
classification and the micro-averaged F1-score for
other multi-class classification.

3https://www.medhelp.org/
4https://www.webmd.com/
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4 Experiments

4.1 Language model settings

The language model training consists of two phases.
At the first phase, we initialized the language model
with random initialization and trained the model on
20GB English tweets and 54GB Reddit comments
for 100K steps from scratch. However, During this
process, we observed that it would be extremely
time-consuming to train the model on the whole
dataset using our computation resources, and we
could not inspect the model during this process.
Therefore, at the second phase, we changed our
training strategy into splitting the data and sequen-
tially training the model on a each split so that we
could check the model after each round. 5 Specifi-
cally, we split the Reddit data into small datasets
with 10M sequence blocks and then trained the
model on each dataset for 10 epochs. At the time
of publication of this work, we finished the train-
ing of 11 small datasets involving another 18GB
Reddit data. The maximum sequence limitation of
our model is 128, and the batch size is 8192. Other
hyper-parameters were the same for the two phases,
which followed the settings of RoBERTa-base (Liu
et al., 2019). We refer to the checkpoint at the end
of first phase as SocBERT-base and the checkpoint
at the end of second phase as SocBERT-final. In
summary, SocBERT-base was pretrained on 819M
sequence blocks for 100K steps. SocBERT-final
was pretrained on 929M (819M+110M) sequence
blocks for 112K (100K+12K) steps.

4.2 Classification model settings

For classification, we performed a limited parame-
ter search with the learning rate ∈ {2× 10−5, 3×
10−5} and fine-tuned each model for 10 epochs.
The rest of hyper-parameters were the same as
Liu et al. (2019). Because initialization can have
a significant impact on convergence in training
deep neural networks, we ran each experiment
three times with different random initializations.
The model that achieved the median performance
over the test set is reported. In addition, we
experimented with BERT-base, BERTweet, and
RoBERTa-base to better evaluate the effectiveness
of our model.

5The first phase training took about two and half a month.
At the second phase, each round of training took about one
week. The GPU model we used was 32GB Tesla V100. We
used 8 GPUs at the first phase and 1 GPU at the second phase
because of the limited budget.

5 Results

5.1 Classification results
The full classification results are listed in 1. We
treated BERT as the baseline model and compared
other models with BERT. BERTweet achieved
better results on 33 (83%) tasks, RoBERTa on
35 (88%) tasks, SocBERT-base on 30 (75%)
tasks, and SocBERT-final on 31 (78%) tasks. Al-
though slightly underperforming RoBERTa and
BERTweet, both of SocBERT-base and SocBERT-
final outperformed BERT. It showed that our pre-
training model is effective on the classification
tasks with social media data. The gap between
our model and RoBERTa was predictable because
RoBERTa was pretrained on a much larger data
set (160GB), for longer time (500K steps) than our
model, and the pretraining data of RoBERTa also
covered the Reddit data in our dataset. Compared
to BERTweet, which was pretrained on 160M se-
quence blocks for 950K steps, our model was pre-
trained on a larger set of data for shorter time. This
suggests that the training time may have a higher
impact than the training data size on large language
model pretraining. In addition, we observed that
SocBERT-final outperformed SocBERT-base on 20
tasks. Considering that the second phase contained
only 12K steps, it is reasonable that the influence of
the second phase of training was small. Although
the strategy we used for the second phase of train-
ing allowed us to check the model without waiting
for several months, future studies are required to
assess whether the strategy of the second phase of
training is as efficient as training the model on the
whole dataset. Since SocBERT-base and SocBERT-
final performed similarly, we performed analysis
only on SocBERT-base later in this section.

5.2 Model Comparison
In order to explore the influence of the data
source and task domain, we compared the model
performance of SocBERT-base, BERTweet, and
RoBERTa over the tasks from different social me-
dia platforms or focusing on different topics shown
in Table 2. The results showed that SocBERT-base
outperformed BERTweet on 13 tasks and outper-
formed RoBERTa on 9 tasks. Although SocBERT-
base and RoBERTa underperformed BERTweet on
most of the tasks from Twitter, SocBERT-base and
RoBERTa performed better on most of the tasks
from Reddit and MedHelp. This suggests clas-
sification performance is likely to improve if the
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ID Task Source BERT BT RB Soc-b Soc-f
1 ADR Detection (Sarker and Gonzalez, 2015b) Twitter 59.6 64.7 62.2 60.1 66.0
2 Breast Cancer (Sarker et al., 2020) Twitter 85.6 88.1 88.6 86.1 86.6
3 NPMU characterization (Ali Al-Garadi et al., 2020) Twitter 57.2 66.1 61.3 64.2 61.2

4 WNUT-20-task2 (COVID-19 tweet detection)
(Nguyen et al., 2020c) Twitter 86.6 88.5 88.8 87.9 87.8

5 SMM4H-17-task1 (ADR detection) (Sarker et al., 2018b) Twitter 45.4 51.4 53.8 51.0 50.2

6 SMM4H-17-task2 (medication consumption)
(Sarker et al., 2018b) Twitter 76.5 79.8 78.6 77.4 78.1

7 SMM4H-21-task1 (ADR detection) (Magge et al., 2021) Twitter 70.5 65.6 69.2 63.1 63.1

8 SMM4H-21-task3a (regimen change on Twitter)
(Magge et al., 2021) Twitter 55.6 55.9 57.9 57.4 55.5

9 SMM4H-21-task3b (regimen change on WebMD)
(Magge et al., 2021) WebMD 86.8 88.4 88.2 87.9 87.8

10 SMM4H-21-task4 (adverse pregnancy outcomes)
(Magge et al., 2021) Twitter 86.8 88.9 89.7 86.8 88.2

11 SMM4H-21-task5 (COVID-19 potential case)
(Magge et al., 2021) Twitter 69.6 72.3 76.5 71.8 74.3

12 SMM4H-21-task6 (COVID-19 symptom)
(Magge et al., 2021) Twitter 97.6 98.4 98.2 97.8 97.8

13 SMM4H-22-task9 (self-reporting exact age)
(Weissenbacher et al., 2022) Reddit 94.0 93.4 94.2 91.5 93.3

14 Suicidal Ideation Detection
(Gaur et al., 2021) Reddit 71.7 73.0 78.0 76.7 78.6

15 Drug Addiction and Recovery Intervention
(Ghosh et al., 2020b) Reddit 73.3 75.4 77.0 75.9 77.5

16 eRisk-21-task1 (Signs of Pathological Gambling)
(Parapar et al., 2021) Reddit 82.7 85.1 85.4 86.1 87.6

17 eRisk-21-task2 (Signs of Self-Harm)
(Parapar et al., 2021) Reddit 76.7 78.5 78.9 77.3 78.9

18 Sentiment Analysis (Food Allergy)
(Carrillo-de Albornoz et al., 2018) MedHelp 77.0 75.8 75.8 73.9 73.9

19 Sentiment Analysis (Crohn’S Disease)
(Carrillo-de Albornoz et al., 2018) MedHelp 70.8 73.9 78.3 76.4 73.9

20 Sentiment Analysis (Breast Cancer )
(Carrillo-de Albornoz et al., 2018) MedHelp 63.5 63.3 64.2 61.8 64.6

21 Factuality Classification (Food Allergy)
(Carrillo-de Albornoz et al., 2018) MedHelp 69.9 72.0 73.7 72.7 74.0

22 Factuality Classification (Crohn’S Disease)
(Carrillo-de Albornoz et al., 2018) MedHelp 77.6 71.7 71.4 74.5 75.9

23 Factuality Classification(Breast Cancer)
(Carrillo-de Albornoz et al., 2018) MedHelp 43.8 45.5 50.0 46.9 49.2

24 OLID-1 (Zampieri et al., 2019) Twitter 83.1 84.9 84.9 85.5 85.3
25 OLID-2 (Zampieri et al., 2019) Twitter 56.7 90.8 89.2 90.0 89.6
26 OLID-3 (Zampieri et al., 2019) Twitter 36.6 70.0 69.0 70.9 66.7
27 TRAC-1-1 (Kumar et al., 2018) Facebook 58.1 60.3 56.8 59.6 56.9
28 TRAC-1-2 (Kumar et al., 2018) Twitter 56.6 65.4 59.8 59.3 58.6
29 TRAC2-1 (Bhattacharya et al., 2020) Youtube 73.6 74.7 75.6 73.3 75.1
30 TRAC2-2 (Bhattacharya et al., 2020) Youtube 86.6 85.8 85.6 86.3 85.3
31 SemEval-2018 Task 1-4 (Mohammad et al., 2018) Twitter 67.8 69.1 68.6 66.5 74.8
32 SemEval-2018 Task 1-2-1 (Mohammad et al., 2018) Twitter 70.1 76.3 73.3 75.4 76.1
33 SemEval-2018 Task 1-2-2 (Mohammad et al., 2018) Twitter 86.6 86.4 87.1 86.4 85.4
34 SemEval-2018 Task 1-2-3 (Mohammad et al., 2018) Twitter 72.8 79.0 77.8 77.5 73.0
35 SemEval-2018 Task 1-2-4 (Mohammad et al., 2018) Twitter 62.9 70.3 67.6 67.1 64.7
36 Valence CLS (Preoţiuc-Pietro et al., 2016) Facebook 63.3 71.1 71.1 64.7 65.3
37 Arousal CLS (Preoţiuc-Pietro et al., 2016) Facebook 65.6 71.5 69.6 65.8 69.9
38 Sarcasm-FigLang-Reddit (Ghosh et al., 2020a) Reddit 62.3 67.5 66.1 63.6 65.6
39 Sarcasm-FigLang-Twitter (Ghosh et al., 2020a) Twitter 76.2 77.6 80.9 79.8 75.4
40 Airline (sentiment analysis) (Crowdflower, 2016) Twitter 85.1 86.3 85.8 85.4 85.3

Table 1: The results of BERT, BERTweet (BT), RoBERTa (RB), SocBERT-base (Soc-b), and SocBERT-final (Soc-f)
on 40 classification tasks. The task details can be found in Appendix. The best result for each task is in bold.
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pretraining of a model includes data from the same
social media source as the downstream tasks.

Total Soc >BT Soc >RB RB >BT
All tasks 40 13 9 19

Social media platform
Twitter 22 5 5 9
Reddit 6 3 1 5
MedHelp 6 4 1 4
Facebook 3 0 1 0
Youtube 2 1 1 1
WebMD 1 0 0 0

Task domain
Health 23 8 3 16
Non-health 17 5 6 3

Table 2: The comparison of model performance of
SocBERT-base (Soc), BERTweet (BT), and RoBERTa
(RB) over the tasks from different social media plat-
forms or focusing on different topics. The symbol
A > B denotes that the model A outperforms the model
B.

Another interesting observation is that on
the health-related tasks, RoBERTa largely out-
performed SocBERT-base and BERTweet, and
SocBERT-Tweet slightly outperformed BERTweet.
The possible explanation is that the linguistic char-
acteristics of the pretraining data of RoBERTa
and SocBERT-base can be more diverse than
BERTweet because BERTWeet used a single-
source corpus for pretraining.

6 Discussion

Our work initially aimed to develop a PLM which
can efficiently work for the data from different so-
cial media platforms. However, the results showed
that our model could not perform the best on all of
the tasks compared to BERTweet and RoBERTa.
The possible reason was that the training time of
our model was not sufficient because of the lim-
ited computing resources. It revealed the dilemma
for small labs in academia to develop large lan-
guage models which has been studied since large
language models became popular in the NLP field
(Xu, 2022). However, our work can provide some
insights for the NLP studies about developing and
applying PLMs. First, training the model on a
relatively small dataset for longer time might be
more efficient than training the model on a large
set of data for shorter time. Second, pretraining the
model on in-domain data may more efficiently im-
prove the performance on downstream tasks than
pretraining on out-of-domain data. Also, the lan-
guage models pretrained on sufficiently large open-

domain data can be effective on domain-specific
tasks. We released our model SocBERT-base 6 and
SocBERT-final 7 via Huggingface to help the NLP
community conduct further studies in this field.

7 Conclusion

In this work, we pre-trained a transformer-based
model from scratch on social media data and bench-
marked the model on 40 text classification tasks
with social media data. Although our model did not
perform the best on all of the tasks, it outperformed
the baseline model—BERT on most of the bench-
marking tasks. It showed that our model can be
efficient for the text classification tasks with social
media data. It may be possible to further improve
the model performance if we continue training the
model more efficiently. Further work is required to
improve the efficiency and reduce the cost of large
language model training.
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classification results are shown in Table 3.
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ID Task Source Evaluation
metric TRN TST L IAA

1 ADR Detection (Sarker and Gonzalez, 2015b) Twitter P_F1 4318 1152 2 0.71
2 Breast Cancer (Sarker et al., 2020) Twitter P_F1 3513 1204 2 0.85
3 NPMU characterization (Ali Al-Garadi et al., 2020) Twitter P_F1* 11829 3271 4 0.86

4 WNUT-20-task2 (COVID-19 tweet detection)
(Nguyen et al., 2020c) Twitter P_F1 6238 1000 2 0.8

5 SMM4H-17-task1 (ADR detection) (Sarker et al., 2018b) Twitter P_F1 5340 6265 2 0.69

6 SMM4H-17-task2 (medication consumption)
(Sarker et al., 2018b) Twitter M_F1 7291 5929 3 0.88

7 SMM4H-21-task1 (ADR detection) (Magge et al., 2021) Twitter P_F1 15578 913 2 -

8 SMM4H-21-task3a (regimen change on Twitter)
(Magge et al., 2021) Twitter P_F1 5295 1572 2 -

9 SMM4H-21-task3b (regimen change on WebMD)
(Magge et al., 2021) WebMD P_F1 9344 1297 2 -

10 SMM4H-21-task4 (adverse pregnancy outcomes)
(Magge et al., 2021) Twitter P_F1 4926 973 2 0.9

11 SMM4H-21-task5 (COVID-19 potential case)
(Magge et al., 2021) Twitter P_F1 5790 716 2 0.77

12 SMM4H-21-task6 (COVID-19 symptom)
(Magge et al., 2021) Twitter M_F1 8188 500 3 -

13 SMM4H-22-task9 (self-reporting exact age)
(Weissenbacher et al., 2022) Reddit M_F1 7165 1000 2 -

14 Suicidal Ideation Detection
(Gaur et al., 2021) Reddit M_F1 1695 553 6 0.88

15 Drug Addiction and Recovery Intervention
(Ghosh et al., 2020b) Reddit M_F1 2032 601 5 -

16 eRisk-21-task1 (Signs of Pathological Gambling)
(Parapar et al., 2021) Reddit P_F1 1511 481 2 -

17 eRisk-21-task2 (Signs of Self-Harm)
(Parapar et al., 2021) Reddit P_F1 926 284 2 -

18 Sentiment Analysis (Food Allergy)
(Carrillo-de Albornoz et al., 2018) MedHelp M_F1 618 191 3 0.75

19 Sentiment Analysis (Crohn’S Disease)
(Carrillo-de Albornoz et al., 2018) MedHelp M_F1 1056 317 3 0.72

20 Sentiment Analysis (Breast Cancer )
(Carrillo-de Albornoz et al., 2018) MedHelp M_F1 551 161 3 0.75

21 Factuality Classification (Food Allergy)
(Carrillo-de Albornoz et al., 2018) MedHelp M_F1 580 159 3 0.73

22 Factuality Classification (Crohn’S Disease)
(Carrillo-de Albornoz et al., 2018) MedHelp M_F1 1018 323 3 0.75

23 Factuality Classification(Breast Cancer)
(Carrillo-de Albornoz et al., 2018) MedHelp M_F1 524 161 3 0.75

24 OLID-1 (Zampieri et al., 2019) Twitter M_F1 11916 860 2 -
25 OLID-2 (Zampieri et al., 2019) Twitter M_F1 11916 240 2 -
26 OLID-3 (Zampieri et al., 2019) Twitter M_F1 11916 213 3 -
27 TRAC-1-1 (Kumar et al., 2018) Facebook M_F1 11999 916 3 -
28 TRAC-1-2 (Kumar et al., 2018) Twitter M_F1 11999 1257 3 -
29 TRAC2-1 (Bhattacharya et al., 2020) Youtube M_F1 4263 1200 3 -
30 TRAC2-2 (Bhattacharya et al., 2020) Youtube M_F1 4263 1200 2 -
31 SemEval-2018 Task 1-4 (Mohammad et al., 2018) Twitter PRS 1182 938 8
32 SemEval-2018 Task 1-2-1 (Mohammad et al., 2018) Twitter PRS 1701 1002 4 0.9
33 SemEval-2018 Task 1-2-2 (Mohammad et al., 2018) Twitter PRS 1616 1105 4 0.91
34 SemEval-2018 Task 1-2-3 (Mohammad et al., 2018) Twitter PRS 1533 975 4 0.83
35 SemEval-2018 Task 1-2-4 (Mohammad et al., 2018) Twitter PRS 2252 986 4 0.85
36 Valence CLS (Preoţiuc-Pietro et al., 2016) Facebook PRS 2066 604 9 0.77
37 Arousal CLS (Preoţiuc-Pietro et al., 2016) Facebook PRS 2088 590 9 0.83
38 Sarcasm-FigLang-Reddit (Ghosh et al., 2020a) Reddit M_F1 3960 1800 2 -
39 Sarcasm-FigLang-Twitter (Ghosh et al., 2020a) Twitter M_F1 4500 1800 2 -
40 Airline (sentiment analysis) (Crowdflower, 2016) Twitter M_F1 10493 2957 3 -

Table 3: Details of the classification tasks and the data statistics. P_F1 denotes the F1-score for the positive class,
M_F1 denotes the micro-averaged F1-score among all the classes, and PRS denotes Pearson correlation coefficient.
*For NPMU, P_F1 denotes the F1-score of the non-medical use class. TRN, TST, and L denote the training set size,
the test set size, and the number of classes, respectively. IAA is the inter-annotator agreement, where Task 4 used
Fleiss’ K, Task 14 used Krippendorff’s alpha, Task 18-23 provided IAA but did not mention the coefficient they
used, and other tasks used Cohen’s Kappa.
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Abstract

We propose a novel approach that employs
token-level Levenshtein operations to learn a
continuous latent space of vector representa-
tions to capture the underlying semantic infor-
mation with regard to the document editing
process. Though our model outperforms strong
baselines when fine-tuned on edit-centric tasks,
it is unclear if these results are due to do-
main similarities between fine-tuning and pre-
training data, suggesting that the benefits of
our proposed approach over regular masked
language-modelling pre-training are limited.

1 Introduction

Editing documents has become a pervasive compo-
nent of many human activities (Miltner et al., 2019).
For example, right before a conference deadline
technical papers worldwide are finalized and pol-
ished, often involving common fixes for grammar,
clarity, and style (Yin et al., 2019). In light of this,
it is reasonable to wonder if it would be possible
to automatically extract rules from these common
edits. This has led researchers to work on the task
of learning distributed representations of edits (Yin
et al., 2019; Marrese-Taylor et al., 2021; Reid and
Neubig, 2022).

Auto-encoding approaches such as the ones pro-
posed by Yin et al. (2019); Marrese-Taylor et al.
(2021) have been used previously in the context
of representation learning initially in the visual
domain, but more recently have been extended to
the natural language and video modalities. These
approaches largely form the foundation of “self-
supervised learning“ which enables the learning of
representations via objectives which solely require
a source datum. An instance of this relevant to
Natural Language Processing (NLP) is that of the
pre-trained masked language model, BERT (De-
vlin et al., 2019), in which a source text is initially
corrupted with a mask token [MASK] and then

reconstructed into the original form with a Trans-
former encoder.

As an alternative to this approach, other works
have instead produced representations of edits in an
indirect manner, by instead focusing on edit-centric
downstream tasks such as edit-based article qual-
ity estimation on Wikipedia (Sarkar et al., 2019;
Marrese-Taylor et al., 2019), English grammatical
error correction (GEC), and machine translation
post-editing.

In this paper, differently from existing prior
work, we propose a continued pre-training task
not based on auto-encoding, which aims at learn-
ing distributed representations of natural language
edits. In particular, we look at using the Leven-
shtein algorithm as a form of supervision to en-
courage a model to learn to convert a given input
sequence into a desired output sequence, namely
an edit. In particular, we look to answer whether
creating a “neural Levenshtein algorithm” is con-
ducive to improved downstream performance on
edit-based tasks, given the edit-centricity of the al-
gorithm. In addition to this, we also propose and
test two complementary loss functions that help the
encoder retain valuable information about the edit.

Our Edit Aware Representation Learning model,
or EARL, is trained in large datasets of edits col-
lected from Wikipedia, and we test it on a selec-
tion of edit-centric downstream tasks, including
adversarial paraphrasing detection, grammatical
error correction and edit-level article quality es-
timation. Our results show that EARL outper-
forms strong baselines when fine-tuned on such
edit-centric tasks. However, it is unclear if these
improvements are due to domain similarities be-
tween fine-tuning and pre-training data, suggesting
that the benefits of our proposed approach over reg-
ular masked language-modelling pre-training are
limited. We release1 our code and trained models
to encourage further research in this direction.

1github.com/epochx/earl
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2 Related Work

Our work is primarily related to Yin et al. (2019),
who did seminal work in proposing to directly learn
distributed representations of edits by means of a
task specifically designed for this purpose, based
on auto-encoding. The work of Zhao et al. (2019)
proposed a similar approach that was specifically
tailored at source code. After that, Marrese-Taylor
et al. (2021) proposed a variation of this model
where a latent variable is introduced as a means to
capture properties of natural language edits, which
is then tested on a selection or edit-centric tasks.

Our approach is also related to prior work on edit-
based generative models, which have utilized semi-
autoregressive sequence generation approaches for
various tasks. One such example is the work of
Guu et al. (2018), who proposed a sentence-level
generative model that first samples a prototype sen-
tence and then edits it into a new sentence. Though
related, our approach is fundamentally different as
in our setting edits are clearly identified by two
distinct versions of each item.

In the context of semi-autoregressive language
generation, our approach is also related to prior
work utilizing the Levenshtein algorithm for such
goals. For example, the work of Gu et al. (2019)
has explored non-autoregressive methods that use
an iterative generation process for machine transla-
tion. More recently, the works of Reid and Zhong
(2021); Reid and Neubig (2022) have relied on the
Levenshtein algorithm to propose edit-based gen-
erative approaches for general-purpose tasks. In
the former, an iterative edit-based generative model
was proposed for the task of style-transfer, where a
coarse-to-fine editor transforms text using Leven-
shtein edit operations similar to ours. In the latter,
the authors extend this idea and propose a generic
framework to describe the likelihood of multi-step
edits, also describing neural models that can learn
a generative model of sequences based on these.

Finally, other works have instead produced rep-
resentations of edits in an indirect manner, by fo-
cusing on specific edit-centric downstream tasks.
For example, Sarkar et al. (2019) proposed ob-
taining edit representations that are useful to pre-
dict changes in the quality of articles and similarly
Marrese-Taylor et al. (2019) proposed to improve
quality assessment by jointly predicting the quality
of a given edit and generating a description of it in
natural language.

3 Levenshtein Prediction

Differently from previous work, here we instead
look to see if we can include the Levenshtein
objective from a natural language understanding
(NLU) perspective. In particular, we look to assess
whether Transformer encoder representations can
be trained to contain information relevant to an edit,
which we hypothesize can be achieved by directly
predicting relevant operations and their associated
tokens —as produced by an oracle Levenshtein
algorithm.

Concretely, we propose a new pre-training task
based on self-supervision and look at using the
Levenshtein algorithm as a means of pushing a
model to learn to convert a given input sequence
into a desired output sequence. Let x− be the orig-
inal version of an object, and x+ its form after
a change/edit has been applied. We assume that
both x− and x+ are sequences of tokens such that
x− = [x1−, . . . , x

n
−] and x+ = [x1+, . . . , x

m
+ ]. We

use a fast implementation of the Levenshtein al-
gorithm to identify spans of tokens that have been
replaced, inserted or deleted as a result of the edit,
and define token-level edit operation labels to indi-
cate how each token was changed.

To process each edit, we first tokenize the pair
(x−, x+), then use the Levenshtein algorithm to
identify the text spans that have changed, and fi-
nally further process this output to assign token-
level labels capturing the transformations required
to convert x− into x+.

Let xi:j− be the sub-span on x− that goes from
positions i to j, our post-processing works on a
case-by-case manner, as follows.

1. When a span has been inserted between po-
sitions xi:j− , such that it appears in xk:j+ , we
label the tokens in the latter as w+, and also
label token xi−1

− , as +. We do this to provide
the model with context of where the insertion
was performed, in terms of x−.

2. Similarly, if the span xi:j− has been replaced
by the span xk:l− , we label the tokens on the
respective spans as⇔ and w⇔.

3. If the span xi:j− has been removed from the
sequence as a result of the edit, we label each
token as −.

4. Tokens that have not been involved in the edit
are label with an empty tag, denoted as =.
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[CLS] My name is John [SEP] My last name is Wayne
= + = = ⇔ = = w+ = = w⇔

Figure 1: Example of model input-output for the edit
defined by the sequences “My name is John“ and “ My
last name is Wayne“ (using whitespace tokenization),
where the label = denotes tokens that have not been
directly involved in the edit.

As a result of our post-processing, each token in
both x− and x+ is mapped to a single Levenshtein
operation label: ⇔, w⇔, + or w+, as shown in
Figure 1. The end goal of our task is to predict
these token-level Levenshtein operations relevant
to transform x− into x+.

The input to our model is constructed by first
prepending the [CLS] token to x− and x+, which
are separated using the [SEP] token, whose total
length we denote as l = m+ n+ 2. This input is
embedded and then fed to a Transformer encoder
that returns a sequence of hidden representations
h0, . . .hl. We add a classification head (a linear
classifier) and require the model to predict the cor-
responding label for each token, ignoring tokens
that have not been directly involved in the edit (la-
bel =), using a cross entropy loss (Llev).

We also consider an additional mechanism to
enrich the quality of the learned representations,
based on techniques that have proven useful in
previous work (Marrese-Taylor et al., 2021). Con-
cretely, we note that the vector associated to the
[CLS] token (h0) is frequently used to represent
the complete model input when using Transformer
models such as ours. Since there is no specific
token-level Levenshtein label associated to this to-
ken, we encourage its representation to contain
information about the overall edit. We do this by
requiring our model to predict the set of tokens
that have been changed in the edit in an unordered
fashion, using a separate model head (again, a sim-
ple linear projection) which receives this as input,
setting f = MLP(h0) ∈ R|V|, where |V| is the
vocabulary size.

Lx∆ := − log p(x∆|h0) = − log

|x∆|∏

t=1

exp(fxt)∑V
j exp(fj)

(1)

We then let our model minimize the loss function
defined in Equation 1, above, where x∆ is the set
of tokens that have been involved in the change
(inserted, replaced or removed).

Finally, given the success of the masked lan-
guage modelling task in model pre-traning (Devlin

Dataset Edits Avg. Len

WIKIATOMICEDITS
Insertions 13.7M 24.5
Deletions 9.3M 25.1

WIKIEDITSMIX 114K 61.6

Table 1: Details of the data utilized for pre-training.

et al., 2019; Liu et al., 2019) we also experiment
combining the Levenshtein prediction task with
masked language modeling. Since our model in-
put has a special structure, we propose a modified
procedure to generate masks. Concretely, for each
example, we either mask the tokens on x− or on
x+, with a probability of 50% each. Once one
side is chosen, we overall follow the approach by
Liu et al. (2019) (RoBERTa) to choose which/how
many tokens to mask. However, we require the to-
kens with the relevant Levenshtein operation labels
(⇔, w⇔, +, w+ or −) to always be masked. Once
the locations of the masks have been determined,
we require the model to predict the masked tokens
using the standard masked language modelling loss
LMLM . Finally, the total loss used to train our
Edit Aware Representation Learning model is the
simple summation of the above introduced losses,
L = Llev + Lx∆ + LMLM .

4 Experimental Setup

Pre-training We leverage large available corpora
containing natural language edits in a variety of
domains. We specifically rely on two datasets of
edits extracted from Wikipedia, WIKIEDITSMIX

(Marrese-Taylor et al., 2021) and WIKIATOMICED-
ITS (Faruqui et al., 2018), from which we use the
insertions and deletions portions together. Please
see details in Table 1. Since pre-training is compu-
tationally very expensive, we first use WIKIED-
ITSMIX, which is much smaller, as a test-bed
and for ablation experiments regarding our pro-
posed Lx∆ and LMLM losses. To evaluate the pre-
training phase, we utilize the overall and per-token
F1-score.

Downstream Tasks We consider a broad selec-
tion of datasets and probe the ability of the model
to solve three edit-related downstream tasks.

• Paraphrasing Detection: we measure the abil-
ity of our edit encoder to model structure, con-
text, and word order information, by means
of using PAWS (Yang et al., 2019), an ad-
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Model WikiEditsMix (F1-score) PAWS WikiEdits GEC

+ w+ ⇔ w⇔ − All ZS Ft ZS Ft ZS Ft

Llev 89.4 96.1 90.6 88.6 93.7 91.8 56.8 94.9 56.8 78.1 49.5 52.4
Llev+ Lx∆ 87.8 95.6 89.9 88.7 93.5 91.2 63.8 94.9 56.7 78.2 48.6 53.4
Llev+ LMLM 80.0 94.7 93.8 86.3 95.6 90.2 60.7 95.0 64.8 78.4 48.8 53.1

Table 2: Results of our ablation experiments on WIKIEDITSMIX.

versarial dataset for paraphrasing detection.
Naturally, paraphrases are strongly correlated
to edits, as paraphrases are defined as sen-
tences that are semantically similar to each
other. PAWS main focus is on sentence pairs
that have high lexical overlap but are not para-
phrases, with a total of 49,401 pairs for train-
ing, and 8K sentences for validation and test-
ing.

• Edit-level Article Quality Estimation: we
evaluate the quality of edit representations
by means of running a multi-class classifica-
tion to predict the quality labels on WIKIED-
ITSMIX (Marrese-Taylor et al., 2021). Con-
cretely, the task is edit-level quality prediction
with 4 labels: spam, vandalism, attack OK,
each corresponding to a different quality of
the edit.

• Classification of Grammatical Errors: since
grammatical errors consist of many differ-
ent types, we follow previous work (Marrese-
Taylor et al., 2021) and use the WI + LOC-
NESS (Bryant et al., 2019) dataset for GEC,
where each example is labeled into one of
3 CEFR levels (A (beginner), B (intermedi-
ate), and C (advanced). We test the ability
of the models to classify each edit using a
multi-class setting over these three labels.

For evaluation on these downstream tasks, we
use accuracy for PAWS, and F1-score for the other
datasets. Following previous work, we test our
model on two different settings, fine-tuning (Ft)
and zero-shot (ZS). For the former, we simply add
a new randomly-initialized classification head to
our transformer model, and then train all the pa-
rameters using a cross-entropy loss based on the
labeled data. For the latter, we feed the training
examples through our models and extract the vec-
tor associated to the [CLS] token (h0) to represent
each edit. These representations are then passed
through a randomly-initialized MLP to perform
classification.

Finally, we compare our model to relevant base-
lines selected from previous work. On the one
hand, we consider the encoder proposed by Yin
et al. (2019), but we omit the copy mechanism
proposed in the paper in order to make our results
comparable. On the other hand, we compare with
EVE (Marrese-Taylor et al., 2021), which also uses
an auto-encoding loss for training, but does so in
variational inference framework. We additionally
consider the approach by Guu et al. (2018), but
skip their sampling procedure. As our task requires
the model to capture structure, context, and word
order information, we initialize our model with
ROBERTA-base (Liu et al., 2019), which we also
adopt as a baseline for downstream experiments.

4.1 Implementation Details

For pre-training, we split WIKIATOMICEDITS into
train/valid/testing splits randomly, and use the
splits provided by Marrese-Taylor et al. (2021) for
WIKIEDITSMIX. For fine-tuning, we respect the
original splits for each considered dataset.

Our pre-training is performed using data par-
allelism to speed up convergence time, but our
proposed model can run on single GPUs. We
use fairseq (Ott et al., 2019) to implement our
model and perform distributed pre-training using
16 NVIDIA V100-16 GB GPUs, and fine-tuning
with a single NVIDIA A100-40 GB GPU. We ac-
cess the former by means of nodes on a large clus-
ter, where each node has four GPUs. For WIKIED-
ITSMIX we used a single node with a maximum
training time of 24 hours (or 100 epochs). on WIKI-
ATOMICEDITS, we used 4 nodes simultaneously,
also for a maximum of 24 hours (or 100 epochs).

We use the Adam (Kingma and Ba, 2015) op-
timizer with a learning rate of 1e-4 during pre-
training, and of 1e-3 for fine-tuning on the down-
stream tasks. Instructions to replicate our experi-
ments and the details of the exact hyper-parameter
settings used for pre-training and fine-tuning can
be found in our code release.
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Model PAWS WikiEditsMix GEC

ZS
ROBERTA 58.1 63.2 50.7
EARLMix 63.8 56.7 48.6
EARLIns+Del 62.2 57.0 47.6

Ft

ROBERTA 94.5 78.9 54.0
Guu (2018) - 74.3 85.6
Yin (2019) - 66.8 83.1
EVE (2021) - 77.4 95.8
EARLMix 94.9 78.2 53.4
EARLIns+Del 94.5 78.3 54.5

Table 3: Results of our model on the downstream
tasks, compared to our baselines. EARLMix and
EARLIns+Del indicate models that have been pre-trained
on WIKIEDITSMIX and WIKIATOMICEDITS (Inser-
tions+Deletions), respectively.

5 Results

As can be seen in Table 2, all of our models attain
excellent performance on the pre-training task, with
an overall F1-Score of more than 90%. We believe
this shows that EARL is capable of successfully
predicting the operations generated by our oracle
Levenshtein editor, suggesting that the representa-
tions contain information relevant to the changes
that are introduced. This would also explain the
high performance attained when fine-tuning on
PAWS and WIKIEDITSMIX.

Regarding the impact of Lx∆ , we see that when
added, the overall performance of the model de-
creases slightly on the pre-training task, but leads to
improvements downstream, specially on the zero-
shot settings. We believe this result is consistent
with previous work, validating the contribution of
this loss applied to our setting. Finally, we also see
that LMLM further decreases performance on the
pre-training task, but again leads to improved per-
formance when fine-tuning on downstream tasks.

Based on the above findings, we use both losses
for our final experiments, which are summarized
in Table 3, where we also compare to previous
work. We see that when fine-tuned, EARL is able
to outperform ROBERTA in PAWS, suggesting
that the representations induced by our task help
the model learn relevant information about edits.
We also see that our model struggles to attain good
performance on the GEC tasks, falling considerably
behind previous work. We surmise this is due to
the pre-training domain being too different from
the task. We further note that the best performing
model in this task (EVE), is pre-trained on a large
corpus of unlabeled GEC edits, a fact that supports

our domain shift hypothesis.
Since our model is initialized with ROBERTA-

base, we further assessed the impact of our pre-
training on a standard NLP downstream task and
checked whether it leads to catastrophic forgetting.
We considered the widely-used GLUE benchmark
(Wang et al., 2018) and selected the MNLI dataset
(MNLI) as a test-bed. We find that both ROBERTA

and EARL obtain the same accuracy of 87.6, sug-
gesting that our training procedure is compatible
with masked language modelling pre-training.

Regarding the models pre-trained on different
datasets, we observe that the impact of additional
training data is marginal, as the performance of
models trained on WIKIEDITSMIX and WIKI-
ATOMICEDITS is similar across downstream tasks.
As these results are well-aligned with our findings
regarding the GEC tasks, we think this may sug-
gest the results we are observing are due to pre-
training/fine-tuning domain similarity, rather than
to the effectiveness of our proposed pre-training.

6 Conclusions and Future Work

This paper proposes a novel approach for training a
general-purpose edit representation model, which
is not based on auto-encoding. Concretely, we
propose a predictive task based on token-level Lev-
enshtein operations where the token-level labels
encode the set of operations necessary to transform
a given input sentence into an output sentence. Our
results show the task is effective at capturing ed-
its, but is not substantially better than the masked
language modeling task. We think this evidence
still supports the idea that creating a neural model
that implements the Levenshtein algorithm is con-
ducive to improved downstream performance on
edit-based tasks, suggesting a potential new path
for the future of pre-training.
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Abstract

We introduce two simple randomized vari-
ants of byte pair encoding (BPE) and explore
whether randomizing the selection of merge
operations substantially affects a downstream
machine translation task. We focus on transla-
tion into morphologically rich languages, hy-
pothesizing that this task may show sensitivity
to the method of choosing subwords. Analysis
using a Bayesian linear model indicates that
one variant performs nearly indistinguishably
compared to standard BPE while the other de-
grades performance less than we anticipated.
We conclude that although standard BPE is
widely used, there exists an interesting uni-
verse of potential variations on it worth inves-
tigating. Our code is available at: https:
//github.com/bltlab/random-bpe.

1 Introduction and related work

Most neural machine translation (NMT) models
assume their inputs to be sequences of units drawn
from a fixed vocabulary. While these units were
tokens in the early years of NMT (Cho et al., 2014;
Sutskever et al., 2014), there has since been a tran-
sition to subword-level models that learn a vocab-
ulary of “word pieces” which serve as an interme-
diate representation between words and characters
(Mielke et al., 2021). Such representations are at-
tractive because they solve the closed-vocabulary
problem of early, word-level NMT (Luong et al.,
2015) while also yielding more semantically mean-
ingful units than individual characters.

Well-known subword segmentation algorithms
include byte pair encoding (BPE) (Sennrich et al.,
2016), SentencePiece Unigram LM (Kudo and
Richardson, 2018; Kudo, 2018) and the WordPiece
algorithm (Wu et al., 2016; Song et al., 2021). All
of them include a hyperparameter that controls the
size of the subword vocabulary: SentencePiece and
WordPiece do this explicitly with a vocabulary size
parameter, whereas BPE specifies the number of

merge operations which implicitly define the sub-
word vocabulary.

Prior work has addressed the problem of opti-
mally selecting the vocabulary size. Haddow et al.
(2018) and Sennrich and Zhang (2019) find that
using too large a subword vocabulary can result in
low-frequency tokens being represented as atomic
units, which makes it difficult to learn proper rep-
resentations for them. Gowda and May (2020) sug-
gest a heuristic: use as many subwords as possible
provided that at least 95% of the subwords have
100 or more examples in the training set. Gutierrez-
Vasques et al. (2021) find that around 350 merge
operations are enough to generate similar subword
distributions across languages.

Subword segmentation algorithms usually build
their subword vocabularies by optimizing an objec-
tive function that is independent of the downstream
task. For instance, SentencePiece employs the prob-
abilities under its unigram language model, while
BPE aims to maximize the degree of sequence com-
pression by greedily selecting and merging the sym-
bol pairs that occur most frequently. Others have
re-framed this process as finding an “optimal” set
of units that maximize more sophisticated proba-
bilistic criteria. Vilar and Federico (2021) intro-
duce an extension of BPE that learns a subword
vocabulary by maximizing a likelihood objective
over potential subwords. He et al. (2020) introduce
a method that treats the segmentation as a latent
variable to be marginalized out and seek to find
segmentations that maximize the downstream task
probability directly.

In this paper, we build upon the concept of
stochastic segmentation and conduct neural ma-
chine translation experiments on four languages
(German, Finnish, Estonian and Uzbek) of varying
morphological complexity, using variants of BPE
that randomly sample merge operations instead of
deterministically choosing the most frequent one.

Our negative result challenges our initial beliefs
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that standard BPE would produce the most effective
subword representations for translation and that the
success of BPE was due to the greedy selection
process for learning merge operations. We find that
even when merge operations are randomly sampled
uniformly, the performance degradation is less than
we anticipated. We conclude by discussing how
this finding relates to the overall role of subwords
in NMT.

2 Byte pair encoding and randomization

We briefly review the BPE training algorithm and
introduce our randomized variants. The pseu-
docode for the algorithm we use can be seen in
Algorithm 1. Our presentation is adapted from the
BPE algorithm in Vilar and Federico (2021).

Algorithm 1: BPE training algorithm.
Input: D: Training corpus. M : Number of merge

operations to learn.
Output: R: list of learned merges.

1 def trainBPE(D, M , method):
2 R← []
3 while |R| ≤M do
4 C← countSymbolPairs(D)
5 (x, y)← choosePair(C,method)
6 rule← ⟨(x, y)→ xy⟩
7 R← append(R, rule)
8 D ← applyRule(D, rule)

9 return R

10 def choosePair(counts, method):
11 if method = standard then
12 pair← argmaxpair∈counts counts[pair]
13 else if method = uniform then
14 probs ∝ 1
15 pair← sample(counts, probs)
16 else
17 probs← softmax(counts)
18 pair← sample(counts, probs)

19 return pair

2.1 Standard BPE algorithm

The standard byte pair encoding algorithm (Sen-
nrich et al., 2016) is a greedy algorithm that takes
as input a corpus D—typically the training set
or another large collection of text—as well an in-
teger M that specifies the number of merge op-
erations to learn. After first segmenting D into
space-separated characters, the algorithm counts
how many times each pair of symbols occurs in
D (countSymbolPairs). Based on the counts,
the algorithm finds the most frequent symbol pair
(choosePair) and learns a new merge operation
that merges the constituent symbols into a new

symbol. After learning the merge operation, the al-
gorithm replaces all occurrences of the symbol pair
in D with the new merged symbol (applyRule).

While the initial merge operations merge indi-
vidual characters, during the later iterations larger
chunks of words are merged together as well. For
example, if the most frequent symbol pair was
(ab,c), the algorithm would learn the rule ab c
→ abc which replaces all occurrences of ab c
with abc, taking care to not cross word boundaries.

This is repeated for M iterations until a desired
number of merge operations is learned, after which
the algorithm returns the list of merge operations as
output. At test time, the algorithm splits incoming
lines of text into individual characters and then
applies each of the learned merge operations in
order, resulting in text where each space-separated
token is an individual subword.

2.2 Randomized BPE variants
To extend BPE to randomized variants, we replace
the step of picking the most frequent symbol pair
at each iteration with random sampling.

Softmax sampling In our first variant, we assign
each symbol pair a probability of being sampled
based on how often it occurs in the observed data.
We apply a softmax to the observed symbol pair
occurrence counts and draw a random symbol pair
to merge according to a categorical distribution
with the softmax probabilities as its parameters.

Uniform sampling As our second variant, we se-
lect each merge operation with uniform probability
from the set of observed symbol pairs. Since every
symbol pair has equal probability of being sampled,
the frequency of each symbol pair is not used in
sampling.

3 Experimental setup

Task and data We experiment with translation
from English to several morphologically rich lan-
guages: Finnish, Estonian, German, and Uzbek.
Statistics for each dataset can be found in the Ap-
pendix. For all languages except Uzbek, we use
the WMT shared task data from He et al. (2020).
For Uzbek, we use the Turkic Interlingua corpus
(Mirzakhalov et al., 2021).

Tokenization and subword segmentation All
of our datasets had previously been tokenized. We
performed BPE segmentation on those tokens at the
character level using subword-nmt, which we
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BLEU chrF

Language Merges Standard Random Uniform Standard Random Uniform

Estonian
2,000 18.08 ± 0.07 18.17 ± 0.06 17.48 ± 0.04 51.01 ± 0.09 51.10 ± 0.09 50.38 ± 0.07
5,000 17.98 ± 0.11 17.89 ± 0.09 17.43 ± 0.06 50.80 ± 0.14 50.65 ± 0.11 50.48 ± 0.06

32,000 16.13 ± 0.06 16.13 ± 0.10 16.86 ± 0.06 48.70 ± 0.09 48.65 ± 0.05 50.21 ± 0.09

Finnish
2,000 16.40 ± 0.08 16.20 ± 0.04 15.26 ± 0.14 50.99 ± 0.07 50.90 ± 0.06 49.76 ± 0.12
5,000 15.77 ± 0.08 16.01 ± 0.04 14.63 ± 0.09 50.64 ± 0.07 50.67 ± 0.06 49.32 ± 0.09

32,000 13.83 ± 0.09 13.88 ± 0.09 13.28 ± 0.11 48.20 ± 0.11 48.20 ± 0.07 47.92 ± 0.08

German
2,000 24.56 ± 0.05 24.46 ± 0.06 22.54 ± 0.08 55.77 ± 0.03 55.74 ± 0.03 53.41 ± 0.08
5,000 24.84 ± 0.07 24.79 ± 0.10 22.73 ± 0.04 56.12 ± 0.04 55.98 ± 0.04 53.65 ± 0.05

32,000 25.49 ± 0.06 25.33 ± 0.05 22.91 ± 0.07 56.60 ± 0.03 56.54 ± 0.04 54.26 ± 0.05

Uzbek
2,000 47.31 ± 0.21 45.82 ± 1.14 37.85 ± 0.24 64.51 ± 0.18 63.24 ± 1.00 57.66 ± 0.23
5,000 46.77 ± 1.10 45.39 ± 1.46 38.79 ± 0.20 63.78 ± 0.92 62.52 ± 1.31 58.39 ± 0.15

32,000 48.63 ± 0.75 47.98 ± 0.70 41.73 ± 0.51 64.76 ± 0.56 64.24 ± 0.59 60.43 ± 0.42

Table 1: Mean and standard error of BLEU and chrF scores across target languages, merge operations and BPE
segmentation types. All numbers computed over 10 replications with different random seeds.

modified to support randomized subword sampling.
All subword vocabularies are learned separately for
each language. As the number of merge operations
M is a hyperparameter, we experiment with the
values 2,000, 5,000, and 32,000. The largest value,
32,000, is taken directly from He et al. (2020); the
smaller values of 2,000 and 5,000 are motivated the
observation that higher numbers of merges tend to
lead to a near-word-level segmentations for which
learning good representations may not be feasible
(Sennrich and Zhang, 2019).

Model and training Our model is a standard
Transformer-based encoder-decoder model, as im-
plemented in the fairseq library. Our archi-
tecture is similar to transformer-base, with
512-dimensional embeddings on both the encoder
and decoder side, 2048-dimensional feedforward
layers, and 6 stacked Transformer layers with 8
attention heads each in both the encoder and de-
coder. We train all our models for 10,000 updates
using a learning rate of 0.005 and the largest fea-
sible batch size (36K tokens per batch for Finnish
and Estonian, 30K tokens per batch for German,
and 12K tokens per batch for Uzbek). Each trans-
lation experiment is run on a single NVIDIA V100
GPU (24GB). We simulate training on multiple
GPUs by accumulating gradients for 16 backward
passes before each parameter update. To estimate
the variability of our results across random seeds,
we perform 10 replications of each experiment.

Evaluation We evaluate all of our models with
the sacrebleu library (Post, 2018) using BLEU1

1Version string: nrefs:1|case:mixed|eff:no|
tok:13a|smooth:exp|version:2.3.1

(Papineni et al., 2002) as well as chrF2 (Popović,
2015) as it is a tokenization-free metric. Both met-
rics are computed using the default parameters. We
use the sacremoses3 detokenizer to create the
detokenized versions of our corpora.

4 Results

Our main experimental results are displayed in Ta-
ble 1 and Figure 1. For most languages transla-
tion performance appears to be rather stable across
seeds, but in Uzbek standard errors are larger than
other languages and they seem to increase with
increasing numbers of merge operations. We be-
lieve this noisiness is due to the smaller size of the
Uzbek dataset rather than any language-specific
phenomena.

Initially, we would have expected that standard
BPE would perform the best out of all methods
and that different BPE variants would produce no-
ticeable performance differences for all languages.
Somewhat contrary to our hypothesis, we find that
using randomized BPE variants seems to have quite
a small average effect with significant variation in
the effect size from language to language. Uni-
form segmentation tends to consistently perform
worse than standard BPE and softmax-based sam-
pling, which can be explained by the roughly 3x
longer sequences the model produces. Looking
across merge operations, the BLEU/chrF differ-
ences between the best and worst BPE variants
seem to be less than 1.0 and 1.5 points for Estonian

2Version string: nrefs:1|case:mixed|eff:yes|
nc:6|nw:0|space:no|version:2.3.1

3https://github.com/alvations/
sacremoses
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Figure 1: Translation performance (BLEU) across languages and merge operations. A figure showing chrF is
provided in the Appendix.

and Finnish, respectively. However, German and
Uzbek show a different picture, with BLEU/chrF
differences of around 2-2.5 points for German and
4-9 points for Uzbek.

The impact of varying the number of merge
operations varies and again bifurcates the set of
languages. Finnish and Estonian seem to suffer
slightly as the merge operations are increased (ap-
prox. -2 to -2.5 points in BLEU/chrF), whereas Ger-
man and Uzbek seem to benefit from more merge
operations (approx. +1 to +2 points in BLEU/chrF).
We find this perplexing, as the German and Uzbek
datasets are the largest and smallest used in our
experiments.

To analyze these results, we fit a hierarchical,
Bayesian linear model with language-specific ef-
fects for the BPE variant and number of merge
operations:

µ = α(l) + β
(l)
b + γ(l)m + ϵ

where α(l) is an intercept, β
(l)
b is the effect of

using BPE variant b, γ
(l)
m is the effect of using

m merge operations, and ϵ represents residual
sampling error. All effects are specific to lan-
guage l and are drawn from common prior dis-
tributions: α(l) ∼ N (0, σ2

α), β
(l)
b ∼ N (β̄b, σ

2
β,b)

and γ
(l)
m ∼ N (γ̄m, σ2

γ,m). Since our model
is hierarchical, we also infer posteriors for the
language-independent effects of using each BPE
variant/number of merge operations, β̄b and γ̄m, as
well as the standard deviations σ2

β,b and σ2
γ,m that

quantify between-language variation in the BPE
and merge effects. We set the priors of the average
effects to N (0, 1) and those of the standard devi-

ations to N+(1), except for σ2
α for which we use

the default N+(sα), sα ≈ 68 prior specified by
the Bambi modeling library (Capretto et al., 2022)
which we use to fit our model. We fit all our models
using the No-U-Turn Sampler (Hoffman and Gel-
man, 2014). We run 4 Markov chains in parallel
and draw 1,000 posterior samples from each chain.
Prior to sampling, we also run each chain for 1,000
warm-up steps.

Table 2 shows a posterior mean point estimate
for each effect of interest and quantifies their un-
certainty using a 94% highest density interval
(HDI). The effect sizes of randomized BPE vari-
ants seem confirm our experimental results. While
the language-independent average effect sizes are
all modest in magnitude, ranging from -0.97 for
uniform BPE to +0.61 for standard BPE, there is
substantial variation in the effect sizes when us-
ing uniform random sampling: effect sizes rang-
ing from -6.65 for Uzbek to +0.26 for Estonian.
Most importantly, the uncertainty intervals include
zero for all languages and BPE types except for
βUniform, German and βUniform, Uzbek.

The effects for the number of merges are largely
similar, with small average effects and between-
language variation in effects on both sides of zero.
While effect sizes tend to be very small for 2,000
and 5,000 merge operations, the effect varies with
32K merges. German and Uzbek seem to ben-
efit from using 32K merge operations (posterior
means 0.59 and 2.30, respectively). In contrast,
Finnish and Estonian have significantly negative
effect sizes (-1.83 and -1.31, respectively) with the
entire 94% HDI for Finnish below zero as well.
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Parameter Mean HDI (lower) HDI (upper) Incl. zero?

BPE effects (average)

β̄Standard 0.61 -0.71 1.85 ✓
β̄Uniform -0.97 -2.57 0.58 ✓
β̄Random 0.35 -0.92 1.68 ✓
BPE effects (language-specific)

βStandard, Estonian 0.45 -1.00 1.86 ✓
βStandard, Finnish 0.47 -0.98 1.94 ✓
βStandard, German 0.57 -0.95 1.95 ✓
βStandard, Uzbek 1.26 -0.38 2.83 ✓
βRandom, Estonian 0.39 -1.13 1.74 ✓
βRandom, Finnish 0.43 -1.00 1.90 ✓
βRandom, German 0.44 -0.92 1.89 ✓
βRandom, Uzbek 0.26 -1.34 1.73 ✓
βUniform, Estonian 0.26 -1.18 1.77 ✓
βUniform, Finnish -0.51 -2.05 0.94 ✓
βUniform, German -1.67 -3.04 -0.08
βUniform, Uzbek -6.65 -8.29 -5.01

Merge effects (average)

γ̄2000 0.10 -1.06 1.44 ✓
γ̄5000 0.00 -1.24 1.21 ✓
γ̄32000 -0.03 -1.44 1.39 ✓
Merge effects (language-specific)

γ2000, Estonian 0.18 -1.11 1.59 ✓
γ2000, Finnish 0.33 -1.00 1.72 ✓
γ2000, German -0.04 -1.40 1.28 ✓
γ2000, Uzbek -0.04 -1.43 1.37 ✓
γ5000, Estonian 0.05 -1.29 1.41 ✓
γ5000, Finnish -0.03 -1.39 1.26 ✓
γ5000, German 0.09 -1.18 1.48 ✓
γ5000, Uzbek -0.08 -1.54 1.26 ✓
γ32000, Estonian -1.31 -2.67 0.16 ✓
γ32000, Finnish -1.83 -3.26 -0.44
γ32000, German 0.59 -0.82 1.96 ✓
γ32000, Uzbek 2.30 0.79 3.75

Table 2: Posterior means and 94% posterior highest
density intervals for the BLEU model.

5 Discussion

5.1 Limitations and future work

While our results suggest that randomized BPE
segmentation algorithms have no consistent dele-
terious effect on BLEU/chrF across languages, it
is possible that further experiments may find dif-
ferently. There is room for exploration regarding
randomization of the BPE algorithm. For exam-
ple, instead of sampling from the set of observed
symbol pairs, merge operations could be chosen by
sampling two unigrams independently or using a
temperature-augmented sampler.

Although we focus on morphologically rich lan-
guages, our experiments still utilize a moderate
amount of training data. Many morphologically
rich languages that we did not consider may also
lack such resources and thus be more impacted by
the choice of subword segmentation algorithm. We

feel that future work should pay particular atten-
tion should to this intersection of morphological
complexity and low-resourcedness.

5.2 Conclusion

We introduced two randomized variants of BPE
with the expectation that they would have a nega-
tive effect on translation performance because the
traditional greedy approach should result in better
subwords. Instead, our results indicate that sub-
word vocabularies created with randomized BPE
yield translation models that perform comparably
to those that use subwords created using the stan-
dard greedy BPE algorithm. Even when using uni-
form sampling, performance only degrades substan-
tially for two of the languages we consider. This
finding is corroborated by further analysis using
a Bayesian linear model which suggests that the
effect of uniform sampling is significantly different
from zero for only German and Uzbek.

We find this negative result significant, as it sug-
gests that variations on standard BPE can perform
reasonably well. We emphasize, however, that it
is not clear whether this holds universally, partic-
ularly when using Transformer architectures op-
timized for handling longer sequences or when
working with extremely small amounts of training
data. We hope that our negative result can motivate
further research into the optimal use of subword
segmentation algorithms, especially in the context
of languages that are both morphologically rich
and less-resourced, such as various Indigenous lan-
guages.
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A Additional Tables and Figures

Corpus statistics Table 3 shows relevant statis-
tics for each translation dataset, including number
of sentences, token and type counts, and type-to-
token ratios.

Translation performance Figure 2 shows a vi-
sualization of translation performance in terms of
BLEU and chrF across languages and number of
merge operations.
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Tokens Types Type-to-token ratio

Language Split Sentences English Non-English English Non-English English Non-English

Estonian
Train 1,856,236 32,850,284 27,221,588 361,245 713,970 0.01 0.03
Dev 2,000 45,892 36,333 7,731 12,275 0.17 0.34
Test 2,000 48,340 38,063 8,085 12,956 0.17 0.34

Finnish
Train 1,754,754 43,898,422 32,012,655 116,620 677,874 0.00 0.02
Dev 1,500 34,251 24,617 6,251 10,005 0.18 0.41
Test 1,370 29,183 21,142 5,761 8,958 0.20 0.42

German
Train 4,173,550 99,557,517 94,741,339 881,684 1,805,238 0.01 0.02
Dev 3,000 67,807 66,412 9,778 12,859 0.14 0.19
Test 3,003 70,620 66,081 10,607 14,053 0.15 0.21

Uzbek
Train 529,574 11,502,156 9,361,833 120,768 250,629 0.01 0.03
Dev 2,500 52,963 42,701 8,312 13,847 0.16 0.32
Test 2,500 54,061 43,945 8,349 13,265 0.15 0.30

Table 3: Counts of sentences, tokens and word types in our corpora.

Figure 2: Translation performance across languages and numbers of merges using BLEU (top) and chrF (bottom).
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Abstract
In recent years, there has been growing interest
in the field of abstractive text summarization
with focused contributions in relevant model
architectures, datasets, and evaluation metrics.
Despite notable research advances, previous
works have identified certain limitations con-
cerning the quality of datasets and the effec-
tiveness of evaluation techniques for generated
summaries. In this context, we examine these
limitations further with the help of three qual-
ity measures, namely, Information Coverage,
Entity Hallucination, and Summarization Com-
plexity. As a part of this work, we investigate
two widely used datasets (XSUM and CNN-
DM) and three existing models (BART, PEGA-
SUS, and BRIO) and report our findings. Some
key insights are: 1) Cumulative ROUGE score
is an inappropriate evaluation measure since
few high-scoring samples dominate the over-
all performance, 2) Existing summarization
models have limited capability for information
coverage and hallucinate to generate factual
information, and 3) Compared to the model-
generated summaries, the reference summaries
have lowest information coverage and highest
entity hallucinations reiterating the need of new
and better reference summaries.

1 Introduction

Abstractive text summarization (ATS) is the pro-
cess of compressing given textual content into short
and concise form by paraphrasing or rewriting
the most important information from the source.
Considering the high-level language understand-
ing, reasoning, and generation capabilities required
for ATS, considerable improvements are reported
in this field with contributions such as large-scale
datasets (Gliwa et al., 2019; Ladhak et al., 2020),
use of innovative techniques/architectures (Liu and
Liu, 2021), and novel evaluation metrics for effec-
tive validation. Recently, significant interest has
been observed in examining the quality of summa-
rization datasets (Tejaswin et al., 2021), reliability

ARTICLE: Andros Townsend enjoyed silencing the
critics with his wonder strike for England, saying
naysayers like Paul Merson provided the perfect mo-
tivation for him in Italy. This has been a topsy-turvy
season for the 23-year-old, who has yet to reach the
heights he scaled when he first burst onto the inter-
national scene. Three Lions manager Roy Hodgson
has, however, kept faith with the Tottenham winger
- belief he paid back in quite exceptional fashion at
the Juventus Stadium. Andros Townsend scores Eng-
land’s equaliser in their 1-1 friendly draw with Italy
in Turin on Tuesday night . Townsend celebrates his
strike with Tottenham Hotspur team-mates Ryan Ma-
son (left) and Kyle Walker .
REFERENCE SUMMARY: Andros Townsend scored
the equaliser in England’s 1-1 draw with Italy .
Townsend tweeted to hit back at Paul Merson for his
previous comments . Townsend has been been ‘des-
perate’ to silence his critics . Merson had slammed
Townsend for his display against Man United .

Figure 1: Example from the CNN-DM dataset. The
highlighted sentences in the reference summary contains
facts missing from the source article.

of evaluation metrics (Fabbri et al., 2021), architec-
tural choices, and overall impact of these on model
performance. In this paper, we re-evaluate the qual-
ity of textual content from summarization datasets
and generated summaries with Information Cov-
erage, Entity Hallucination, and Summarization
Complexity as primary dimensions of evaluation.

Popular summarization datasets, XSUM
(Narayan et al., 2018) and CNN-DM (Hermann
et al., 2015; Nallapati et al., 2016) (see Table 1),
are known to have major issues such as factual
consistency (Maynez et al., 2020; Tam et al., 2022;
Laban et al., 2022), low degree of summarization
complexity (Tejaswin et al., 2021), and layout
biases (Kryściński et al., 2019). Figure 1 shows an
example where the reference summary contains
the facts that are missing from the source article.
The models trained on these datasets tend to pick
up these limitations and thus are unreliable for any
real-world application.

Among all reference-free (Vasilyev et al., 2020;
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Dataset Train/Val/Test Description

XSUM 204k/11k/11k
BBC news articles
(1 sentence summaries)

CNN-DM 287k/13k/11k
CNN & DailyMail news articles
(3-4 sentences summaries)

Table 1: ATS datasets overview.

Gao et al., 2020) and reference-dependant (Zhang
et al.; Zhao et al., 2019) metrics proposed to date,
ROUGE (Lin, 2004) is preferred owing to its ease
of interpretation, usage, and comparison with other
baselines even though it misses out several quality
evaluation dimensions such as factuality and infor-
mativeness (Bhandari et al., 2020; Pagnoni et al.,
2021; Goyal et al., 2022; Deutsch and Roth, 2021;
Akter et al., 2022).

In this paper, we examine two widely used
datasets (XSUM and CNN-DM) and analyze the
performance of three ATS models (BART (Lewis
et al., 2020), PEGASUS (Zhang et al., 2020), and
BRIO (Liu et al., 2022)) on three interpretable qual-
ity evaluation dimensions. In contrast to the sim-
ilar existing works where the human-based evalu-
ation with a very small subset of datasets is con-
sidered (Fabbri et al., 2021; Pagnoni et al., 2021),
we present a computational framework for these
dimensions. We believe that the framework is espe-
cially useful in reducing the dependence on human-
based evaluation for the quality of the datasets and
ATS models.

Model
XSUM CNN-DM

R1 R2 RL R1 R2 RL
BART 45.14 22.27 37.25 44.16 21.28 40.9
PEGASUS 47.21 24.56 39.25 44.17 21.47 41.11
BRIO 49.07 25.59 40.4 47.78 23.55 44.57

Table 2: Evaluation results on the ROUGE metric.

2 Quality Evaluation Dimensions

In this section, we define three dimensions for qual-
ity evaluation. We examine the performance of
ATS models over these dimensions. We report the
ROUGE-based performance of these models for
comparison (see Table 2). We also explore the ref-
erence summaries on these dimensions. We denote
model-generated zero-shot summary as zs, refer-
ence summary as ref , and article as A.
1. Information coverage: A high-quality sum-

mary highlights the information present in the
source document. We explore the information
coverage of a summary from two perspectives:

topical coverage and key information cover-
age. In contrast to the naive word overlap be-
tween the generated and reference summaries
in ROUGE, we consider an informed overlap
of the summary with the source article in both
formulations.
Topical coverage (TC): An article usually dis-
cusses multiple aspects/topics to present facts
and information (see Appendix). The ROUGE-
based evaluation fails to measure the topical
coverage of the generated summary. To exam-
ine this further, we divide the article A into a
sequence of topics using the sentence similarity-
based topic-segmentation algorithm, C99 (Choi,
2000). We select C99 due to the fast topic seg-
mentation and flexibility to plug and play with
different sentence representation models. We
use the sentence BERT representations (Reimers
and Gurevych, 2019) to segment the article into
multiple topics. Each topic contains a sequential
list of sentences. We consider a topic T from
article A covered by the summary if at least k
words from the summary1 exist in T. Formally,

TC(zs,A, k) = 100 ∗ fTC(zs,Atopics, k)

|Atopics|
(1)

where fTC(.) measures the number of topics
covered by the summary (constrained by k).
Key information coverage (KIC): A docu-
ment summary, by definition, should cover the
key information presented in the source docu-
ment. We identify the key information in the
source document using an unsupervised key-
phrase extraction tool, YAKE (Campos et al.,
2020)2 (see Appendix). Formally, we define
KIC as:

KIC(zs,A) = 100 ∗ fKIC(zs,Akey−info)

|Akey−info|
(2)

where fKIC(.) measures the number of key-
phrases in A that exist in the summary.

2. Entity hallucination (EH): In Figure 1 (also
see Appendix), we present an example where
the summary contains the entities missing from
the article A. We consider a model to be entity-
hallucinated if it generates an entity missing
from the article (Tam et al., 2022). We use an
1we preprocess the summary to remove stopwords

using the gensim library: https://github.com/
RaRe-Technologies/gensim

2based on our manual analysis, we set ngram-size as 4,
dedup-lim as 0.5 and select the key-phrases with a score less
than 0.1
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18-class named-entity recognition module from
spacy3 to detect the entities. Formally,

EH(zs,A) = 100 ∗ fEH(zsentities, A)

|zsentities|
(3)

where fEH(.) measures the number of entities
in the summary that are missing from the article.

3. Summarization complexity: We consider sum-
marization complexity to be correlated with
the measure of extractiveness in the samples.
This complexity could potentially influence the
model’s performance. For instance, ATS models
with a higher tendency to copy text fragments
from the source document could achieve high
ROUGE scores on samples where the reference
summaries are more extractive. We examine
this by using a phrase overlap (PO) based for-
mulation. We define phrase overlap between the
model-generated summary and the article as:

POarticle(zs,A, n) = 100 ∗ |zsn ∩An|
|zsn|

(4)

Similarly, PO between the model-generated
and reference summary is given as:

POref (zs, ref, n) = 100 ∗ |zsn ∩ refn|
|zsn|

(5)

Here, zsn, An, and refn denote the phrases
containing n-tokens in the zero-shot summary,
article, and reference summary respectively.

3 Analysis

In this section, we discuss the insights from each
of these dimensions. In all our analyses, we divide
the samples in the test set of both datasets into four
groups. Each group contains 25% samples from
the original test set sorted based on the ROUGE-L
score. Group 1 (G1) contains samples with the low-
est ROUGE-L score whereas group 4 (G4) contains
samples with the highest ROUGE-L score. While
reporting the results for the reference summary, we
use the groups identified using the ROUGE-L rank-
ing of samples with the BRIO model. We report
the average scores for each group (see Tables 3 and
4 for information coverage, Table 5 for entity hal-
lucinations, and Tables 6 and 7 for summarization
complexity). Some key observations are:

Models trained on the CNN-DM dataset tends
to show higher information coverage. This ten-
dency could also be partially attributed to the longer

3https://github.com/explosion/
spacy-models/releases/tag/en_core_web_
sm-3.5.0

k Model
XSUM CNN-DM

G1 G2 G3 G4 G1 G2 G3 G4

1

BART 76.47 81.04 81.82 81.97 88.78 91.62 92.22 92.59
PEG 73.19 79.47 79.68 80.23 87.25 90.78 91.59 91.73
BRIO 76.96 80.95 81.42 81.34 91 92.58 93.02 93.51
Ref 71.40 78.80 79.95 80.93 86.98 90.71 91.41 92.45

2

BART 54.19 60.24 61.35 61.17 79.65 84.23 85.07 85.99
PEG 50.26 57.88 57.73 58.52 76.87 82.89 84.20 84.56
BRIO 54.52 60.08 59.88 60.46 84.02 86.40 87.47 87.94
Ref 47.13 56.36 57.55 59.12 75.66 82.14 84.25 85.61

5

BART 13.31 14.91 16.03 14.80 54.68 62.13 64.33 66.19
PEG 11.24 13.16 13.09 12.79 50.86 59.95 62.77 63.58
BRIO 13.30 14.79 15.33 14.63 61.97 67.98 69.07 70.03
Ref 7.97 11.71 12.30 13.63 45.67 57.50 61.50 65.30

Table 3: Topical coverage on k = 1, 2, and 5. For each
k, we highlight minimum TC and maximum TC for a
group within a dataset. A higher TC is preferred.

Model
XSUM CNN-DM

G1 G2 G3 G4 G1 G2 G3 G4
BART 11.69 12.08 11.82 11.20 37.55 42.55 44.11 46.54
PEG 11.81 11.79 11.15 10.59 33.95 39.18 41.71 43.88
BRIO 11.66 11.97 11.91 10.89 42.36 45.75 47.63 49.62
Ref 9.60 10.92 10.93 10.51 24.90 30.36 33.60 38.33

Table 4: Key information coverage. We highlight mini-
mum KIC and maximum KIC for a group within a
dataset. A higher KIC is preferred.

and more extractive summaries generated with the
CNN-DM dataset. The gap for topical coverage be-
tween both datasets widens further as we increase
the value of k.

BART gives tough competition to BRIO. Al-
though BRIO gets the highest TC and KIC score
on the CNN-DM dataset, BART performs compet-
itively. On the XSUM dataset, both models per-
form equally well. PEGASUS has the worst TC
among all three models suggesting that the gener-
ated summaries with PEGASUS are limited in their
capability to cover the overall source document.

We need new reference summaries! It is inter-
esting to note that the reference summaries show
worst KIC than all three models suggesting that
the ATS model’s capability to cover key informa-
tion is limited due to training on these poor-quality
reference summaries. Also, the topical coverage of
reference summaries is significantly lower in G1
compared to other groups in both datasets, denoting
the need for targeted analysis for this group.

Models trained on the XSUM dataset tend to
show higher entity hallucination. EH is more
prominent in the models trained on the XSUM
dataset due to the inherent nature of the dataset
(i.e., very high EH score of reference summaries),
which calls for the need to look beyond word
overlap-based metrics like ROUGE while training
and evaluating the ATS models. Also, the high
EH of reference summaries in both datasets is
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concerning since it directly limits the capability of
proposed techniques for ATS.

The ROUGE-based bench-marking of ATS
models is inadequate. In addition to giving tough
competition to BRIO for information coverage,
BART consistently shows the least EH than the
other two models. PEGASUS and BRIO have a
similar degree of EH on both datasets (see class-
wise EH distribution in Appendix). Low informa-
tion coverage and high EH of PEGASUS com-
pared to BART contradicts PEGASUS’s superior
behavior based on the ROUGE score (see Table
2). It reiterates the need for an alternative bench-
marking of the ATS models.

Model
XSUM CNN-DM

G1 G2 G3 G4 G1 G2 G3 G4
BART 36.52 38.80 40.95 44.96 2.08 1.38 1.29 1.37
PEG 34.91 40.36 45.12 48.22 5.87 5.53 5.49 4.91
BRIO 40.27 43.41 45.84 49.52 6.55 4.42 3.99 3.61
Ref 46.01 46.43 50.54 52.61 15.03 12.37 10.68 7.72

Table 5: Entity hallucinations. We highlight maximum
EH and minimum EH for a group within a dataset. A
lower EH is preferred.

Articles in the CNN-DM dataset are easier
to summarize? The models trained on the CNN-
DM dataset tend to copy text fragments from the
source article, and this behavior is more prominent
in high ROUGE scoring samples (i.e., G4). BART
shows a very-high tendency to copy content from
the article and manages to perform well on the
ROUGE-based evaluation. It further highlights the
extractive nature of the reference summaries in the
CNN-DM dataset that guides the model to learn to
copy content from the source document.

The tendency to be more abstractive is costly
for BRIO! BRIO-generated summaries are more
abstractive in nature, especially in the low ROUGE-
scoring group G1. The significantly lower POref

score in this group compared to other groups re-
sults in a lower ROUGE score suggesting that the
abstractiveness proves costly for BRIO.

ROUGE score is dominated by a few samples.
For both the datasets, all models show a sharp in-
crease in the POref score as we move from G1
to G4 (see Table 7), suggesting that only a small
proportion of samples contribute heavily towards
the overall ROUGE score. The gap between the
groups widens as we increase the phrase length.

XSUM and CNN-DM datasets are NOT the
benchmark datasets for the ATS task. As dis-
cussed earlier, the reference summaries in the CNN-
DM dataset are more extractive in nature. It is inter-

n Model
XSUM CNN-DM

G1 G2 G3 G4 G1 G2 G3 G4

1

BART 64.94 64.72 64.18 62.28 94.74 94.94 94.77 95.16
PEG 63.92 62.83 61.18 59.69 89.27 89.92 90.12 90.76
BRIO 62.80 62.31 61.41 59.76 88.03 89.75 90.51 91.92
Ref 52.72 54.98 55.27 55.71 75.45 79.77 82.57 86.58

2

BART 23.61 22.38 21.74 20.23 85.38 85.23 84.91 86.02
PEG 24.80 21.40 19.34 17.93 74.59 74.59 74.84 77.03
BRIO 20.99 19.79 19.06 17.86 61.72 65.48 68.05 72.92
Ref 11.44 13.15 13.48 14.66 32.82 38.91 44.45 54.53

3
BART 9.82 8.13 7.79 7.18 77.40 76.72 76.07 77.76
PEG 12.35 8.67 6.74 5.95 64.01 63.17 63.33 66.34
BRIO 6.75 6.18 5.93 5.52 42.74 46.65 49.92 56.96
Ref 2.35 3.07 3.26 4.04 16.12 20.3 25.32 36.61

Table 6: Phrase overlap with the article on n = 1, 2, and
3. For each n, we highlight minimum POarticle and
maximum POarticle for a group within a dataset. A
higher POarticle suggests more extractive summaries.

n Model
XSUM CNN-DM

G1 G2 G3 G4 G1 G2 G3 G4

1
BART 24.99 37.21 46.74 63.28 22.40 32.11 39.17 51.01
PEG 25.87 39.97 50.13 68.43 25.69 35.70 43.24 56.23
BRIO 27.46 40.64 50.50 67.12 27.95 37.27 43.68 53.89

2
BART 4.81 12.76 22.05 42 5.41 11.01 16.89 30.02
PEG 5.38 14.81 25.48 48 5.98 12.39 18.88 33.79
BRIO 6.18 15.53 25.44 46.37 7.75 13.68 19.01 30.60

3
BART 0.95 4.68 11.28 29.40 1.93 5.11 9.32 20.97
PEG 1.19 5.80 13.93 35.03 2.24 5.87 10.57 23.99
BRIO 1.47 6.50 13.68 33.36 2.86 6.35 10.11 20.09

Table 7: Phrase overlap with the reference summary
on n = 1, 2, and 3. For each n, we highlight mini-
mum POref and maximum POref for a group within
a dataset. A higher POref suggests higher phrase over-
lap with the reference summary.

esting to note that the extractive text summarization
models built on this dataset show comparative per-
formance to the ATS models (An et al., 2022). In
contrast, the reference summaries in the XSUM
dataset are more abstractive with a higher degree of
hallucination, making them unsuitable for effective
utilization.

4 Conclusion

In this paper, we document our experiments on two
widely used ATS datasets and three models trained
on these datasets. We evaluate these on three di-
mensions of quality and demonstrate how the re-
ported progress made in terms of the ROUGE met-
ric is inconclusive. Our analysis shows that BART
still shows competing behavior with current state-
of-the-art models on various quality dimensions.
We also highlight the need to carefully analyze the
reference summaries in both datasets. Alternate
evaluation metrics are required to account for dif-
ferent quality dimensions such as summarization
complexity.
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Topic 1: The security forces are reported to have used tear gas against stone-throwing protesters.

Topic 2: They also surrounded the hometown of Burhan Wani, 22, who was killed fighting Indian troops last year.
Separately seven people are reported to have been killed in shelling across the Line of Control that divides Indian and
Pakistani-administered Kashmir. Officials on the Pakistani side told Reuters that five people died in Indian shelling,
while Indian officials say two people were killed by Pakistani fire.

Topic 3: There has been an armed revolt in the Muslim-majority region against rule by India since 1989, although
violence has waned in recent years. The disputed region is claimed by both India and Pakistan in its entirety. India
blames Pakistan for fuelling the unrest, a claim denied by Islamabad.

Topic 4: Burhan Wani is credited with reviving the image of militancy in Muslim-majority Indian-administered
Kashmir, becoming a figurehead for young people. Saturday’s violence started as people tried to walk to his home in
Tral - where he died in a shootout with the army last July. His death led to a wave of protests during which dozens of
people were killed.

Topic 5: The Indian authorities imposed heavy restrictions in the Kashmir valley for the anniversary, stopping internet
access and sealing off Tral. There have also been reports of army personnel being injured in a militant attack overnight
on Friday.

Figure 2: Example from the XSUM dataset. The article is segmented into five topics. Topic 1: Opening remark,
Topic 2: Current situation on the incident, Topic 3: Background on India-Pakistan relationship, Topic 4: Background
on the incident, Topic 5: Closing remark.

ARTICLE: Four years after becoming the youngest first-class cricketer in county history, Yorkshire’s Barney Gibson has
retired from the sport. The Leeds-born wicketkeeper entered the record books in 2011 when he lined up against Durham
University just 27 days after his 15th birthday. But that match proved to be his only appearance at senior level and he
never again progressed from the second XI. Ben Gibson, pictured at the age of 15, has decided to retire from cricket just
four years after his debut . The 19-year-old said it was a ‘difficult decision’ to retire from cricket at such a young age .
In his last game for the second string he did not bat or keep wicket, instead sending down 3.3 overs for 29 runs. ‘This
was a difficult decision to make,’ the 19-year-old said. ‘I would like to thank the players and staff at Yorkshire for their
support. I have been involved with the club since I was 11 and I feel that now is the right time for me to look at a career
change. ‘The support from my parents has been tremendous and I would like to thank Ralph Middlebrook at Pudsey
Congs Cricket Club and England coach Paul Farbrace, who I had close working relationships with.’ Yorkshire’s director
of cricket development Ian Dews, said: ‘Everyone at the club wishes Barney well. It is very much his decision. We
hope that the next chapter in his life is very successful.’

REFERENCE SUMMARY: Barney Gibson became the youngest first-class cricketer in 2011 . The Yorkshire wicketkeeper
made his debut shortly at 15 . Gibson said it was a ‘difficult decision’ to retire from the game .

KEY-PHRASES: retired from the sport, cricketer in county history, youngest first-class cricketer, first-class cricketer
in county, Yorkshire Barney Gibson, Barney Gibson has retired, Pudsey Congs Cricket Club, Durham University,
Leeds-born wicketkeeper entered, England coach Paul Farbrace, Ralph Middlebrook at Pudsey, cricket development Ian
Dews, lined up against Durham, cricket, wicketkeeper entered the record, entered the record books, difficult decision,
Gibson

Figure 3: Example from the CNN-DM dataset. We highlight the key-phrase containing segments in the article. The
key-phrases gives an overall idea about the important discussion points in the article.
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ARTICLE: The Belgium international, 24, changed the game from the bench but fell awkwardly in injury time. His
agent Patrick de Koster initially said De Bruyne would miss six weeks. But, after seeing a specialist, the £55m former
Wolfsburg player said: “I’ll be out for around 10 weeks.” De Bruyne could miss up to 13 league and cup games,
including the League Cup final with Liverpool on 28 February, both legs of the Champions League last-16 tie with
Dynamo Kiev and the Manchester derby on 20 March. The Belgian is City’s second top goalscorer with 12 this season,
four behind striker Sergio Aguero. De Koster added: “Kevin told me the only thing he can do is work hard and come
back. Kevin is sad. His dream is to always be playing football.” De Bruyne scored one goal and set up another to help
City to a 4-3 aggregate victory over the Toffees. Everton goalkeeper Joel Robles, who repeatedly tried to lift up De
Bruyne as he lay injured, used social media to say sorry. "I would like to apologise to Kevin de Bruyne for my reaction
to his injury," said the 25-year-old Spaniard. "In the heat of the moment I didn’t realise he was badly hurt. I wish him
all the best and a speedy recovery.
REFERENCE SUMMARY: Manchester City midfielder Kevin de Bruyne says he will be out for about 10 weeks after
injuring his right knee during Wednesday’s League Cup semi-final victory over Everton.

BART: Manchester City midfielder Kevin de Bruyne will be out for at least 10 weeks after injuring his ankle in
Tuesday’s Champions League win over Everton.

PEGASUS: Manchester City midfielder Kevin de Bruyne will be out for up to 10 weeks with the ankle injury he
suffered in Tuesday’s Capital One Cup win over Everton.

BRIO: Manchester City midfielder Kevin de Bruyne will be out for around 10 weeks after fracturing a bone in his right
foot in the Capital One Cup win over Everton.

Figure 4: Example from the XSUM dataset. We underline the identified entities and highlight the entities with red
that are missing from the source article.

XSUM CNN-DM
BART PEGASUS BRIO Ref BART PEGASUS BRIO Ref

GPE 24.34 26.48 28.12 30.05 0.58 1.5 4.25 5.26
PERSON 63.69 63.7 66.28 67.32 1.96 9.41 24.4 8.44
ORG 39.09 40.85 45.66 45.97 2.05 8.5 18.39 10.92
DATE 61.69 66.06 67.76 76.71 1.58 2.88 5.78 18.71
CARDINAL 42.17 46.47 49.54 57.35 0.31 0.9 1.28 11.1
EVENT 57.34 60.21 62.16 58.8 4.61 11.45 23.53 17.49
LOC 32.35 38.05 44.4 46.74 1.15 2.69 15.56 10.36
ORDINAL 34.57 41.07 41.19 48.63 0.63 1.29 1.09 11.7
WORK_OF_ART 38.71 45.97 42.96 46.77 8.36 24.84 - 25.26
NORP 26.64 29.18 29.41 34.55 0.9 0.93 6.44 9.69
MONEY 70.78 72.61 77.07 86.21 0.91 1.57 2.79 16.84
PRODUCT 25.42 28.07 27.13 36.5 0.24 10.29 13.79 11.94
PERCENT 74.74 67.44 73.33 84.17 32.4 25.0 36.07 73.66
TIME 51.59 50.0 56.93 84.3 3.08 3.47 8.68 28.29
FAC 54.79 60.96 58.89 61.98 2.97 20.53 38.46 12.62
QUANTITY 52.0 69.23 77.42 94.38 1.38 0.92 3.11 20.18
LANGUAGE 12.5 - 12.5 44.44 - - 27.78 10.1
LAW 66.67 60.0 69.05 70.83 5.43 34.07 20.0 35.48

Table 8: Class-wise EH distribution. We highlight maximum EH and minimum EH for an entity class within a
dataset.
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Abstract

The number of scientific publications in the
biomedical domain is continuously increasing
with time. An efficient system for indexing
these publications is required to make the infor-
mation accessible according to the user’s infor-
mation needs. Task 10a of the BioASQ chal-
lenge aims to classify PubMed articles accord-
ing to the MeSH ontology so that new publica-
tions can be grouped with similar preexisting
publications in the field without the assistance
of time-consuming and costly annotations by
human annotators. In this work, we use Graph
Neural Network (GNN) in the link prediction
setting to exploit potential graph-structured in-
formation present in the dataset which could
otherwise be neglected by transformer-based
models. Additionally, we provide error analysis
and a plausible reason for the substandard per-
formance achieved by GNN. The source code
is available on the GitHub.1

1 Introduction

Many scientific publications are available on the
internet, and the number of publications is contin-
uously increasing with time. The digital library
PubMed2 currently consists of 33 million citations
and is based on the medical database MEDLINE.
The articles available on PubMed are indexed with
concepts that come from the Medical Subject Head-
ings (MeSH) ontology. The human and financial
effort needed to keep up with the rapid pace of de-
velopment is steadily increasing (You et al., 2020).
There was a 5% increase in the number of citations
in 2018 for MEDLINE. Moreover, these citations
are manually indexed with MeSH headings, which
cost $9.4 per citation on average.

A large-scale biomedical semantic indexing task
(10a) in the BioASQ3 challenge is designed to

1GitHub Repository
2PubMed Website
3BioASQ Website

help develop systems that can automatically in-
dex PubMed publications using headings from the
MeSH ontology4. The fact that a publication can
be assigned more than one MeSH heading makes
it a multi-label classification task. Additionally,
there are approximately 30k MeSH headings which
makes it an extreme multi-label classification task.

GNN has been shown to achieve unprecedented
performance on the benchmarks of link prediction
and recommender systems (Ying et al.). A con-
siderable amount of real-world datasets contains
latent graph-structured information that could be
effectively exploited to improve performance by
modeling the task as a graph-related task. The mod-
els proposed in previous versions of the BioASQ
challenge do not formulate the problem as GNN
modeling, which can curtail the performance gain
due to the omission of crucial graph-structured in-
formation present in the dataset.

Task 10a of the BioASQ challenge is to assign
MeSH headings to PubMed articles based on the
title and abstract of each article. In this work, we
work on the following points to solve the problem.

• We formulate the problem as GNN link pre-
diction task to improve the performance by
utilizing the information present in the graph
structure.

• We provide error analysis and highlight limi-
tations of the GNN model in order to under-
stand the potential reasons for its inability to
perform better than the baseline.

2 Literature Review

The methods used for the task in the previous ver-
sions of the BioASQ challenge can be classified
into three categories (You et al., 2020). The first
category named Binary relevance consists of mod-
els such as MetaLabeler (Tsoumakas et al., 2013)

4MeSH Tree View
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which uses linear SVMs in a one vs all multi-label
classification setting to select the most probable
MeSH headings. The second category consists
of models like DeepMesh (Peng et al., 2016) and
MeSH Now (Mao and Lu, 2017) which rely on
the widely used Information Retrieval technique
named Learning to Rank in order to obtain the
most relevant MeSH headings. The final category
is based on Deep Learning e.g. MeSHProbeNet
(Xun et al., 2019) and AttentionMeSH (Jin et al.,
2018) which uses RNN and attention mechanism
to get the most probable MeSH headings.

Most teams in the 2021 version of the BioASQ
challenge relied on contextualized language mod-
els, such as BERT (Devlin et al., 2019). The top
performing model BERTMeSH You et al. (2020)
also uses BERT as a foundational model.

3 Methodolgy

Our proposed GNN model is implemented in the
link prediction setting consisting of two modules,
namely, Document Embedding Module and Link
Prediction Module.

3.1 Document Embedding Module

We use Sentence-BERT Reimers and Gurevych
(2019) to create embedding for the abstract of an
article (article embedding). Sentence-BERT is used
to make embeddings for the MeSH headings (head-
ing embedding) also by using the “Scope Note”.
An example of the MeSH heading named Adult is
shown in Figure 1. Both article and heading em-
beddings can then be used to initialize the GNN
model nodes in the Link Prediction Module.

Figure 1: Metadata for heading Adult

3.2 Link Prediction Module

Each article is annotated with MeSH headings by
the human annotators. The task is to build a model
that can predict MeSH headings for new unanno-
tated articles. We formulate the problem as a link

prediction between the article and heading nodes
in a graph. A GNN model will be used in an in-
ductive setting Veličković et al. (2018) to predict
existence/non-existence of links between articles
and MeSH headings.

The proposed GNN model consists of an encoder
and a decoder. We use SAGEConv layer of the
GraphSAGE Hamilton et al. (2017) to create our
model. The encoder takes a graph which has two
types of nodes, namely, article nodes and the head-
ing nodes initialized by the corresponding embed-
ding obtained from Document Embedding Module
as described in the previous section. In inductive
learning, we need to have three distinct graphs for
training, validation, and test sets as described in the
section 3.3. The edges in the graph are split into
message-passing and supervision edges. Message-
passing edges are used to update the node’s embed-
ding using neighborhood aggregation, whereas the
existence/non-existence of link should be predicted
for supervision edges. The output of the encoder is
a graph with new low-dimensional embeddings ob-
tained by using neighborhood aggregation based on
message-passing edges. The updated node embed-
ding x′i for a node i is obtained using neighborhood
aggregation as follows

x′i = W1xi +W2 ·meanj∈N (i) xj (1)

Where W1 and W2 are trainable parameters, xi
the current node embedding for node i and N (i)
are neighbors of node i.

In order to determine if there is a link between
two nodes xi and xj as specified by the supervision
edges, the decoder uses the inner product between
the node’s output embeddings followed by a sig-
moid activation function.

σ(xi · xj) =
1

1 + e−xi·xj
(2)

The result of sigmoid indicates a presence or
absence of a link between two nodes of the super-
vision edges.

3.3 Graphs Construction

We have described the training, validation and test
graphs in Table 1. All graphs have the same number
of headings nodes, but they differ in the number of
article nodes. An edge between the article and the
heading node can be made if the article is annotated
with a particular MeSH heading. The edges which
are present in the graphs are referred to as positive
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Graph Edge Type Description

Train
Message-passing 60% of positive train edges
Supervision 40% of positive train edges + negative edges

Validation
Message-passing “Borrowed graph” edges
Supervision All possible validation edges

Test
Message-passing “Borrowed graph” edges
Supervision All possible test edges

Table 1: Description of edge types for data splits.

edges. We can split the positive edges into message-
passing and supervision edges according to some
ratio, e.g. 60/40. We split the positive edges for
train graph. However, the test set will not have any
edges which could be split, as there are no links
between articles and MeSH headings. The lack of
message-passing edges is problematic because the
GNN model needs them for neighborhood aggre-
gation. This could be handled by making edges
between all articles and MeSH headings and using
them as message-passing and supervision edges.
However, the fact that the message-passing edges
should be the correct edges and not randomly cre-
ated will result in a nonrobust model. Therefore,
we extract a sub-graph from the train graph named
“borrowed graph” by randomly selecting some ar-
ticles nodes in the train graph. The number of
articles nodes to be extracted is treated like a hyper-
parameter (40k in our case). As the heading nodes
in all the graphs are similar, and we know the cor-
rect edges between article and heading nodes in
“borrowed graph”, we can add it to the test graph so
that we have correct edges from “borrowed graph”
which could be used as message-passing edges.

In the test graph, the supervision edges are all
possible edges between the article nodes of test set
and heading nodes. In addition to positive edges
in the train graph, supervision edges also contain
randomly sampled negative edges, i.e. edges which
are not present in the graph. They are included in
order to improve the ability of the model in terms
of preventing false positive predictions.

4 Dataset

The dataset provided by the organizers of the 2022
version of the BioASQ challenge for task 10a is
composed of articles obtained from PubMed. The
training dataset consists of 16,218,838 articles and
29,681 distinct MeSH headings. MeSH headings
are the concepts that are part of the MeSH ontology,
which makes it easy to index and search medical
and health-related information. Each article is as-
signed 12.68 MeSH headings on average. Each
human-annotated MeSH heading has a unique ID

assigned to it, which needs to be predicted for each
article. An example of the MeSH heading named
Adult is shown in Figure 1 where the heading is
described by “Scope Note”. The test set provided
by the challenge organizers for the first week con-
taining 9659 samples is used for testing.

Figure 2: MeSH hierarchy for Glucocorticoids

MeSH headings are categorized into 16 cate-
gories, which are further divided into subcategories.
Each subcategory has a hierarchical depth of up to
13 where headings are organized from general to
specific5. One important property of the MeSH
hierarchy is that it is a graph instead of a tree. In
a tree, each node can have only one parent, which
does not hold true in the case of the MeSH hi-
erarchy. Figure 2 shows that the MeSH heading
named Glucocorticoids has 2 parent nodes, namely
Adrenal Cortex Hormones and Hormones.

5 Experimental Setup

Taking into consideration the large size of the
dataset, 70k articles are randomly sampled from the
original training set to be used as the training set.
Additionally, the validation set of 10k samples is
sampled from the original training set. The random
sampling of a small subset of articles could lead to
a training dataset that has a considerably different
distribution than the original dataset, resulting in
non-generalizable results. We tried to mitigate that
by sampling the training articles using the MeSH
ontology, which is described further in Appendix
A. However, there was no improvement observed
over the random sampling. Therefore, we report
results on randomly sampled training data to keep
the method intelligible.

5MeSH Tree Structures
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Pmicro Rmicro F1micro

BERTMeSH
Val 0.584 0.397 0.473
Test 0.628 0.399 0.488

Table 2: Results obtained for BERTMeSH

Loss Function Train Valid Test

Binary Cross Entropy
[
1018551(TN) 31449(FP )
45900(FN) 244452(TP )

] [
2035800 74610
204 1086

] [
2033029 77574
155 942

]

Focal Loss
[
1041248 8752
116308 174044

] [
2089116 21294
551 739

] [
2081154 29449
392 705

]

Table 3: Results reported as confusion matrix for GNN

The best-performing model of the 2021 ver-
sion of BioASQ challenge is used as a base-
line model. The model is trained for 5 epochs
with an initial learning rate of 1e-5 which is al-
tered using the learning rate scheduling function
get_cosine_schedule_with_warmup from trans-
formers library (Wolf et al., 2020).

Unlike BERTMeSH, the results on validation
and test datasets for GNN are based on only the
first 100 articles of both datasets, for computational
resource reasons (test graphs for the remaining ar-
ticles can be made for evaluation as explained in
section 3.3). The architecture of GNN is composed
of 2 SAGEConv layers where the input, hidden and
output dimensions are 768, 256, 128 respectively.
GNN is trained with a learning rate of 0.005 and
Adam optimizer Kingma and Ba (2015) with the de-
fault hyperparameters. Two models are trained us-
ing different loss functions, namely, Binary Cross
Entropy and Focal Loss. The hyperparameters used
for Focal Loss are α = 0.2 and γ = 0.2.

6 Results

Table 2 shows the results obtained for BERTMEsH
on micro-averaged precision, recall, and f1 score.
The model was able to score 0.488 f1 score. The
results for GNN are reported as a confusion matrix
in Table 3 because the f1 score is very low and
is, therefore, not helpful in understanding the re-
sults. When Binary Cross Entropy is used as a loss
criterion, the number of FN predictions (155) is
considerably low as desired. However, the number
of FP predictions is large. In the case of Focal loss,
the loss criterion helps to reduce the number of
FP predictions from 77574 to 29449 for the test
dataset. However, the number of FN predictions
increased from 155 to 392 accordingly.

7 Error Analysis

The results obtained using the focal loss indicate
that the number of False Positive predictions can
be improved using methods that give more impor-
tance to hard negatives. The negative edges which
are difficult to discern from the positive edges are
called hard negatives. Therefore, we assumed that
the creation of hard negative samples improves the
FP results and used Dynamic Random Sampling
Zhang et al. (2013) and mixup Zhang et al. (2018)
to add hard negatives during the training process
instead of randomly sampling negative edges.

Figure 3: Hard negatives created using Dynamic nega-
tive sampling

For Dynamic Random Sampling, we start adding
the hard negatives after second epoch. For each
article, 5 random negatives and up to 10 hard nega-
tives are added. Negative edges for which the dot
product is too high (FP) are ignored in order to
avoid the hardest negatives. To this end, negative
edges which have dot product between 0.6 and 0.95
are considered hard negatives. The 2-dimensional
representation of the embeddings obtained at the
output layer of GNN model is shown in Figure 3.
It can be observed that the hard negatives are closer
to article embeddings in vector space as compared
to the embeddings of remaining headings. To em-
pirically verify our observation, we calculated the
cosine similarity between the mean of article em-
beddings and the mean of hard negatives, which
turns out to be -0.14. Similarly, a cosine similarity
of -0.75 was obtained between the mean of article
embeddings and heading embeddings. Although
the model correctly selects the hard negatives as
indicated by cosine similarity, the results obtained
on the evaluation metrics do not surpass the results
obtained using Focal Loss only.

The second approach mixup uses a linear inter-
polation of the positive and negative samples to
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create hard negatives. The following equation is
used to linearly interpolate article embedding ep
and heading embedding en to create hard negative
eh.

eh = λep + (1− λ)en (3)

We set λ equal to 0.9 for the experimentation.
This approach also yields no improvements over
the results obtained using Focal Loss only.

8 GNN Limitations

Although GNN has improved performance on
many tasks which benefit from graph-structured
data, the architecture of GNN has some inherent
limitations. One of the problems that Neural Net-
works has is that the performance is decreased as
the number of layers is increased. The vanishing
gradient coerces us to limit the number of layers,
resulting in a shallow network that is not able to
generalize. In addition to the vanishing gradient
problem, the GNN model is limited to a small num-
ber of layers due to over-smoothing. Li et al. (2018)
have shown that the convolution operation of GNN
is the source of its predictive power, but is also the
cause of its limitation. They proved that the con-
volution operation of GNN is a kind of Laplacian
smoothing, which helps to learn new embedding
from the neighboring nodes. However, the repeated
application of Laplacian smoothing results in the
features of all nodes being identical, which deteri-
orates the predictive power of the model. As the
number of layers increased, the nodes in the graph
increasingly have similar neighbors to update their
embeddings, resulting in identical nodes.

The architecture of GNN has another limitation,
named over-squashing. GNN is less effective on
tasks that benefit from long-distance interactions.
Equation 1 shows a node update using neighbor-
hood aggregation for a particular layer. It can be
seen that as the number of layers increases, the
receptive field also grows exponentially. There-
fore, the need for the model to encode information
from long-distance neighbors creates a bottleneck
because the model tries to cram too much informa-
tion into a single vector. Alon and Yahav (2021)
has shown that the information from exponentially
growing k-hop neighbors for a k-layer GNN can
not be crammed into a single vector representa-
tion, which results in low performance for tasks
that require long-distance information. Figure 4

illustrates the bottleneck while updating a node’s
feature representation based on its 3-hop neighbors.

Figure 4: GNN Bottleneck (adapted from Alon and Ya-
hav (2021)). Dots represent arbitrary number of nodes.

.

Additionally, the degree distribution of our bi-
partite graph follows a power law and is potentially
scale-free graph (Broido and Clauset, 2019). This
also forces us to cram a lot of information into
high-degree nodes.

Over-smoothing and negative sampling does not
seem to be the main cause of low performance in
our case. The potential reason for the superior per-
formance of transformer-based models than GNN
is the mitigation of the over-squashing problem.
BERTMeSH avoids over-squashing by making a
unique representation for each label using Multi-
label attention instead of making a single vector
representation as described in the paper. This al-
lows the model to avoid over-squashing, which
leads to improved performance.

9 Conclusion

Taking into consideration, the need for an efficient
system to automatically classify MeSH headings,
we implemented GNN in the link prediction setting.
The use of advanced negative sampling strategies
did not yield improved results. We highlighted the
limitations of GNN and hypothesized that GNN is
not able to generalize due to the over-squashing.
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A Data Preprocessing

Taking into consideration the large size of the
dataset, we randomly filtered articles to train the
models efficiently. However, random sampling
could result in a dataset subset that has a consider-
ably different distribution than the original dataset.
Therefore, we also used the hierarchical structure
of MeSH ontology to reduce the number of training
articles.

Groups of articles are made by putting the arti-
cles into 6749 groups, where 6749 is the number
of MeSH headings at depth 3 of the MeSH ontol-
ogy. Some of the groups along with the number
of articles they contain are shown in the table 4.
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Groups No. of articles
Adult 161367

Adolescent_Adult 43519
Treatment Outcome 19234

Adolescent_Adult_Child 17284

Table 4: Groups based on MeSH ontology

As there are numerous shared MeSH headings be-
tween articles, the groups overlap with each other.
The groups which are made by the combination of
two or more MeSH headings have an underscore
in their name, e.g. “Adolescent_Adult” is a group
that contains articles that are labeled with MeSH
labels “Adolescent” and “Adult”. The number of
articles in the groups follows the distribution of
Zipf’s law, where a lot of groups have less than 10
articles. Therefore, different percentages of articles
are sampled from different groups that are based
on the number of articles they contain. For the
groups containing articles between 10 and 200. 0.1
percent of the articles are filtered from each group.
If a group contains more than 200 articles, then
0.05 percent of the articles are filtered. Finally, 50k
groups are randomly sampled from the groups that
have less than 10 articles. The number of filtered
articles obtained after applying the previously de-
scribed filtering is 400k articles. Finally, we used
the training set to train the model as explained in
Section 5.
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Abstract

In this paper, we describe how we unearthed
some fundamental problems while building an
analogy dataset to evaluate historical Irish em-
beddings on their ability to detect orthographic,
morphological and semantic similarity. Low
agreement among field experts and the absence
of an editorial standard in available resources
make it impossible to build reliable evaluation
datasets for computational models and obtain
interpretable results. We emphasise the need
for a historical text editing standard, particu-
larly for NLP applications, and prompt Celti-
cists and historical linguists to engage in further
discussion. We would also like to draw NLP
scholars’ attention to the role of data and its (ex-
tra)linguistic properties in testing new models
and evaluation scenarios.

1 Introduction

Historical languages are known to present greater
challenges to NLP due to high orthographic
variation, diachronic morphological changes and
lack of resources (Piotrowski, 2012; Jenset and
McGillivray, 2017; Bollmann, 2019). Our initial
goal was to compare different embedding architec-
tures and hyperparameters for detecting morpho-
logical and spelling variation in historical Irish, but
we unearthed some fundamental problems while
we were building an evaluation dataset and testing
our models on it.

2 Word Embedding Evaluation Scenarios

There are two main strategies for the evaluation
of word embeddings: extrinsic and intrinsic (Schn-
abel et al., 2015; Bakarov, 2018; Torregrossa et al.,
2021). Extrinsic evaluation involves using pre-
trained embeddings as input vectors in a model
solving a downstream NLP task, such as part-of-
speech tagging, named entity recognition, or sen-
timent analysis. The model’s performance is be-
lieved to reflect the quality of the embeddings it was

initialised with. Intrinsic evaluation is focused on
assessing linguistic relations within the embedding
model itself through solving specially designed
mathematical problems: similarity and analogy.
The similarity task entails comparing the similar-
ity scores of two words yielded by an embedding
model to those calculated based on experts’ judg-
ments. The analogy task is a vector proportion,
where we ask an embedding model, “What is to b
as a′ is to a?”, and expect b′ as an answer.

Generally, task-driven extrinsic evaluation looks
more feasible, because it allows the use of already
existing evaluation datasets. However, the majority
of downstream tasks have not been attempted yet
for many minority and historical languages, which
leaves us with no available datasets or baselines.
As such, constructing a small dataset for intrinsic
evaluation seems the best alternative. Both analogy
and similarity datasets can be created automatically
or semi-automatically by translating an existing
dataset from another language, or with the help
of a WordNet or a comprehensive dictionary of a
language in question in a machine-readable format
if there are any. Such a dataset would still require
expert proofreading and evaluation, but the amount
of manual work would not be as daunting as when
a dataset is created from scratch.

3 Early Irish Analogy Dataset

Traditionally, analogy datasets are based on pair-
wise semantic proportion (Mikolov et al., 2013b),
and therefore every question has a single correct
answer. Given the high level of variation in histori-
cal languages, such a strict definition of a correct
answer seems unjustified. Therefore, we follow
the creators of the Bigger Analogy Test Set, or
BATS (Gladkova et al., 2016). This dataset has
highlighted the problems of popular embedding
models, such as GloVe, and provided additional
proof of the importance of subword information
for capturing morphological relations. The origi-
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nal English BATS has successfully been adapted
to Japanese (Karpinska et al., 2018) and Icelandic
(Friðriksdóttir et al., 2022). Our Early Irish analogy
dataset is not a full-scale adaptation of BATS but
draws heavily upon the ideas behind it, providing
several correct answers for each analogy question
and evaluating the performance with set-based met-
rics proposed by BATS authors, such as an average
of vector offset over multiple pairs (3CosAvg) and
a logistic regression cosine similarity (LRCos):

b′ = argmaxb′∈V (cos (b′, b+ avg_offset)) ,

where avg_offset =
∑m

i=0 ai
m

−
∑n

i=0 bi
n

(1)

b′ = argmaxb′∈V

(
P(b′∈ target_class ) ∗ cos (b′, b)

)
(2)

The Early Irish analogy dataset consists of four
parts: morphological variation, spelling variation,
synonyms, and antonyms.

The morphological and spelling variation data
was automatically extracted from the eDIL (Toner
et al., 2019), a digital historical dictionary of me-
dieval Irish covering the period ca. 700 – 1700.
Spelling variants were taken from the headwords,
and the morphological variation subset was com-
piled from the ‘Forms’ field that covers both in-
flected forms of a headword and its derivatives.
Unlike the original BATS, no division was made
between different types of inflection, nor between
inflection and derivation, within the morphological
variation subset because the structure of eDIL does
not allow for obtaining this division automatically.
We would also like to point out that the eDIL some-
times lists spelling variants along with inflected
forms and derivatives in the ‘Forms’ section, and
we did not filter them out manually. The raw data
amounted to 2,370 spelling variation and 9,690
morphological variation questions, from which 100
examples were randomly selected for each of the
subsets to be comparable in size with the synonym
and antonym subsets.

The synonym and antonym subsets are transla-
tions of the correspondent BATS parts proofread
by four expert evaluators. The translations for
each entry in the synonym subsets L07 (intensity,
cry : scream) and L08 (exact, sofa : couch), and
antonym subsets L09 (gradable, clean : dirty) and
L10 (binary, up : down) were obtained by reverse-
searching the eDIL. The translations were then or-
ganised in synsets, each labelled with an English
keyword, which the expert evaluators were asked

to review. The evaluators were allowed to con-
sult eDIL but were advised not to rely on provided
definitions, if in doubt, but instead to utilise their
knowledge of how these words occur in texts. The
task description also included the following guide-
lines:

• words in a synset must express the same con-
cept and be of the same part of speech;

• words in a synset must be used in similar con-
texts and be of the same part of speech;

• a polysemous word can belong to several
synsets;

• the annotators should not distinguish between
language periods, i.e. an Old Irish and a Mid-
dle Irish word can belong to the same synset.

We obtained 98 entries in the synonym subset
and 109 entries in the antonym subset, upon which
three or more experts agreed. If a word had multi-
ple spellings in the corresponding eDIL entry, we
included all of them in these subsets.

4 Experiment, Evaluation and Epic Fail

Our initial goal was to compare different embed-
ding architectures to measure the effect of lever-
aging subword information on detecting morpho-
logical and spelling variation along with semantic
similarity in a diachronic scenario. We also aimed
at finding the best embedding size for our low-
resource and highly inconsistent data. For this pur-
pose, we trained SkipGram (Mikolov et al., 2013a)
and FastText (Bojanowski et al., 2017) models with
embedding sizes of 20, 50, 100 and 300 on Old
and Middle Irish corpora, as well as on both of
them combined. We refer to the combined Old and
Middle Irish data as ‘Early Irish’ for convenience,
although this term is usually used to describe a
broader period, from Primitive Irish (4th − 6th c.
A. D.) to Middle Irish (10th − 12th c. A. D.), ac-
cording to Stifter and Griffith (2021). More in-
formation about the training data for embedding
models is provided in Table 1. There was no or-
thographic normalisation (except lowercasing and
sentence-level punctuation removal), lemmatisa-
tion, or POS-tagging applied. We then tested these
embedding models on our analogy dataset using
two different metrics, 3CosAvg (Equation 1) and
LRCos (Equation 2), with the help of a Python
library Vecto.1

1https://vecto.space/
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Dataset Source Period Tokens Types TTR

Old Irish CELT + St. Gall 8th − 9th c. 400,922 77,754 193.9
Middle Irish CELT 10th − 12th c. 1,071,640 170,851 159.4
Early Irish CELT + St. Gall 8th − 12th c. 1,171,439 202,172 172.6

Table 1: Embedding model data, periodisation according to Stifter and Griffith (2021). CELT = Corpus of Electronic
Texts (Ó Corráin et al., 1997), St. Gall = Diplomatic St. Gall Glosses Treebank (Doyle, 2020). TTR scores are
calculated as TTR = types

tokens × 1000 according to Schlechtweg et al. (2020).

To our surprise, the scores that our embedding
models achieved were low enough to be statisti-
cally insignificant regardless of the training corpus,
hyperparameters and evaluation metrics: the high-
est accuracy score in the whole experiment was
0.08, achieved by a Middle Irish FastText model
with an embedding size = 100 on the morpholog-
ical variation subset. We carried out a qualitative
evaluation to see if our embedding models really
did not learn any linguistic patterns from the data,
or if the problem lies somewhere else.

First, we made a few queries to the biggest
Early Irish FastText model2 to see the word vec-
tors nearest to these queries. For example, the
closest words to mainister ‘monastery’ were its
spelling variants (mainistear, mainistir, mainisttir),
forms with suffixed demonstratives (mainistir-si,
mainistir-se, mainisttir-si, mainistir-sin) and com-
pounds (cédmhainistir ‘early monastery, former
monastery’, énmhainistir ‘individual monastery’).
The name of a legendary Irish king, Ailill, yielded
spelling variants (Ailil, Oilill), mutated and in-
flected forms (hAilill, tAilill, Aililla)3 and another
personal name, Ailill Miltenga. The Early Irish
SkipGram model with the same parameters did not
capture any morphological or spelling variation but
detected semantic associates for personal names
from the Early Irish literature.

Then, we used the TensorFlow projector
(Smilkov et al., 2016) to see if there are any mean-
ingful clusters in the 3D projection of the vector
space of the aforementioned Early Irish FastText
model. We found many interesting clusters of dif-
ferent sizes, such as nouns referring to peoples
perceived as foreign in the Dat. pl. (allmurachaib
‘to foreigners’, lochlannachaib ‘to Scandinavians’,

2The hyperparameters of this model are the following:
emb_size = 300, min_count = 2, window = 10.

3Like other Celtic languages, Irish is notable for initial
mutations: sound changes at the beginning of a word happen-
ing in a certain grammatical environment. In historical Irish,
mutations are marked in spelling in a few different ways and
sometimes are not marked at all. The first two examples here
demonstrate h-prothesis and t-prothesis.

saxanachaib ‘to Saxons’, paganachaib ‘to pagans’)
or verbal nouns ending in -udh (etargnaghudh ‘in-
terpreting, explaining’, cotludh ‘sleeping’, slon-
nudh ‘naming, mentioning’ etc.). It is worth men-
tioning that the model learned subtle spelling dif-
ferences: the first cluster mentioned above did not
include the later spelling variants with the ending
-aibh, and in the same way, the second cluster did
not include earlier spelling variants ending in -ud
rather than -udh. Moreover, nouns with a suffixed
demonstrative sin formed two different clusters de-
pending on whether the demonstrative was hyphen-
ated (fechta-sin, sliabh-sin, caislein-sin etc.) or not
(ceilgsin, uairsin, curuchsin etc.).

Thus, we witnessed that our models did learn a
significant amount of spelling variation, as well as
some inflectional and derivational morphology pat-
terns and a limited quantity of semantic similarities.
In this case, what factors may have contributed to
the inadequate performance observed?

5 Discussion

5.1 Data Sparsity
The first reason, as one might have expected, is
data sparsity combined with high variation. The
type-token ratios in our Old, Middle and Early
Irish datasets are 193.9, 159.4 and 172.6 respec-
tively. A high TTR score means that a significant
amount of words is only attested once or twice in
the whole corpus. To put these numbers in context,
Schlechtweg et al. (2020) report the TTR of 38.24
for Latin and 47.88 for 18− 19th c. Swedish.

The example of ulchobchán ‘owl’ from Table 2
suggests that there are simply not enough occur-
rences of this word and its variants in the corpus
for the model to learn anything about it: the output
we got for this query is completely unrelated to
it, the most similar word being a special charac-
ter for ocus ‘and’. For the same reason, FastText
models learned remarkably less semantic similar-
ity than morphological and orthographic similarity,
and SkipGram models could not capture much se-
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Subset Query Translation Expected Answer Answer

Spelling immairecc
conflict,
battle

immairg
immairec, immaire,
h-immairecc, immairi,
immaircidi, immaircide

Spelling ulchobchán owl
ulchobcán, ulchubchán,
ulchubcán, ulcachán

_&_, dhocum, puipli, goirti,
disciplina, murruscaib

Morphology asal donkey asaile, assail, asail, asala assail
róuasal, uasal, huasal,
asalim, an-uasal, anuasal

Morphology úasal
high,
noble

ūassal, uasal, huasil, huasail,
úaisliu, húaisliu, huaisliu, huaisle,
huaisli, huaislimem, uasalathair,
huasalsacart, huasalfichire, úasal-
athraig, huasallieig, huasal-
gabáltaid, huasalterchomrictid

anúasal, ardúasal, úasal-
nóeb, róuasal, n-úasal, asal

Antonyms dorchae
dark,
gloomy

gel, gelbdae, gelmar, gleórach,
soillsech, soillside, solus

dorchatae, dorchai, dorcha,
dorchato, dorchadu, dorchatu

Antonyms descert south túaiscert
ndescert, descertaig, n-descert,
descertach, descertaigi, túascert

Synonyms fliuch wet fliuchaide, uiscemail
imliuch, naliuch, fedliuch,
nimliuch, fliuchaidi, coiuch

Synonyms álaind
lovely,
beautiful

cáem, cáemdae, cruthach,
cruthamail, delbach, delbdae

hálaind, roálaind, comálaind,
n-álaind, com-álaind, fírálaind

Table 2: Answers of the biggest Early Irish FastText model compared to expected answers. The words in bold are
correct answers that were not present in the evaluation dataset; the words in italic are related to the query, but would
not have been correct answers to a particular question.

mantic similarity beyond personal names, as quali-
tative evaluation has shown.

5.2 Lack of Standardisation of Resources

The second reason is a lack of a text editing stan-
dard between different resources for the same his-
torical language, or even within the same resource,
which is a case of CELT (Ó Corráin et al., 1997).
The usual process of editing manuscript texts in-
cludes introducing word spacing, expanding con-
tractions and abbreviations, adding punctuation and
sometimes even combining different versions of a
text from different manuscripts for linguistic clarity.
However, the extent of these changes as well as the
use of notation, such as brackets, may differ dramat-
ically from editor to editor. For example, the digital
corpora of historical Irish that came out in recent
years, St. Gall Priscian Glosses Database (Bauer
et al., 2017), Diplomatic St. Gall Glosses Treebank
(Doyle, 2020) and CorPH (Stifter et al., 2021), all
separate words by different linguistic standards.4

4However, some steps are being made to initiate a standard
as far as tokenisation is concerned: thus, the electronic edition
of Würzburg glosses (Doyle, 2018) is deliberately tokenised

The digitised versions of old paper text editions
usually include some updates and corrections but
still reflect the original editor’s ideas of what the
text should look like. Moreover, this kind of varia-
tion is not reflected in the metadata, and you have to
be familiar with each editor’s practice to be able to
take it into account. Therefore, it is usually almost
impossible to use both text and metadata, such as
manuscript datings or language periods (Old Irish,
Middle Irish etc.), out-of-the-box for NLP applica-
tions. These issues have been discussed in Doyle
et al. (2018, 2019) in more detail.

How did this lack of standard manifest in our
data? About 65 % of morphological and spelling
variation subsets, retrieved from eDIL, were not
present in the entire Early Irish corpus retrieved
from CELT, on which the biggest model was
trained. As for synonym and antonym subsets, ca.
30 % are missing in the corpus (see Table 3 for
more detail). In other words, a historical dictionary
covering mostly Old and Middle Irish periods con-
tains a very high percentage of forms that do not

to the same standard as the St. Gall Glosses Treebank.
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Dataset OIr MIr EIr CELT

Morphology (full) 78.7 72.4 69.3 65.4
Morphology (100) 66.2 58.1 54.7 48.5
Spelling (full) 76.7 70.4 68.2 64.0
Spelling (100) 76.5 69.7 66.7 62.6
Synonyms 42.9 36.0 33.3 28.8
Antonyms 45.8 38.2 35.4 30.9

Table 3: The % of missing words from different parts
of the analogy dataset (based on eDIL) in the texts from
CELT that served as training data for embedding mod-
els. OIr = Old Irish, MIr = Middle Irish, EIr = Early
Irish (Old + Middle Irish), CELT = all Irish texts from
CELT, from Old Irish up to Early Modern Irish, includ-
ing Classical Modern Irish.5

occur in real [edited] Old and Middle Irish texts.
This also works in the opposite direction: many
forms and spellings from the corpus are not listed
in the dictionary and, therefore, did not make their
way to the evaluation dataset. Such a discrepancy
between the corpus on which they were trained and
the historical dictionary, which became the source
for the evaluation dataset, seriously affected the per-
formance. Table 2 shows that the model often gives
reasonable answers, but they are just not among
the expected ones. For example, anúasal, ardúasal,
úasal-nóeb, róuasal are derivatives of úasal ‘high,
noble’, and n-úasal is its mutated form; thus, they
should have been considered correct answers to a
morphological similarity question.

5.3 Lack of Agreement between Experts

In addition to the inherent disagreement on fun-
damental linguistic questions, such as “What is a
word?”, and on editorial policies (“To what extent
should we edit texts? What should the standard for
normalisation be?”), scholars do not concur with
each other on more specific tasks either.

All the experts who participated in the evalua-
tion are actively working with Early Irish in their
research and/or teaching. In addition to that, they
were asked to evaluate their knowledge of Early
Irish on a scale from 1 (“I did an introductory
course”) to 5 (“I am experienced in editing Early
Irish texts and/or teaching Early Irish”) before com-
pleting the task. Three of the participants answered
with a 4, and one chose a 3, which suggests a pro-
found level of expertise.

5Classical Modern Irish is a strict, highly formalised ver-
sion of Irish used in bardic poetry, which has developed
throughout the Middle Irish period and was fixed around the
beginning of the 13th century (McManus, 2005).

Despite that, the highest pairwise inter-annotator
agreement score between experts, measured using
Cohen’s kappa, was 0.35, which constitutes only
“fair agreement” according to Viera et al. (2005).
The Fleiss’ kappa score between all four annotators
was as low as 0.17, which corresponds to “slight
agreement” in Viera et al.’s classification.

6 Conclusion

We discussed an attempt at building an analogy
dataset to evaluate historical Irish embeddings on
their ability to learn orthographic, morphological
and semantic similarity. However, the performance
of our models was extremely poor regardless of the
architecture, hyperparameters and evaluation met-
rics, while the qualitative evaluation revealed pos-
itive tendencies. Several factors have contributed
to it, including a low agreement between experts
on fundamental lexical and orthographic issues,
and the lack of a unified editorial standard for the
language.

These problems are by no means caused by poor
scholarly practice. Each of the electronic resource
creators pursues a particular, perfectly justifiable
editorial approach that dictates their choices. How-
ever, the necessity of a text editing standard, es-
pecially for NLP applications, has not been prop-
erly debated and investigated by the historical Irish
academic community. We suspect that this may
be the problem of historical languages in general.
Through this paper, we would like to highlight this
issue and invite Celticists and historical linguists
to engage in further discussion.
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Abstract

Recent research has demonstrated impressive
generalization capabilities of several Knowl-
edge Base Question Answering (KBQA) mod-
els on the GrailQA dataset. We inspect whether
these models can generalize to other datasets
in a zero-shot setting. We notice a significant
drop in performance and investigate the causes
for the same. We observe that the models are
dependent not only on the structural complex-
ity of the questions, but also on the linguistic
styles of framing a question. Specifically, the
linguistic dimensions corresponding to explic-
itness, readability, coherence, and grammati-
cality have a significant impact on the perfor-
mance of state-of-the-art KBQA models. Over-
all our results showcase the brittleness of such
models and the need for creating generalizable
systems.

1 Introduction

The task of Question Answering over Knowledge
Bases (KBQA) involves answering a natural lan-
guage question by querying a predefined knowl-
edge base (KB). While progress in KBQA research
has addressed several challenges like answering
complex questions, multi-hop reasoning (Lan and
Jiang, 2020; Ren et al., 2021), conversational QA
(Kacupaj et al., 2021), and multi-lingual KBQA
(Zhou et al., 2021), most of the prior work in this
field has been restricted to an i.i.d. setting (Yih
et al., 2016; Talmor and Berant, 2018a).

In a real-world setting, a KBQA system should
be well-equipped to handle users’ queries that were
unseen during training. To motivate research along
this front, Gu et al. (2021a) proposed a dataset
(GrailQA) with an associated leaderboard to bench-
mark the generalizability of KBQA methods to
new compositions, and unseen schema items (Zero-
shot). Multiple state-of-the-art models (Ye et al.,

∗Work conducted during an internship at Amazon.
+ denotes equal contribution

2021; Yu et al., 2022; Gu and Su, 2022; Shu
et al., 2022) have achieved remarkable performance
on the Zero-shot split giving the impression that
KBQA generalization might be a solved problem.

However, a cross-dataset evaluation of the mod-
els trained on GrailQA reveals that they do not
transfer well even for the more simpler one or two-
hop questions. We observe that while these models
achieve impressive performance on the GrailQA
Zero-shot (GrailQA Z) split, they fail to generalize
to questions from other datasets like WebQSP (Yih
et al., 2016), GraphQ (Su et al., 2016), and Com-
plexWebQuestions (Talmor and Berant, 2018b)
even though they are built upon the same Knowl-
edge Base (i.e. Freebase). In this work we closely
inspect the reasons for this drop. We analyse the
structural and linguistic differences between ques-
tions from the different publicly available KBQA
benchmark datasets.

We observe that while structural complexity
somewhat explains the performance variations
across questions within the same dataset, it does
not explain the performance drop when testing on
other datasets. Our analysis shows that the lin-
guistic differences like explicitness and length of
questions, grammaticality, readability, and coher-
ence account for the degradation in performance.
Although WebQSP and GrailQA share the same
underlying KB, the substantial differences in the
annotation process manifests as samples having
different linguistic properties. We find that these
linguistic variations act as an additional dimension
for evaluating the generalizability and real-world
usefulness of KBQA systems.

2 Datasets

In order to understand the zero-shot efficacy of the
state-of-the-art KBQA models, we look at their
performance on the following datasets:
GrailQA (Gu et al., 2021b) contains questions
across 86 domains and covers more than 3500 Free-
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RP-Code RP Instances Question

RP-0 “what radio station uses the middle of the road format?”

RP-1 “what ship designer designed a ship that is designed by pete melvin?”

RP-2 “which powers do both catbus and rocky the flying squirrel have?”

RP-3 “genres of marketplace can be found in what broadcast content in hong kong?”

RP-4 “what other rocket did the manufacturer of saturn int-21 and delta 2 create?”

RP-5 “can-con has which conference series that focuses on it?”

Table 1: Example natural-language questions from GrailQA dev-set and their corresponding RP (relation path)
categories. Red and green nodes in the graph correspond to the constraints (entities and literals), and the answer
respectively.

base relations. It’s development and test sets have
three splits to independently measure the i.i.d, com-
positional and zero-shot capabilities of KBQA sys-
tems. We leverage their publicly available training
and dev sets for our experiments.
WebQSP (Yih et al., 2016) contains question-
answer pairs from non-experts collected using the
Google Suggest API, and uses Amazon Mechanical
Turk to get the answers for the obtained questions.
GraphQ (Su et al., 2016) has varying question
characteristics that include complexity along the
semantic structure, qualitative analysis over answer
space, topic of the question, and the number of
possible answers for the questions.
ComplexWebQuestions (CWQ) (Talmor and Be-
rant, 2018a) builds on top of WebQSP and auto-
matically creates complex questions that include
phenomena such as function composition, conjunc-
tions, superlatives and comparatives.

We consider these datasets for our experiments as
all of them use Freebase as their underlying KB.

Creating zero-shot splits: We categorize ques-
tions in the test/dev splits of the corresponding
dataset into (i) Non Zero-shot (I.I.D. + Composi-
tional) and (ii) Zero-shot similar to the categories
proposed by Gu et al. (2021a). Specifically, zero-
shot instances have at least one schema item (class
or relation) that were not seen during training in
the original GrailQA dataset. We note the crite-
ria to be a bit lenient for relations whose corre-
sponding inverse relation occurred during train-
ing (ex: inventors.inventions as opposed to inven-
tions.invented_by). Consequently, we update the
zero-shot criterion to exclude questions where ei-

GrailQA GraphQ WebQSP CWQ

RP All Z All Z All Z All Z

RP-0 4950 2809 976 292 892 239 0 0
RP-1 1179 559 503 237 343 177 1188 602
RP-2 349 135 185 33 53 6 965 468
RP-3 128 18 70 31 14 3 1680 1347
RP-4 93 61 39 39 190 136 0 0
RP-5 62 22 33 33 1 0 856 608

Table 2: Data statistics. Distribution of different rea-
soning paths over the entire test/dev set (All) and the
Zero-shot split (Z) for the different datasets.

ther the relation or it’s corresponding inverse rela-
tion was observed during training.

Reasoning Paths: We characterize the complex-
ity of the questions for different datasets based on
the notion of reasoning paths as defined in Das et al.
(2022). A reasoning path (hereforth RP) represents
the sequence of actions (specifically relations tra-
versed from the starting constraint(s) in the query
graph) to reach the final answer. They provide a
unified way to measure the complexity in terms of
the number of hops and the number of constraints
(examples shown in Table 1). Table 2 presents the
most salient reasoning paths that occur in the dev
split of the original GrailQA dataset and we thus
restrict our analysis to these specific RPs on the
other datasets. We further note the distribution of
these RPs for the different datasets in Table 2.

3 Performance on Other KBQA Datasets

Experimental Setup: In this work, we explore
the generalizability of four semantic-parsing based
systems. These include (i) RNG-KBQA (Ye et al.,
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GrailQA GraphQ WebQSP CWQ

Model EM F1 EM(Z) F1(Z) EM F1 EM(Z) F1(Z) EM F1 EM(Z) F1(Z) EM F1 EM(Z) F1(Z)

RNG-KBQA 83.4 86.7 83.5 86.0 61.9 69.3 44.4 55.8 34.6 39.9 22.6 29.0 20.5 35.8 18.4 33.4
ArcaneQA 80.3 84.6 76.7 80.6 45.7 56.2 30.4 45.1 12.4 17.6 8.0 14.2 14.2 30.2 11.2 26.6
BERT-Ranker 66.7 72.2 69.6 74.4 43.9 50.1 32.3 40.1 35.7 43.9 25.0 37.1 13.3 28.3 10.3 25.0
BERT-Transducer 50.6 53.8 42.5 44.9 21.3 24.9 15.6 19.0 15.5 19.5 10.5 13.0 1.8 6.1 1.0 4.7

Table 3: EM and F1 scores for different KBQA baselines for the different KBQA datasets built on top of Freebase
KB (with gold entities). Z refers to the Zero-shot subset.

RP RP-instance GrailQA Z GraphQ Z WebQSP Z CWQ Z

EM F1 #Z #W #N EM F1 #Z #W #N EM F1 #Z #W #N EM F1 #Z #W #N

RP-0 87.1 88.0 2.9 10.6 4.3 41.8 53.8 2.0 8.9 2.9 31.4 38.3 2.0 6.8 2.1 - - - - -

RP-1 81.9 85.1 4.5 14.3 6.1 54.8 59.7 3.7 10.1 3.5 9.6 14.7 4.0 6.2 1.8 52.5 57.7 3.1 13.3 2.9

RP-2 74.8 86.2 4.7 15.7 6.2 63.6 87.9 5.0 12.3 3.3 0.0 38.3 2.6 8.2 2.6 25.0 45.6 3.2 12.5 2.3

RP-3 5.6 44.8 5.2 19.1 7.6 48.4 98.9 5.5 12.3 3.9 0.0 13.3 5.2 7.7 2.3 9.2 29.4 5.0 12.6 2.3

RP-4 9.8 47.6 7.0 13.0 3.6 17.9 32.7 4.9 12.9 4.5 25.7 31.1 5.3 7.2 2.6 - - - - -

RP-5 0.0 1.5 5.5 10.6 4.2 0.0 0.0 3.6 11.5 4.1 - - - - - 0.0 9.0 4.8 14.0 2.9

Table 4: EM and F1 scores for RNG-KBQA, and the mean # zero-shot items (#Z), # words (#W), # common nouns
(#N) per question on the zero-shot splits of GrailQA, GraphQ, WebQSP, and CWQ.

2021), (ii) ArcaneQA (Gu and Su, 2022), (iii)
BERT-Ranker (Gu et al., 2021a), and (iv) BERT-
Transducer. We follow the exact inference setting
mentioned in their Github repositories, and evalu-
ate them in terms of EM and F1 scores. All experi-
ments are carried out on a single RTX-1080Ti GPU
with 12GB RAM. We use gold entities to control
for the confounding caused by entity linking errors.

Overall Results: As shown in Table 3, both RnG-
KGQA and ArcaneQA achieve F1 scores of more
than 80% on GrailQA zero-shot split with gold en-
tities. We observe that this comes from the near per-
fect performance on the simpler (RP-0,1,2) ques-
tions that make up more than 98% of GrailQA Z.
BERT-Ranker also achieves a respectable F1 score
of 74.4%, while BERT-Tranducer performs poorly
with an F1 of 44.9%.

However, we observe that all models signifi-
cantly suffer while transferring to other datasets.
This is true for both zero-shot and non zero-shot
splits, as the overall performance drops by more
than half even for samples that do not contain any
zero-shot schema items (Table 3). For the simpler
1-hop (RP-0) zero-shot questions, RnG-KGQA’s
F1 drops by more than 30% (Table 4). ArcaneQA,
a seq2seq model, suffers even more. For 2-hop
questions (RP-1), while RnG-KGQA scores a re-
spectable 60% F1 on GraphQ Z, its performance on
WebQSP Z is severely low (below 15% F1). Over-
all, we find that the state-of-the-art KBQA models
trained on GrailQA are not able generalize to other

datasets, despite the presence of gold entities, even
though they are built on the same KB.

Number of zero-shot schema items (#Z): Previ-
ous works (Gu et al., 2021a; Ye et al., 2021) have
shown a degradation in performance of KBQA
systems when exposed to unseen schema items.
We thus compare the number of zero-shot schema
items in the questions across the datasets.

We observe that the zero-shot splits of the difer-
ent datasets contain similar or fewer zero-shot
schema items than GrailQA Z across the differ-
ent reasoning paths (Table 4, 5). For example,
the mean for WebQSP Z lies between 2 and 5 for
the different RPs. Compare this with GrailQA Z,
where this goes as high as 7 (RP-4). GraphQ Z is
closer to GrailQA Z with an overall mean of 3.2,
and with its bias towards more complex questions
CWQ Z has a mean of 4.0 zero-shot items.

Controlling for RPs, none of the other datasets
have significantly more zero-shot items than
GrailQA Z, suggesting that these questions are
not necessarily more difficult, and the non-
generalizability of the evaluated systems cannot
be solely attributed to this factor.

4 Analyzing Linguistic Variation

In this section, we explore whether the regression
in performance can be explained via the linguistic
variation among the different KBQA datasets. We
analyze the questions in these datasets using the
dimensions discussed below:
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Dimension GrailQA GraphQ WebQSP CWQ

All Z All Z All Z All Z

# Zero-shot items 1.87 ± 1.72 3.3 ± 0.97 1.46 ± 1.77 3.19 ± 1.67 1.65 ± 0.93 3.41 ± 0.76 2.95 ± 1.09 4.0 ± 0.72

# Words 10.96 ± 4.08 11.41 ± 3.58 9.35 ± 3.00 10.03 ± 2.94 6.64 ± 1.55 6.71 ± 1.61 13.19 ± 3.16 13.00 ± 3.12

# Common Nouns 4.32 ± 1.84 4.72 ± 1.75 3.22 ± 1.30 3.39 ± 1.30 2.12 ± 1.00 2.17 ± 1.00 2.6 ± 1.24 2.6 ± 1.25

Grammaticality 0.71 ± 0.45 0.7 ± 0.46 0.85 ± 0.36 0.83 ± 0.38 0.68 ± 0.47 0.73 ± 0.44 0.78 ± 0.41 0.75 ± 0.43

Complexity 0.02 ± 0.13 0.01 ± 0.11 0.01 ± 0.07 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.05 0.01 ± 0.08

Coherency -5.96 ± 0.90 -5.99 ± 0.90 -5.54 ± 1.00 -5.54 ± 1.00 -5.7 ± 1.00 -5.65 ± 1.00 -4.96 ± 0.92 -5.04 ± 0.94

Formality 0.14 ± 0.24 0.16 ± 0.26 0.12 ± 0.23 0.13 ± 0.25 0.01 ± 0.02 0.01 ± 0.02 0.99 ± 0.08 0.99 ± 0.09

Readability 65.34 ± 30.91 60.46 ± 26.85 66.46 ± 31.4 71.85 ± 25.71 79.75 ± 23.89 77.23 ± 25.19 74.03 ± 22.57 71.57 ± 21.60

Table 5: Mean and std. dev. scores for All and Zero-shot (Z) questions across different KBQA datasets on the
various analysis dimensions.

Sentence Length (#W): Firstly, we compare the
length of the natural language questions in each
dataset. We find that WebQSP seems to have the
shortest questions (Table 4, 5). WebQSP questions
consistently contain 6-8 words regardless of the
complexity of the reasoning path. Compare this to
GrailQA that contains more than double of that (19
words) in its RP-3 questions. Furthermore, CWQ
that was built by combining different WebQSP sam-
ples also contains longer question statements.

Common Nouns (#N): We also investigate the
frequency of common nouns across the dataset
questions. We use NLTK’s POS-tagger and con-
sider words corresponding to “NN” and “NNS”
tags as common nouns. We compute the mean dis-
trbution of common nouns (#N) across the datasets.

We observe that #N is twice as large in GrailQA
compared to WebQSP and CWQ (Table 4, 5).
While this phenomenon is seen for very simple
questions (RP-0,2), it is magnified more for ques-
tions with hidden nodes (RP-1,3). We attribute this
difference to the explicit language used in GrailQA,
where hidden classes in the graph query are also
sometimes mentioned in the question statement.

Grammaticality & Complexity: Linjordet and
Balog (2022) demonstrates a significant drop in
performance of KBQA models in presence of more
natural questions. The authors measure “natural-
ness” of questions along the lines of grammatical-
ity, fluency, and complexity. We thus investigate
whether the different datasets are similar in distri-
bution along these aforementioned dimensions.

We use the BLIMP (Warstadt et al., 2020) and
COLA corpora (Warstadt et al., 2019) to fine-tune
a BERT-base-uncased model to detect grammati-
cality. We observe high scores for WebQSP and
CWQ and low for GraphQ and GrailQA which ties
in with previous findings. We also analyse whether
the questions in the different datasets have varying
degrees of complexity, for which we use the dataset

of Iavarone et al. (2021). We observe that none of
the four datasets are very complex, with GrailQA
All achieving the highest mean score of 0.02.

Readability: We use the Flesch-reading score to
characterize how easy it is to comprehend a given
question in each of these datasets. We observe that
GraphQ has a very similar score to GrailQA in that
they are less readable, whereas WebQSP and CWQ
have much higher readability (Table 5).

Formality: To quantify the formality in the
writing style, we pass the questions through a
RoBERTa based classifier trained on GYAFC and
take the softmax outputs as the formality score. We
find that WebQSP questions have the least mean
formality (0.01) while CWQ questions have the
highest (0.99). GrailQA and GraphQ questions are
also on the informal side (Table 5).

Coherency: To measure the differences in the co-
herency, we use a reference free metric called CTR-
LEval (Ke et al., 2022). We observe that GrailQA
is not as coherent as WebQSP (Table 5). We hy-
pothesize this to be the case because of the mention
of the hidden classes in GrailQA question state-
ments. On the other hand, WebQSP questions are
more natural as they are scrapped from the Google
Suggest API. We also observe that both CWQ and
GraphQ have much higher coherency scores when
compared to both GrailQA and WebQSP.

5 Discussion

Overall, our results show that systems trained on
GrailQA seem to transfer the best to GraphQ which
has similar linguistic properties to GrailQA i.e.,
higher sentence lengths and number of common
nouns, medium formality scores, and lower read-
ablity. This is inline with the similarity in their

https://huggingface.co/s-nlp/roberta-base-formality-
ranker
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annotation processes that requires annotators to re-
fer to a query graph to arrive at a NL question,
which might bias them to include hidden nodes in
the reasoning path. The questions in GrailQA are
more explicit (highest #N) than GraphQ.

Compare this with the extremely poor perfor-
mance on WebQSP, which can be explained by
the stark differences in the language used in this
dataset i.e., lesser (i) number of words in question
sentences, (ii) number of common nouns and (iii)
formality, and higher readability. This follows from
WebQSP containing real-world non-expert queries
collected from a search engine.

Finally, despite CWQ having longer questions
like GrailQA, it does not contain as many #N sug-
gesting that the annotators do not rely on introduc-
ing hidden classes in the NL question while merg-
ing the simpler WebQSP questions. Higher for-
mality, readability, and coherency scores for CWQ
show that the paraphrasing step used by the authors
creates more natural and readable questions, as
compared to GrailQA. We believe that these lin-
guistic differences atleast partially explain the drop
in performance for models when tested on CWQ.

We posit that the higher explicitness of GrailQA
questions might provide some additional signal to
KBQA systems during training that helps them in
deciding the best relations/ nodes among the possi-
ble options. Systems’ over-reliance on this signal
might not transfer well to other datasets (as shown
in this work) thus rendering them less useful.

6 Conclusion

Recent KBQA systems have demonstrated impres-
sive performance on the GrailQA leaderboard that
evaluates them for their zero-shot genearlizability.
In this work, we show that these systems that are
trained on GrailQA do not transfer to other KBQA
datasets built on top of the same KB. Our analysis
shows that despite controlling for structural com-
plexity of the questions, there is a drop in perfor-
mance across datasets. We observe that this can be
explained by the difference in annotation processes
and the resulting variations in the linguistic prop-
erties of these questions. Our work showcases that
linguistic variation is an important dimension for
evaluating the generalizability of KBQA systems
in real-world scenarios.
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Abstract

Active learning has been widely used in the
task of text classification for its ability to select
the most valuable samples to annotate while im-
proving the model performance. However, the
efficiency of active learning in multi-label text
classification tasks has been under-explored
due to the label imbalanceness problem. In
this paper, we conduct an empirical study of
active learning on multi-label text classifica-
tion and evaluate the efficiency of five active
learning strategies on six multi-label text classi-
fication tasks. The experiments show that some
strategies in the single-label setting especially
in imbalanced datasets.

1 Introduction

Active Learning (AL) has been applied in many
Natural Language Processing (NLP) tasks due to
its efficiency in improving model performance with
limited annotation cost. Most works in AL have fo-
cused on developing strategies for single-label text
classification (Tong and Koller, 2001; Hoi et al.,
2006), Named Entity Recognition (Tomanek and
Hahn, 2009; Shen et al., 2004, 2017) and Neural
Machine Translation (Zhang et al., 2018; Peris and
Casacuberta, 2018; Zhao et al., 2020). More re-
cently, multi-label text classification (Liu et al.,
2017; Pant et al., 2019; Liu et al., 2021) has re-
ceived considerable attention since many text clas-
sification tasks are multi-labeled, i.e., each docu-
ment can belong to more than one category. Take
news classification as an example, a news article
talking about the effect of the Olympic games on
the tourism industry might belong to the following
topic categories: sports, economy and travel. The
challenge of multi-label text classification lies in
three aspects: (i) heavily imbalanced labels, i.e.
only a small amount of labels have high frequency
while others exhibit extremely low frequency; (ii)
sparse label correlation, where some labels may
be correlated with others, but the correlation is

weak; and (iii) hierarchical label structures, this
is prevalent in many scientific document indexing,
e.g. arXiv or PubMed (Lu, 2011).

Given the above challenges, we raise the re-
search questions: Are the commonly used strate-
gies in single-label text classification still appli-
cable for the multi-label setting? Will they al-
ways benefit classification performances? To an-
swer these questions, We conducted an empirical
study to evaluate the effectiveness of five AL strate-
gies on six prevalent multi-label text classification
datasets. Our experiments show that the strategies
commonly used in single-label text classification
can have some effectiveness under multi-label set-
tings. However, their performance is not consistent
and highly dependent on the label distribution of
the datasets. The main findings of our work are as
follows:

• The common AL strategies used in the sin-
gle label classification are not robust for all
multi-label setting.

• Diversity strategies consistently outper-
form other strategies across different
dataset sizes and models.

• Larger and imbalanced dataset will heavily
degrade the performance of common active
learning strategies

2 Active Learning on Multi-label Text
Classification

We consider multiple widely-used AL strategies to
investigate their different performance on multi-
label text classification, including Least Con-
fidence (LC) (Culotta and McCallum, 2005),
KMeans (Kang et al., 2004), Max Entropy (Lewis
and Gale, 1994), Deep Bayesian Active Learn-
ing(BALD) (Houlsby et al., 2011), Monte Carlo
(MC) Dropout (Gal et al., 2017) and Coreset
(Geifman and El-Yaniv, 2017; Sener and Savarese,
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Algorithm 1 Pool-based multi-label active learning
Input: Initial labeled set L, unlabeled set U , query
budget B, model parameter Θ, annotation cost per
round b, query strategy Q

Output: The final classifier Θ̂
1: Initialize Θ0 with L
2: for t ∈ 1, . . . , do
3: {(xi, yi)bi=1}t ← Query(U,Q,Θt−1)

▷ Use strategy Q to select b examples
4: L← L+ {(xi, yi)bi=1}t
5: U ← U − {(xi, yi)bi=1}t
6: Θt ← retrainModel(Θt−1, L)
7: if b ∗ t > B then ▷ If budget exhausted
8: Θ̂← Θt;break

return Θ̂

2018). Random Sampling, also known as passive
learning, randomly selects instances for annotation
and serves as a baseline for comparison with other
AL strategies. LC is one of the most common
approach to select queries in active learning, in
which it uses the probability to measure how uncer-
tain the model is towards the instances. KMeans
clustering unlabeled data samples based on their
feature representations, and then selecting the sam-
ples closest to the cluster centres for labeling. This
strategy can help improve the efficiency and effec-
tiveness of the active learning process by focusing
on the most representative samples in each clus-
ter. Max Entropy measures the confidence of the
model using entropy (Shannon, 2001). It ranks all
instances in U by the posterior class entropy under
the model Hθ = −∑

Pθ(Y | X) logPθ(Y | X),
and selects the top unlabelled instances to be la-
belled by the expert. BALD (Houlsby et al., 2011)
is another commonly used uncertainty-based AL
strategy, which maximizes the mutual information
between the predictions and model posterior to
achieve maximum information gain. MC Dropout
selects samples based on their representativeness.
As its name, it uses the MC dropout on inference
circles, where the uncertainty is measured by the
fraction of models across MC samples that dis-
agree with the most popular choice (Siddhant and
Lipton, 2018). Coreset (Geifman and El-Yaniv,
2017; Sener and Savarese, 2018), is one of the most
popular diversity-based querying criteria, which se-
lects the best representation of the dataset using the
farthest-first traversal algorithm.

Algorithm 1 shows the pseudo code of our AL

loop, given a fixed budget and an initial labeled set
L, we try each strategy for the multi-label text clas-
sification tasks. In each AL iteration, we acquire b
labelled examples, this process is repeated until the
budget is exhausted.

3 Experiments

Datasets

Table 1 shows the statistics of the benchmarking
datasets that used in the experiments. The datasets
vary in size and cover both news and scientific
documentation. We took the summary textual con-
text and the corresponding labels for each data set
to be the final classification target. All data sets
are long-tailed distributed, i.e., only a small por-
tion of labels frequently appear, majority of the
label rarely appears in the data. Web of Science
(WOS) (Kowsari et al., 2017), contains 46,985 doc-
uments with 134 categories includes 7 parents cate-
gories. All the documents are the published papers
from the Web of Science1 which is a publisher-
independent global citation database. All three ver-
sions of WOS have been used in this work: WOS-
46985, WOS-11967 and WOS-5736. Arxiv Aca-
demic Paper Dataset (AAPD)2 (Yang et al., 2018)
consists of 55,840 papers abstracts from arXiv3 in
the field of computer science, along with their cor-
responding subjects. Each paper may have multiple
subjects, with a total of 54 subjects included in the
dataset. The objective is to predict the appropri-
ate subjects for an academic paper based on the
content of its abstract. Reuters-215784 (Thoma,
2017), is a collection 10,369 news articles appeared
on Reuters newswire in 1987. Yelp Review5 is a
modified version of the Yelp reviews dataset, con-
sisting of reviews extracted from the Yelp Dataset
Challenge 2017. In this dataset, the business la-
bel and rating label together are considered as the
multi-label for each review.

AL Process

As shown in Figure. 1, we randomly select a tiny
portion of initialized data from each dataset to
warm-start the classification model. The portion

1https://www.webofknowledge.com/
2https://github.com/lancopku/SGM
3https://arxiv.org/
4http://kdd.ics.uci.edu/databases/

reuters21578/reuters21578.html
5https://github.com/rnyati/

Yelp-Dataset-Classification-
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Dataset Size Initial Labels

WOS5736 5736 1% 11
WOS11967 11967 1% 35
WOS46985 46985 5% 134
AAPD 54840 1% 54
Reuters-21578 10788 1% 168
Yelp Review 208869 5% 466

Table 1: Multi-label text classification datasets.

Figure 1: The AL Process in the experiment. Every
dataset is divided into three subsets: train, dev, and
test. The training data comprises approximately 70% of
all samples in the dataset, while the remaining 30% is
deemed as unlabeled data. AL strategies are employed
to select a few (i.e. 10) instances from the unlabeled
data pool, and their labels are then used as the results
of the ’human-annotation’ process. Multiple rounds of
selection are performed until the budget is exhausted.

of initialized random samples ranges between 1%-
5% of the 70% training data (see Table 1). We
then take the remaining 69% of training data as the
unlabeled data pool, which different active learn-
ing strategies can actively query. Considering the
varying sizes of different datasets, we choose differ-
ent sizes of annotation budgets, which represents
the total number of instances we queried from the
selection process. The instances in the unused bud-
get pool will be randomly divided into equal-sized
batches to ensure comparable results. The num-
ber of selected samples is equally split during each
iteration. For each iteration, a batch of samples
was identified, and the model was retrained for 20
epochs. The batch size for each dataset is set to
50 follows (Gui et al., 2021). The active querying
process stops when all budgets of queried instances
are used. Therefore, the batch size setting for dif-
ferent active strategies will be the same for each
dataset. We run each strategy on all six datasets
10 times and report the average as the experiment
results for evaluation.

Experiment Setup

We conduct the experiment in batch mode, follow-
ing the traditional pool-based AL scenario(Settles,
2009). To include the popular Bert-based model
in our comparison, we adapt the AL strate-
gies following (Ein-Dor et al., 2020). We use
LSTM(Hochreiter and Schmidhuber, 1997), Distil-
Bert(Sanh et al., 2019) and SciBert(Beltagy et al.,
2019) models. The experiment was implemented
by modifying the previous work of large-scale
multi-label text classification6 and incorporating
AL settings.

Evaluation Metrics

We use the most representative evaluation met-
rics for multi-label text classification: Micro-F1
(Huang and Zhou, 2013; Gao et al., 2016; Yu et al.,
2020). Micro-F1 score is also known as the micro-
averaging of F1 score or simply ’the accuracy’ of
the multi-label classification problems. It measures
the proportion of correctly classified data samples
out of all data. As the Micro-F1 score increases,
the performance of multi-label text classification
improves.

Results

We present the results for all mentioned AL strate-
gies in Section 2. Figure 2 , Figure 3 and Figure
4 show the performance of all strategies on differ-
ent datasets. We observed that only part of AL
strategies improve the accuracy of multi-label text
classification among different datasets. The only
very promising dataset is Reuters, where all AL
strategies outperformed the random baseline on all
three models. In most datasets, the random baseline
was outperformed by other strategies, even when
the baseline performs well, such as in WOS5736.

From a model perspective, AL strategies adapted
to DistilBert and SciBert are more robust than those
adapted to LSTM. With the boost of the two ver-
sions of Bert model, AL strategies can be effective
on more datasets in both news and scientific do-
mains. However, AL strategies on the LSTM model
provide negative results in both domains. This
suggests that without suitable pre-trained models,
the AL strategies cannot provide promising results.
This can be an important insight for future work, as
AL’s ability to actively query the most informative
samples can better leverage pre-trained models.

6https://keras.io/examples/nlp/multi_
label_classification/

96

 https://keras.io/examples/nlp/multi_label_classification/
 https://keras.io/examples/nlp/multi_label_classification/


Figure 2: AL Strategies on LSTM

Figure 3: AL Strategies on DistilBert

Figure 4: AL Strategies on SciBert
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While AL strategies can outperform the Random
baseline in multi-text classification using Distil-
Bert and SciBert, there is no single strategy that
consistently outperforms all others. For example,
BALD in AAPD and Reuters underperforms com-
pared to random. It is natural that no single strategy
can outperform all others on all datasets due to the
diversity and representativeness of the queried in-
stances, which heavily impacts the effectiveness of
AL (Aggarwal et al., 2014; Ren et al., 2021). When
the label structure of the original dataset is com-
plex, it is hard for AL strategies to capture both
features in the queried instances.The KMEANS
strategy achieves the best performance in the larger
WOS46985 and AAPD Review datasets. However,
in Yelp dataset, it remain comparable to the ran-
dombaseline.

Additionally, we do a study to compare the im-
pacts of data sizes on AL performance, the re-
sult is presented in the Appendix: Figure 5. We
compared the F1-score of three different mod-
els, all with the powerful BALD AL strategy, on
WOS5736, WOS11978, and WOS46985. In the
smaller datasets, WOS5736 and WOS11978, it can
be easily observed that BALD effectively improves
the F1-score in DistilBert and SciBert after the first
ten rounds of actively querying. However, for the
larger dataset, WOS46985, BALD only works for
DistilBert after ten rounds and takes 20 rounds for
SciBert. For all datasets, BALD does not show any
effectiveness in all models, as no sudden increase
of F1-score can be observed.

We also find that the imbalanced label distribu-
tion has an impact on the effectiveness of AL strate-
gies. As shown in Figure 6, the dataset WOS11967,
which has the least imbalanced label distribution,
has all AL strategies perform better than the other
WOS datasets. The accuracy of multi-label text
classification with AL improved by over 50% with
only one-third of the entire dataset. We plan to con-
duct a future study to further investigate how label
imbalance affects the effectiveness of AL strate-
gies. This research is significant as unbalanced
data acquisition can lead to fairness issues that may
affect the reliability and validity of machine learn-
ing models.

After conducting our initial analysis, we dived
deep into the label distribution of the acquired data
samples for the WOS dataset in more detail, , the
result is presented in the Appendix: Figure 6. We
find that the labels in each dataset exhibit an imbal-

anced distribution, which motivated us to further
explore the relationship between AL strategies and
the balance of selected data samples in future study.
This inquiry is crucial, as unbalanced data acqui-
sition may lead to fairness issues that can signifi-
cantly affect the validity and reliability of machine
learning models.

We also measured and compared the average run-
time of one selection iteration for different strate-
gies on all datasets. However, the differences be-
tween the runtimes are less than one second. This
is understandable, as the different strategies are
waiting for the same features from the model’s pre-
diction results to decide on the selected samples.

4 Conclusion

In this paper, we explored different Active Learning
strategies and its performance on multi-label text
classification using a basic neural network model.
Our goal is to understand if the popular active learn-
ing strategies can prove effective in a multi-label
text classification tasks under AL setting. To the
best of our knowledge, our work presented the first
systematic and comparative study in this context.
We observed that unlike single-label text classifica-
tion, not all strategies can outperform the random
baseline. In future work, we plan to perform a
deeper analysis of the fairness issue for multi-label
text classification under AL setting while exploring
more strategies recently published.
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A Appendix

A.1 Data Size.
We performed an exhaustive analysis of the entire dataset by employing three prominent machine learning
models, namely Long Short-Term Memory (LSTM), DistilBERT, and SciBERT, in conjunction with three
distinct active learning strategies, namely RANDOM, KMeans, and BALD. We systematically augmented
the number of acquired samples and meticulously evaluated the resulting changes in F1-score to gain
insights into the performance of each model and strategy. This comprehensive evaluation enabled us to
identify the most effective combination of model and active learning strategy for optimal performance.

Figure 5: AL strategies on various data sizes and models

A.2 Distribution

((a)) WOS5736 label distribution ((b)) WOS11967 label distribution ((c)) WOS46985 label distribution

Figure 6: Label distribution for three WOS dataset

After conducting our initial analysis, we dived deep into the label distribution of the acquired data
samples for the WOS dataset in more detail, as shown in Figure 6. We find that the labels in each dataset
exhibit an imbalanced distribution, which motivated us to further explore the relationship between active
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learning strategies and the balance of selected data samples in future study. This inquiry is crucial, as
unbalanced data acquisition may lead to fairness issues that can significantly affect the validity and
reliability of machine learning models.
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Abstract

In this paper, we evaluate a fine-tuned BERT
model’s performance on a set of auxiliary probe
tasks to gauge whether the model can indirectly
encode discourse properties. The focus is on
structural properties that have proven important
predictors in feature-based Event Coreference
Resolution (ECR). We demonstrate that fine-
tuning a language model for ECR also increases
performance for event prominence and senti-
ment matching tasks. This contradicts earlier
work where coreference models seemed unable
to encode any sort of significant structural or
discourse information.

1 Introduction

The advent of Large Language Models (LLMs) has
drastically improved performance in the field of
Natural Language Processing (NLP) on a large
variety of tasks that require thorough syntactic
and semantic knowledge (Tenney et al., 2019; Ko-
roteev, 2021). However, discourse-based tasks,
which typically require a deeper understanding of
long-distance semantic relationships and depen-
dencies within a given text, remain a tough nut
to crack. One of such tasks, Event Coreference
Resolution (ECR), aims to determine whether or
not two textual events refer to the same real-life or
fictional event. While transformer-based architec-
tures have been moderately successful in tackling
this problem (Lu and Ng, 2021; Joshi et al., 2020),
much work remains to be done, especially in lower-
resourced language domains. Consider the two
examples below, which have been taken from a
collection of Dutch (Flemish) newspaper articles:

1. Frankrijk Verslaat België in de halve finales
van de FIFA wereldbeker voetbal EN: France
beats Belgium in the semi-final of the FIFA
world cup.

2. België verliest halve finale EN: Belgium loses
semi-final.

Determining that the examples 1 and 2 refer in
fact to the same real-world event is fairly straight-
forward for human readers, owing to their extra-
linguistic knowledge. For LLMs however, this task
is far from trivial and the mechanisms supporting
classification decisions for ECR are currently not
well understood. Recent research has suggested
that the classification of coreferring mentions in
LLMs is entirely dependent on the degree of out-
ward lexical similarity of two candidate events
(De Langhe et al., 2023). If true, this is problematic
because lexical similarity does not automatically
imply a coreferential relation, as illustrated in Ex-
amples 3 and 4 below.

3. De Franse president Macron ontmoette de
Amerikaanse president voor de eerste keer
vandaag EN: The French president Macron
met with the American president for the first
time today

4. Frans President Sarkozy ontmoette de
Amerikaanse president EN: French President
Sarkozy met de American president

Given the high degree of similarity between both
examples, most existing classifiers would detect a
coreferential relation between the events, despite
the fact that they refer to two entirely separate real-
world events. Interestingly, earlier work on feature-
based classifiers for ECR has shown that discourse
and meta-linguistic information surrounding an
event are in fact important, to some degree, for
the classification of coreference (Lu and Ng, 2018).
In this paper, we will devise a series of linguistic
probes in order to gauge a Dutch transformer-based
coreference model’s understanding of certain dis-
course and meta-linguistic event traits that have
been shown to be important for within-document
ECR (De Langhe et al., 2022c; Lu and Ng, 2018).
Currently, it is assumed that this type of informa-
tion is implicitly encoded into the transformer’s

103



contextual embeddings, but with this paper we in-
tend to verify this. We believe that if these mod-
els do not encode this information, this opens up
many possibilities towards extending current mod-
els. Moreover, it will allow to further boost our
understanding of the linguistic mechanisms behind
event coreference.

2 Related Work

2.1 Linguistic Probing

In recent years, interpretability and explainability
of LLMs have been researched through the use of
linguistic probes (Conneau et al., 2018). By freez-
ing model weights and training a classifier on a lin-
guistic task such as part-of-speech tagging, subject
verb agreement or syntax tree reconstruction, the
presence or absence of such basic linguistic capa-
bilities can be evaluated within a model (Adi et al.,
2016). Through the use of linguistic probes it has
been demonstratively shown that transformer-based
encoders such as BERT (Devlin et al., 2018) can
successfully encode a hoist of fine-grained syntac-
tic and semantic information (Jawahar et al., 2019).
Additionally, research has also been done on the
probing of fine-tuned LLMs with applications in
conversational recommendation (Penha and Hauff,
2020), reading comprehension (Cai et al., 2020)
and question-answering (Van Aken et al., 2019)
showing that task-specific knowledge is encoded
in such models to a certain degree.

2.2 Event Coreference Resolution

There exist several paradigms within ECR research.
First, mention-pair approaches reduce the task to
a binary decision problem in which two candidate
events are presented to a classifier, which has to
determine whether or not the two candidates refer
to the same event. Past studies often focused on
coreference resolution through the use of decision
trees (Cybulska and Vossen, 2015), support vector
machines (Chen et al., 2015) and standard deep
neural networks (Nguyen et al., 2016). More re-
cent work is marked by the use of LLMs and trans-
former encoders (Cattan et al., 2021a,b), with span-
based architectures attaining the best overall results
(Joshi et al., 2020; Lu and Ng, 2021). Mention-
ranking approaches constitute another paradigm
within ECR, in which all possible candidate an-
tecedents are considered simultaneously and a prob-
ability distribution over the most likely partition
within a given document is generated (Lu and Ng,

2017). Other than the dominant mention-pair and
mention-ranking paradigms, studies have also fo-
cused on rule-based methods such as multi-pass
sieves (Lu and Ng, 2016) and statistical approaches
such as Integer Linear Programming (ILP) (Chen
and Ng, 2016) and Markov Logic Networks (Lu
et al., 2016).

3 Experimental Setup

In our experiments we aim to evaluate a fine-tuned
BERT model’s performance on a set of auxiliary
probe tasks in order to gauge whether the model
can indirectly encode discourse properties that have
proven important predictors in feature-based ECR.

3.1 Data

Our data consists of the Dutch ENCORE corpus
(De Langhe et al., 2022a), which includes 15,407
events spread over 1,015 documents that were
sourced from a Dutch newspaper article collec-
tion (Vermeulen, 2018). The corpus is compara-
ble in size to most large-scale English-language
ECR datasets. It includes event coreference an-
notation on both the within- and cross-document
level and meta-linguistic information such as the
event’s prominence (is it a main event or does it
provide background information), realis (does the
event happen with certainty) and implicit sentiment
(positive/negative/neutral). For our probing exper-
iments, we adhere to an identical split of the data
as in the original model paper (De Langhe et al.,
2022c). We reserve 85% of data for fine-tuning
(70% for training and 15% for development) and
use the remaining 15% of data for our probing ex-
periments.

3.2 Coreference Resolution Model

The ECR model consists of the fine-tuned Dutch
BERT model BERTje (de Vries et al., 2019). While
this BERTje model has been outperformed by
Dutch RobBERTa-based models on most standard
NLP tasks (Delobelle et al., 2020, 2022), it is still
the model of choice for discourse-type tasks such
as coreference resolution, which often require the
encoding of long-range semantic and syntactic in-
formation (De Langhe et al., 2022c).

As explained in Section 2 there exist two widely
used paradigms within the domain of event coref-
erence resolution. For our model, we opt for a
mention-pair approach which has demonstratively
better results compared to other existing methods
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(Lu and Ng, 2018, 2021). Concretely, we obtain
pairwise scores for each pair of event mentions in
the dataset. First, each possible within-document
event pair in the data is encoded by concatenating
and tokenizing them and by subsequently feeding
them to the BERTje encoder. A special [SEP] to-
ken is inserted between the two event mentions
to indicate where one ends and the other begins.
We use the token representation of the classifica-
tion token [CLS] as the aggregate embedding of
each event pair, which is subsequently passed to a
softmax-activated classification function. Finally,
the results of the binary text pair classification are
passed through a clustering algorithm in order to
obtain output in the form of coreference chains.

3.3 Auxiliary Probe Tasks
We define a set of pairwise probes, in which we gen-
erate an aggregate embedding of each event pair (as
described in Section 3.2) and try to predict whether
or not each event mention shares certain structural
and discourse properties. The same methodology
is applied to the non fine-tuned BERTje language
model (de Vries et al., 2019) to serve as a compa-
rable baseline to our coreference model. For the
probes we implement the probe classifier as a 2-
layer feed-forward network with ReLU activations
and layer Normalization (Ba et al., 2016):

h0 = [CLS]

h1 = LayerNorm(ReLU(W1h0))

h1 = LayerNorm(ReLU(W2h1))

Moreover, as previous research has revealed that
different BERT encoder layers tend to focus on
different linguistic properties (Jawahar et al., 2019),
we also extract and classify the encodings for each
of the encoder’s 12 layers in order to gauge whether
the same is true for the coreference BERTje model.
Additionally, shifts in layer performance could also
provide us with valuable information w.r.t the inner
workings of ECR in BERT-based models.

3.3.1 Classification Probe
Meta-information, such as an event’s prominence,
realis and sentiment (see Section 3.1), can implic-
itly aid towards the classification of event corefer-
ence. With this set of probe tasks, we aim to test
whether or not a BERT-based model can implicitly
learn these event properties by being fine-tuned on
an ECR dataset. Concretely, we set up this probe as
a classification task where the classifier’s goal is to

determine if two events match in their Prominence,
Realis or Sentiment, respectively. Our intuition is
that if the shared contextual embedding of the two
spans encodes this information it is probably an
important aspect of the coreferential relation be-
tween the events and could be used as a potentially
rewarding avenue for future ECR research.

3.3.2 Regression Probe
Feature-based studies for within-document event
coreference have shown that two structural features
are typically key in the resolution of event men-
tions (Lu and Ng, 2018): the sentence distance
SD, where the distance for events in the same sen-
tence is set to 0, and event distance ED, where
ED is equal to the number of events between the
events in the pair when traversing the text. The
intuition behind this is fairly straightforward: core-
ferring event mentions are often grouped closely
together, resulting in a low sentence and event dis-
tance. This corresponds well with general theories
on discourse structure where related concepts are
usually found within close proximity of each other,
be it on the sentence, paragraph or section level
(Hoeken and Van Vliet, 2000; Glasbey, 1994). Ide-
ally, if a BERT-based model were able to encode
rudimentary discourse information to some extent
it would learn that coreferring events are, on aver-
age, grouped closer together than non-coreferring
events. We define two regression tasks in which we
use the shared contextual embeddings for the event
pairs to predict the event and sentence distances
between them.

4 Results and Discussion

Table 1 shows the macro F1 scores (classification
tasks) and Root Mean Squared Error (regression
tasks) for each of the pairwise probes based on
the models’ [CLS] tokens in each layer, with the
baseline scores in between brackets. Our primary
interest is in the results of the final layer, as the
model’s coreference classification decision is en-
tirely dependent on the output of this layer.

For the classification probe tasks we establish
that the fine-tuned model outperforms the base-
line pre-trained model in both the prominence and
sentiment matching tasks, while showing no im-
provement when it comes to realis matching. This
indicates that by fine-tuning, the BERT model does
implicitly learn some basic information regarding
document structure and can differentiate between
the importance of events within a given document
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Layer Prominence Match Realis Match Sentiment Match
1 0.531 (0.523) 0.537 (0.530) 0.570 (0.570)
2 0.530 (0.526) 0.547 (0.488) 0.578 (0.616)
3 0.554 (0.522) 0.535 (0,523) 0.629 (0.600)
4 0.522 (0.531) 0.545 (0.536) 0.594 (0.612)
5 0.535 (0.530) 0.558 (0.566) 0.599 (0.625)
6 0.542 (0.535) 0.543 (0.542) 0.633 (0.627)
7 0.537 (0.514) 0.561 (0.562) 0.625 (0.637)
8 0.575 (0.512) 0.544 (0.562) 0.630 (0.612)
9 0.561 (0.561) 0.556 (0.567) 0.640 (0.603)
10 0.573 (0.562) 0.570 (0.578) 0.629 (0.618)
11 0.550 (0.541) 0.568 (0.588) 0.681 (0.651)
12 0.567 (0.493) 0.564 (0.570) 0.660 (0.649)

(a) Macro F1 scores for the classification tasks

Layer Sentence Distance (SD) Event Distance (ED)
1 28.54 (27.99) 14.4 (14.37)
2 34.58 (23.95) 15.74 (16.52)
3 26.17 (26.06) 23.33 (20.16)
4 23.58 (23.58) 18.32 (14.4)
5 27.45 (23.84) 16.48 (15.83)
6 24.78 (27.42) 17.65 (16.98)
7 27.78 (23.59) 15.94 (16.04)
8 23.65 (29.33) 17.32 (15.88)
9 33.29 (45.03) 16.74 (15.1)

10 28.82 (23.83) 14.36 (16.65)
11 28.41 (27.67) 15.66 (17.48)
12 26.05 (23.83) 14.31 (16.72)

(b) RMSE results for the regression tasks

Table 1: Layer-by-layer comparison of the pairwise probe tasks, with baseline results in between brackets

and use this information for the classification of
coreferential relations between events.

While the improvement in the sentiment task
is minor, results for prominence show significant
improvement over the baseline, showing that the
prominence of two events can be a component to
consider for future studies in ECR. Conversely, the
realis and sentiment properties seem to be not di-
rectly related to the correct classification of coref-
erential events within this model. To get a more
complete picture of the models’ layer-by-layer per-
formance we also calculate Spearman’s correlation
coefficients over different layer performances. Cor-
relation coefficients on the promincence (0.146 &
0.720), realis (0.914 & 0.748) and sentiment (0.637
& 0.851) tasks indicate no significant changes in
layer performance for the baseline and fine-tuned
models as, overall, for all tasks performance in-
creases towards the higher layers.

For the regression tasks we see that final layer
performance improves for the Event Distance task
in the fine-tuned model, albeit only slightly. It
should be noted, though, that the RSME for both
tasks is very high, leading us to believe that no
significant knowledge regarding event or sentence
distance is encoded within the fine-tuned corefer-
ence model. Similarly to the classification tasks we
also calculate Spearman’s correlation coefficients
for the performance on both regression tasks over
different layers, showing again no different trends
for the ED (0.34 & 0.38) and SD (0 & -0.048) tasks
for the baseline and fine-tuned models, respectively.
Finally, as the raw RMSE result scores from the
pairwise distance probes are hard to interpret with-
out context, we also compare the RMSE for the SD
and ED tasks on each layer for both coreferring and
non-coreferring mentions to see if the fine-tuned
model has implicitly learned something about event

and sentence distances in within-document con-
texts for individual class labels. Table 2 shows that
on average the RMSE for coreferring mentions is
slightly lower than the RMSE for non-coreferring
mentions in both the fine-tuned and baseline mod-
els in the ED and SD task for the final layer of both
models. While these latter results could indicate
that both models intrinsically learn that coreferring
mentions tend to me grouped closer together, the
overall regression scores remain poor. Ultimately,
this leads us to conclude that no significant infor-
mation regarding the closeness of events within a
given text is encoded in either model.

Model ED (+) ED (-) SD (+) SD (-)
Baseline 16.62 16.85 23.50 23.87

Coreference Model 14.02 14.96 25.87 26.07

Table 2: Average RMSE for coreferring and non-
coreferring event pairs for both regression tasks

5 Conclusion

In this paper we devised a set of rudimentary probes
to determine if a fine-tuned Dutch BERT event
coreference model can learn a set of basic charac-
teristics regarding the nature of coreferential rela-
tions. We show that the fine-tuned BERT model
can in fact encode a limited number of these proper-
ties. This goes against previous findings that event
coreference resolution in transformer-based mod-
els is entirely based on outward lexical similarity,
rather than the proper discourse mechanisms gov-
erning coreferential relations in natural language
(De Langhe et al., 2022b, 2023). In future research,
we aim to further investigate and integrate struc-
tural and discourse aspects of coreference in LLMs,
which will hopefully lead to more stable, inter-
pretable and better performing ECR models.
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Abstract

Despite recent successes in language models,
their ability to represent numbers is insufficient.
Humans conceptualize numbers based on their
magnitudes, effectively projecting them on a
number line; whereas subword tokenization
fails to explicitly capture magnitude by split-
ting numbers into arbitrary chunks. To alleviate
this shortcoming, alternative approaches have
been proposed that modify numbers at vari-
ous stages of the language modeling pipeline.
These methods change either the (1) notation
in which numbers are written (e.g. scientific vs
decimal), the (2) vocabulary used to represent
numbers or the entire (3) architecture of the
underlying language model, to directly regress
to a desired number.

Previous work (Berg-Kirkpatrick and
Spokoyny, 2020) suggests that architectural
change helps achieve state-of-the-art on
number estimation but we find an insightful
ablation: changing the model’s vocabulary
instead (e.g. introduce a new token for
numbers in range 10-100) is a far better
trade-off. In the context of masked number
prediction, a carefully designed tokenization
scheme is both the simplest to implement and
sufficient, i.e. with similar performance to the
state-of-the-art approach that requires making
significant architectural changes. Finally, we
report similar trends on the downstream task of
numerical fact estimation (for Fermi Problems)
and discuss reasons behind our findings.

1 Introduction

The standard practice in the natural language pro-
cessing (NLP) community is to process numbers
in exactly the same manner as words. This counter-
intuitive treatment of numbers leads to their inac-
curate representation and therefore, limited numer-
ical understanding of large-scale language models
(LMs) (Razeghi et al., 2022). To illustrate, a num-
ber like $799 is subword tokenized (Sennrich et al.,
2016) as 79 and ##9. Such a tokenization method,

by construction, prevents accurately modeling the
relationship of this number with others close on the
number line say, $800, as the surface forms share
no common tokens.

Many alternatives have been proposed to capture
the scalar magnitude of numbers (Thawani et al.,
2021b). All number decoders proposed to capture
the magnitude of numbers fall into one of the fol-
lowing categories, corresponding to changes in 1)
notation (e.g. scientific vs decimal) or 2) vocab-
ulary (e.g. introducing new tokens that denote all
numbers within a specified range) or 3) architec-
tural changes (e.g. directly regressing to a number).
Figure 1 shows various alternative number repre-
sentation methods ordered by increasing levels of
intervention on a typical NLP pipeline, color coded
consistently across the paper for legibility.

We find that applying the vocabulary-level
changes leads to near state-of-the-art performance
requiring no additional pretraining or architectural
changes. This is a surprising yet useful ablation
result, which can substantially speed up adoption
of numeracy into any given language model. Any
arbitrary LM can be made numerate by simply tok-
enizing numbers on the number line.

We further evaluate the number representation
schemes on their ability to generalize to a down-
stream task of numerical fact estimation in the
context of solving Fermi problems (Kalyan et al.,
2021). We find similar trends, demonstrating
the utility of the simple yet effective tokenization
scheme in the decoding setting. Finally, we discuss
how these results may be explained by the observed
distribution of mantissas in natural language.

2 Kinds of Number Representations
Our work focuses not on NLP models performing
arithmetic, instead on their comprehensive under-
standing of approximate numbers, with the setting
of masked number prediction (MNP) in natural lan-
guage. This section introduces existing classes of
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Figure 1: Alternative number representations change one of the three stages in the NLP pipeline.

number decoders and their respective trade-offs.

Subword. The default way that language models
decode numbers is the same way as words, one
subword at a time, e.g. , the number 600 could be
decoded as two individual tokens 6 and ##00.

Notation-change. Here, the numbers are repre-
sented in an alternative notation by preprocessing
text before feeding into any off-the-shelf tokenizer
and model. We consider the following variations:
1. Scientific: Using scientific notation, e.g., 6e2
(where 6 is the mantissa and 2 is the exponent)
in lieu of the usual decimal notation was first pro-
posed by Zhang et al. (2020). In this work, we
closely follow their version with minor implemen-
tation level changes. Note that following the no-
tation change, the tokenizer nevertheless splits it
into subwords. 2. Digits: Here, the number is split
into its constituent digits or characters, e.g., 600
becomes 6 0 0. This approach offers a consistent
decomposition of numbers into digits as opposed
to arbitrary subword segmentation, and has been
proven effective on simple numeric probes as well
as arithmetic word problems (Geva et al., 2020).

Vocabulary change. Unlike words, the notion
of distance or similarity is more obviously defined
for numbers in terms of their separation on the
number line, a cognitive tool that human beings
are known to intuitively use to process numeracy
(Dehaene, 2011). This forms the basis of a change
of vocabulary: numbers within a specified range
are collapsed into a single token (e.g. 100-1000)
– at the cost of precise representation of numbers.
This approach does not modify the LM architecture,
instead merely adds new tokens to the vocabulary.

Architecture change. Finally, several recent
methods have modified the underlying language
model to emit continuous values when predicting
numbers. At their core, they operate by regress-
ing to the desired number conditioned on the lan-
guage context. See Berg-Kirkpatrick and Spokoyny
(2020) for a thorough comparison within this class

of methods. We directly compare against their
best variant: Discrete Latent Exponents (DExp),
which first models the exponent part of a num-
ber as a multinomial, then uses it to parameterize
a truncated log normal distribution to sample the
mantissa, a continuous value. Note that this is the
highest level of intervention possible, thereby mak-
ing the method ineffective whenever the underlying
LM architecture is not accessible, say over an API.

3 Experimental setup
Task: We evaluate the above decoders on the task
of masked number prediction (MNP): Given a sen-
tence with a mask (e.g. “Tigers weigh [MASK]
lbs."), the model must predict a number as close as
possible to the ground truth (e.g. 600).

Datasets: We follow Berg-Kirkpatrick and
Spokoyny (2020) to finetune and evaluate our
models on three datasets1 – Financial News Arti-
cles (FinNews), its subset containing mostly price-
based numbers (FinNews-$), and Scientific Arti-
cles (SciDocs) (Lo et al., 2020); all numbers in
these datasets lie between 1-1016.

Metrics: We evaluate using two metrics – a) Ex-
ponent Accuracy (E-Acc) that checks whether the
predicted answer is of the same order of magni-
tude as the ground truth and b) Log Mean Ab-
solute Error (LogMAE). Confidence Intervals for
Exponent Accuracy, a classification metric, are re-
ported as the Wilson Score Interval (Wilson, 1927):
a ± z

√
a(1− a)/n, where a is the accuracy, z is

the constant (2.58 for 99% CI), and n is the number
of observations in the respective test set.

Baselines: Our primary baseline is the standard
approach of subword tokenization. We require each
number prediction to be 8 tokens long, with appro-
priate padding, to be able to fairly represent all
numbers in our range. Additionally, we evaluate on
three trivial baselines that make a constant predic-
tion corresponding to the mean, median, and mode
of all numbers in the training set.

1Data URL: https://github.com/dspoka/mnm
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FinNews FinNews-$ SciDocs
Metrics E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓
Baselines
Train-Mean 1.0± 0.1% 7.69 6.0± 0.4% 4.68 0.0± 0.0% 8.81
Train-Median 5.5± 0.2% 1.88 10.6± 0.5% 2.66 49.5± 0.7% 0.83
Train-Mode 24.2± 0.4% 2.02 8.1± 0.5% 6.30 49.5± 0.7% 1.00

Subword-Pad8 63.6± 0.5% 0.68 29.1± 0.8% 1.36 68.0± 0.6% 0.68

Notation-change
Digit-Pad17 52.2± 0.5% 0.93 33.0± 0.8% 1.37 55.1± 0.5% 0.91
Scientific-Pad8 52.5± 0.5% 0.84 NA NA 71.1± 0.6% 0.66

Vocabulary-change
Vocab-AM 74.4± 0.4% 0.65 57.1± 0.8% 0.93 81.2± 0.5% 0.51
Vocab-GM 73.7± 0.4% 0.60 57.0± 0.8% 0.92 81.3± 0.5% 0.44

Architecture-change Berg-Kirkpatrick and Spokoyny (2020)
DExp 74.6± 0.4% 0.50 57.5± 0.8% 0.89 81.2± 0.5% 0.39

Table 1: Order of magnitude accuracy (E-Acc) and Log Mean Absolute Error (LogMAE) on test sets.

Models: We compare against both notation-level
changes i.e. scientific and digit, with a padding
of 8 and 17 respectively. Among the approaches
that introduce architectural changes, we compare
against the SotA method of DExp (see previous sec-
tion). Finally, we compare against two variations
that introduce vocabulary level changes – both dis-
cretize the number line with logarithmically sized
bins (with base 10). The two variants differ in how
the mantissa is chosen – the arithmetic mean (5) or
the geometric mean (

√
10), named Vocab-AM and

Vocab-GM, respectively. 2

Implementation: Following the setup in Berg-
Kirkpatrick and Spokoyny (2020), our base lan-
guage model is 12-layer BERT-base and we fine-
tune all models with a batch-size of 32 for 10
epochs. We use early stopping with a patience
of three on the validation loss. We use two learning
rates 3e-5 and 1e-2 for all pretrained parameters
and newly added parameters respectively. Please
see Appendix 9.1 for more details.

4 Results
We bold-face the best and underline the next best
LogMAE scores in each column (dataset), and we
highlight exponent accuracies that are within 99%
confidence of the SotA E-Acc. NA denotes sub-
word models which were unable to emit valid num-
bers for at least 50% of the examples.

Intrinsic results (Table 1) We find that the
change of notation approaches are inferior to the
subword baseline. This is in contrast to prior work
on extrapolating the arithmetic abilities of language

2Note that Vocab-AM/GM are mere ablations to the DExp
methods – the regression head replaced by static mantissas.

models by notation changes (Nogueira et al., 2021;
Geva et al., 2020). It suggests that simple pre-
processing changes of notation are not sufficient for
contextual understanding of numbers for language
modeling. Next, we find that the vocabulary change
methods (Vocab-AM/GM) are at par or better than
the architectural change model (DExp). The im-
provement from subword to the DExp model, is
achievable (within statistical bounds) without mod-
elling the mantissa at all!

Downstream transfer (Table 2) Given such
trends in masked number prediction, we are inter-
ested in the utility of these models on a downstream
number prediction task. For this purpose, we eval-
uate on numerical fact estimation using the Fermi
Problems dataset (Kalyan et al., 2021)3, which con-
sists of challenging estimation problems such as

“How many tennis balls fit in a school bus?” Solv-
ing such questions require estimating numeric facts
e.g. volume of tennis ball & length of bus.

We evaluate our models (trained with different
number decoders on one of the three datasets) in
a zero-shot setting on such annotated facts pro-
vided as part of both the real and synthetic datasets
part of the Fermi problem dataset. The task setup
is of masked number prediction as before, e.g.,
“the size of a tennis ball is [MASK] cubic centime-
ters." We find similar trends as before i.e. change
of notation is insufficient while vocabulary-change
approaches are equal or better than architectural
changes – highlighting that most of the gains could
be retained by simply tokenizing in number space.

Comparing Mantissas (Figure 2). To study why

3Data URL: https://allenai.org/data/fermi
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Fermi-Real trained on FinNews trained on FinNews-$ trained on SciDocs
510 egs. E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓
Sub-Pad8 26± 5% 2.38 16± 4% 3.17 26± 5% 2.84
Dig-Pad17 19± 5% 2.58 NA NA 23± 5% 2.87
Sci-Pad8 25± 5% 2.93 NA NA 20± 5% 2.75
Vocab-AM 32± 5% 2.19 24± 5% 2.42 27± 5% 2.42
DExp 32± 5% 2.13 25± 5% 2.51 28± 5% 2.40

Fermi-Syn trained on FinNews trained on FinNews-$ trained on SciDocs
3437 egs. E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓
Sub-Pad8 29± 2% 2.89 19± 2% 3.25 39± 2% 2.83
Dig-Pad17 23± 2% 2.93 NA NA 41± 2% 2.87
Sci-Pad8 26± 2% 3.06 NA NA 27± 2% 2.76
Vocab-AM 39± 2% 2.61 41± 2% 2.42 48± 2% 2.52
DExp 39± 2% 2.44 41± 2% 2.44 48± 2% 2.48

Table 2: Downstream performance of main methods over fact estimation for solving Fermi Problems.

Figure 2: Histogram of mantissas for the 58K sentences
in FinNews dev set (true) and corresponding predictions
by DExp (pred). See Section 4 for details.

Vocabulary change is nearly as good as Regression,
we dig deeper into the only component that dif-
ferentiates our proposed Vocab-AM/GM models
from the state-of-the-art DExp: mantissas. We plot
the mantissas from DExp’s predictions against the
ground truth for FinNews dev set. We find that in
the naturally occurring datasets, the leading digit of
numbers is likely to be small (Benford’s Law) and
the mantissa peaks around 2, owing to the frequent
mentions of years since 2000 (Recency Bias). This
simple distribution of numbers in the real world
helps a static Vocab-AM/GM model perform at par
with state-of-the-art without making any architec-
tural changes to the underlying language model.

5 Related work
We restrict our analysis to the task of approximately
decoding numbers in MNP setting, which requires
different methods and metrics from the tasks that in-
stead evaluate their exact arithmetic skills (Thawani
et al., 2021b). The method we highlight in this
paper i.e. change of vocabulary to tokenize num-
bers on a log-scaled number line, has been previ-
ously used in different settings. Others have shown

the benefits of using such exponent embeddings as
number encoders for language models, whether it
be for the task of masked number prediction (Berg-
Kirkpatrick and Spokoyny, 2020) or masked word
prediction (Thawani et al., 2021a). Our work ex-
tends these results with further evidence of the rep-
resentational power gained by simply tokenizing
numbers on the number line.

Our simple intervention to improve approximate
numeracy in LMs is also related to other work
(Chen et al., 2022) which aims to improve exact
numeracy of LMs without any architecture change.

6 Conclusion
Subword tokenization, the standard approach to
representing numbers leads to inaccurate numeri-
cal understanding. In this work, we analyze num-
ber representation approaches that make notational
(e.g. scientific vs. decimal), vocabulary (i.e. to-
kenizing on the number line), and architectural
changes (i.e. regressing to the number). We find
that tokenization on the number line achieves near
or better than state-of-the-art results while requir-
ing minimal intervention to the language model.

This is a negative insight against recent results in
the community which suggest that language models
must be architecturally modified to gain numeracy.
It will allow language models to conveniently im-
prove their numeracy, including cases where users
may not have access to the model’s architecture and
are only provided a typical finetuning regime with
small changes to the tokenizer’s vocabulary. Fi-
nally, we find similar trends in the challenging set-
ting of numerical fact estimation for solving Fermi
Problems – indicating that vocabulary-change is
sufficient to represent approximate numbers effec-
tively with minimal effort.
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8 Ethics and Limitations

Our findings and recommendations may not apply
beyond the English language and the Hindu-Arabic
Numeral system, which are by no means the only
language / number systems in use today. We en-
courage follow-up work to take other systems into
consideration, on the lines of Johnson et al. (2020)
and Nefedov (2020). Our recommended method of
tokenizing on the number line is lossy by design. It
collapses several numbers into large discrete bins,
and is unlikely to be suitable for exact numeracy as
is required for, say, math word problems. We note
that an ideal number representation should capture
both approximate and exact numeracy.
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9 Appendix

9.1 Implementation Details

Each of our experiments took a few hours on
NVIDIA Quadro RTX 8000 GPU (one per experi-
ment). We report results on the same random seed
across models. We were able to reproduce DExp
result scores exactly up to 1 decimal place. For leg-
ibility in result tables, we skip variance estimates
(bootstrapped over 10 samples, each of size 75%
of the test set) in Table 1 – they range from 1e-7 to
1e-5. Note that we only compare number decoders
and not the encoders – therefore, when numbers are
present in the input, standard encoding schemes are
used. For approaches with changes to vocabulary
and architecture, we follow Berg-Kirkpatrick and
Spokoyny (2020) and use exponent embeddings to
encode numbers (with no shared parameters with
the decoder’s tokens) and for approaches with no-
tation changes, we use subword tokenization.

The key contribution of this work is to highlight
the possibility of achieving near state-of-the-art re-
sults from Berg-Kirkpatrick and Spokoyny (2020)
with a much simpler method. Thus, we used the
same hyperparameters and extend their code4 for
most of our experiments. Please refer to Section 3
in their paper for dataset details.

With scientific notation, a previous approach
NumBERT (Zhang et al., 2020) denotes 329 as
329 [EXP] 2. However, we find that representing
the same instead as 3x29 where ‘x’ is the common
English alphabet, works better in practice.

9.2 Example predictions

Table 3 shows some representative examples from
FinNews dataset where the Subword baseline’s es-
timate is far off from the ground truth, whereas pre-
dictions of both DExp and Vocab-GM are within
the correct order-of-magnitude.

9.3 Variable Length Binning

Motivated by the success of frequency-based
surface-level vocabulary, we further experiment
with an extension of the vocabulary change.

4https://github.com/dspoka/mnm

Instead of collapsing numbers into order-of-
magnitude or exponent bins which are equally
spaced on the log scale, we find bins such that
their overall frequencies in a corpus are more
uniform. By arranging all numbers from the
FinNews corpus in ascending order and dividing
them into equal sized (by frequency) bins, we
get the following variable length vocabulary:
1, 2, 3, 4, 6, 10, 14, 21, 30, 31, 70, 415, 2011, 2017,
2018, 5131, 30207, 252178, 1700000, 30000000,
1152337024. With these 21 bins5, we retrain the
Vocab-AM method and compare with our earlier
static bins which corresponded to powers of 10:
1, 10, 100, . . ..

Table 9.3 shows the results on both FinNews
and FinNews-$ datasets. We observe that this vo-
cabulary, despite having a more uniform distribu-
tion of numbers, does not do any better than the
original naive method (except on LogMAE over
the FinNews dataset). We note this as further ev-
idence of the robustness of merely tokenizing on
the number line. If variable sized bins were cru-
cial for strong performance, practitioners may have
had to relearn the model’s numeric vocabularies
based on different datasets and corpus frequencies.
On the other hand, the order-of-magnitude-10 vo-
cabulary is a simple, intuitive and robust method
that competes with performance of state-of-the-art
architectural-change number decoders.

9.4 Neuron Probing

In this subsection, we further probe how numeracy
is stored in the feed forward layers of language
models. Previous work along these lines (Geva
et al., 2021) have shown promise in interpreting the
knowledge stored in language models by finding
individual neurons in feed forward layers that are
triggered by specific patterns of input. We apply
this analysis to find some such neurons, if any,
which can effectively and efficiently capture the
magnitude of a masked number.

Figure 3 shows the Precision-Recall curves for
the state-of-the-art DExp model on the task of pre-
dicting masked numbers has an exponent of 3, i.e. it
is between 1000 and 10,000. We say a neuron has
been triggered if it is among the top 50 activated
ones (out of 3072) in that layer for the input mask
token. Recall is then defined as the fraction of times
when this neuron was triggered for all masked num-

5We manually tune this hyperparameter so as to obtain a
near-uniform distribution of number occurrences.
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Input FY2018 Earnings per share view Daniels maintains Cohen paid her $130000 via essential
$ [MASK] , revenue view . . . consultants to hush up a [MASK] s. encounter with Trump.

True 1.63 2006

Sub 1000000 1
DExp 2.695 2792.66
Ours 1-10 1k-10k

Table 3: Example predictions from FinNews dev set. Ours (Vocab-GM) and DExp estimate numbers in the same
order of magnitude as ground truth; but the subword baseline (Sub) is far off.

FinNews FinNews-$
Metrics E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓
Vocab-AM 74.40 0.65 57.14 0.93
Vocab-GM 73.70 0.60 56.99 0.92
DExp-21 72.2 0.51 47.6 1.04
DExp 74.56 0.50 57.50 0.89

Table 4: Comparing variable sized numeric vocabulary
(Vocab-21) with static variants and architecture change
(DExp) shows no gains, except in LogMAE over Finan-
cial News dataset. See §9.3 for details.

bers with an exponent of 3. Precision is defined as
the fraction of times when the exponent was 3 for
all the times that the specific neuron was triggered.
We find that some individual neurons, such as the
650th neuron in the 10th layer of finetuned DExp
has a very high precision and recall. It alone can
predict whether the order of magnitude is 3, with
an F1 score of above 0.7.

The presence of such precise individual neurons
that capture order-of-magnitude numeracy in DExp
model further suggests why tokenizing the number
line on the log scale is a naturally suited number
representation. This analysis shows promise in
interpreting results of number representations in
language models and possibly even causing inter-
ventions to update its beliefs (Dai et al., 2022).
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Figure 3: Precision Recall curve for the state-of-the-art (architecture-change) DExp model on the task of predicting
masked numbers has an exponent of 3, i.e. it is between 1000 and 10,000. See Section 9.4 for details.
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Dušek, Ondrej, 1

Eger, Steffen, 1

Fang, Qixiang, 1
Fransen, Theodorus, 82

Gangadharaiah, Rashmi, 88
Gao, Mingqi, 1
Gatt, Albert, 1
Gkatzia, Dimitra, 1
González-Corbelle, Javier, 1
Guo, Yuting, 45

Halim, Josef, 19
Hoste, Veronique, 103
Hovy, Dirk, 1
Hürlimann, Manuela, 1

Ito, Takumi, 1
Iurshina, Anastasiia, 75

Joty, Shafiq, 19

Kalyan, Ashwin, 109
Kassner, Nora, 11
Kelleher, John, 1
Khosla, Sopan, 88
Klubicka, Filip, 1
Krahmer, Emiel, 1

Lai, Huiyuan, 1
Lewis, Patrick, 11
Li, Yiru, 1
Lignos, Constantine, 59
Liu, Ming, 94
Lupo, Lorenzo, 33

Mahamood, Saad, 1
Marrese-taylor, Edison, 53
Martin, Louis, 11
Mccrae, John P., 82
Mieskes, Margot, 1
Miltenburg, Emiel, 1
Mosteiro, Pablo, 1
Mustafa, Faizan, 75

Nissim, Malvina, 1

Ong, Qi Chwen, 19

Parde, Natalie, 1
Pedanekar, Niranjan, 67
Phung, Duy, 19
Plátek, Ondrej, 1
Popat, Kashyap, 11
Pujara, Jay, 109

Raina, Vatsal, 11
Ravaut, Mathieu, 19
Reid, Machel, 53
Reiter, Ehud, 1
Rieser, Verena, 1
Ruan, Jie, 1

Saleva, Jonne, 59
Sarker, Abeed, 45
Solano, Alfredo, 53
Srivastava, Vivek, 67
Suharman, Verena, 19

Tar, Sreeja, 19

117



Tetreault, Joel, 1
Thawani, Avijit, 109
Thomson, Craig, 1
Toral, Antonio, 1

van der Lee, Chris, 1

Wan, Xiaojun, 1

Wang, Mengqi, 94
Wanner, Leo, 1
Watson, Lewis, 1

Yang, Diyi, 1

118


	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE

