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Abstract

Despite recent successes in language models,
their ability to represent numbers is insufficient.
Humans conceptualize numbers based on their
magnitudes, effectively projecting them on a
number line; whereas subword tokenization
fails to explicitly capture magnitude by split-
ting numbers into arbitrary chunks. To alleviate
this shortcoming, alternative approaches have
been proposed that modify numbers at vari-
ous stages of the language modeling pipeline.
These methods change either the (1) notation
in which numbers are written (e.g. scientific vs
decimal), the (2) vocabulary used to represent
numbers or the entire (3) architecture of the
underlying language model, to directly regress
to a desired number.

Previous work (Berg-Kirkpatrick and
Spokoyny, 2020) suggests that architectural
change helps achieve state-of-the-art on
number estimation but we find an insightful
ablation: changing the model’s vocabulary
instead (e.g. introduce a new token for
numbers in range 10-100) is a far better
trade-off. In the context of masked number
prediction, a carefully designed tokenization
scheme is both the simplest to implement and
sufficient, i.e. with similar performance to the
state-of-the-art approach that requires making
significant architectural changes. Finally, we
report similar trends on the downstream task of
numerical fact estimation (for Fermi Problems)
and discuss reasons behind our findings.

1 Introduction

The standard practice in the natural language pro-
cessing (NLP) community is to process numbers
in exactly the same manner as words. This counter-
intuitive treatment of numbers leads to their inac-
curate representation and therefore, limited numer-
ical understanding of large-scale language models
(LMs) (Razeghi et al., 2022). To illustrate, a num-
ber like $799 is subword tokenized (Sennrich et al.,
2016) as 79 and ##9. Such a tokenization method,

by construction, prevents accurately modeling the
relationship of this number with others close on the
number line say, $800, as the surface forms share
no common tokens.

Many alternatives have been proposed to capture
the scalar magnitude of numbers (Thawani et al.,
2021b). All number decoders proposed to capture
the magnitude of numbers fall into one of the fol-
lowing categories, corresponding to changes in 1)
notation (e.g. scientific vs decimal) or 2) vocab-
ulary (e.g. introducing new tokens that denote all
numbers within a specified range) or 3) architec-
tural changes (e.g. directly regressing to a number).
Figure 1 shows various alternative number repre-
sentation methods ordered by increasing levels of
intervention on a typical NLP pipeline, color coded
consistently across the paper for legibility.

We find that applying the vocabulary-level
changes leads to near state-of-the-art performance
requiring no additional pretraining or architectural
changes. This is a surprising yet useful ablation
result, which can substantially speed up adoption
of numeracy into any given language model. Any
arbitrary LM can be made numerate by simply tok-
enizing numbers on the number line.

We further evaluate the number representation
schemes on their ability to generalize to a down-
stream task of numerical fact estimation in the
context of solving Fermi problems (Kalyan et al.,
2021). We find similar trends, demonstrating
the utility of the simple yet effective tokenization
scheme in the decoding setting. Finally, we discuss
how these results may be explained by the observed
distribution of mantissas in natural language.

2 Kinds of Number Representations
Our work focuses not on NLP models performing
arithmetic, instead on their comprehensive under-
standing of approximate numbers, with the setting
of masked number prediction (MNP) in natural lan-
guage. This section introduces existing classes of
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Figure 1: Alternative number representations change one of the three stages in the NLP pipeline.

number decoders and their respective trade-offs.

Subword. The default way that language models
decode numbers is the same way as words, one
subword at a time, e.g. , the number 600 could be
decoded as two individual tokens 6 and ##00.

Notation-change. Here, the numbers are repre-
sented in an alternative notation by preprocessing
text before feeding into any off-the-shelf tokenizer
and model. We consider the following variations:
1. Scientific: Using scientific notation, e.g., 6e2
(where 6 is the mantissa and 2 is the exponent)
in lieu of the usual decimal notation was first pro-
posed by Zhang et al. (2020). In this work, we
closely follow their version with minor implemen-
tation level changes. Note that following the no-
tation change, the tokenizer nevertheless splits it
into subwords. 2. Digits: Here, the number is split
into its constituent digits or characters, e.g., 600
becomes 6 0 0. This approach offers a consistent
decomposition of numbers into digits as opposed
to arbitrary subword segmentation, and has been
proven effective on simple numeric probes as well
as arithmetic word problems (Geva et al., 2020).

Vocabulary change. Unlike words, the notion
of distance or similarity is more obviously defined
for numbers in terms of their separation on the
number line, a cognitive tool that human beings
are known to intuitively use to process numeracy
(Dehaene, 2011). This forms the basis of a change
of vocabulary: numbers within a specified range
are collapsed into a single token (e.g. 100-1000)
– at the cost of precise representation of numbers.
This approach does not modify the LM architecture,
instead merely adds new tokens to the vocabulary.

Architecture change. Finally, several recent
methods have modified the underlying language
model to emit continuous values when predicting
numbers. At their core, they operate by regress-
ing to the desired number conditioned on the lan-
guage context. See Berg-Kirkpatrick and Spokoyny
(2020) for a thorough comparison within this class

of methods. We directly compare against their
best variant: Discrete Latent Exponents (DExp),
which first models the exponent part of a num-
ber as a multinomial, then uses it to parameterize
a truncated log normal distribution to sample the
mantissa, a continuous value. Note that this is the
highest level of intervention possible, thereby mak-
ing the method ineffective whenever the underlying
LM architecture is not accessible, say over an API.

3 Experimental setup
Task: We evaluate the above decoders on the task
of masked number prediction (MNP): Given a sen-
tence with a mask (e.g. “Tigers weigh [MASK]
lbs."), the model must predict a number as close as
possible to the ground truth (e.g. 600).

Datasets: We follow Berg-Kirkpatrick and
Spokoyny (2020) to finetune and evaluate our
models on three datasets1 – Financial News Arti-
cles (FinNews), its subset containing mostly price-
based numbers (FinNews-$), and Scientific Arti-
cles (SciDocs) (Lo et al., 2020); all numbers in
these datasets lie between 1-1016.

Metrics: We evaluate using two metrics – a) Ex-
ponent Accuracy (E-Acc) that checks whether the
predicted answer is of the same order of magni-
tude as the ground truth and b) Log Mean Ab-
solute Error (LogMAE). Confidence Intervals for
Exponent Accuracy, a classification metric, are re-
ported as the Wilson Score Interval (Wilson, 1927):
a ± z

√
a(1− a)/n, where a is the accuracy, z is

the constant (2.58 for 99% CI), and n is the number
of observations in the respective test set.

Baselines: Our primary baseline is the standard
approach of subword tokenization. We require each
number prediction to be 8 tokens long, with appro-
priate padding, to be able to fairly represent all
numbers in our range. Additionally, we evaluate on
three trivial baselines that make a constant predic-
tion corresponding to the mean, median, and mode
of all numbers in the training set.

1Data URL: https://github.com/dspoka/mnm
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FinNews FinNews-$ SciDocs
Metrics E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓
Baselines
Train-Mean 1.0± 0.1% 7.69 6.0± 0.4% 4.68 0.0± 0.0% 8.81
Train-Median 5.5± 0.2% 1.88 10.6± 0.5% 2.66 49.5± 0.7% 0.83
Train-Mode 24.2± 0.4% 2.02 8.1± 0.5% 6.30 49.5± 0.7% 1.00

Subword-Pad8 63.6± 0.5% 0.68 29.1± 0.8% 1.36 68.0± 0.6% 0.68

Notation-change
Digit-Pad17 52.2± 0.5% 0.93 33.0± 0.8% 1.37 55.1± 0.5% 0.91
Scientific-Pad8 52.5± 0.5% 0.84 NA NA 71.1± 0.6% 0.66

Vocabulary-change
Vocab-AM 74.4± 0.4% 0.65 57.1± 0.8% 0.93 81.2± 0.5% 0.51
Vocab-GM 73.7± 0.4% 0.60 57.0± 0.8% 0.92 81.3± 0.5% 0.44

Architecture-change Berg-Kirkpatrick and Spokoyny (2020)
DExp 74.6± 0.4% 0.50 57.5± 0.8% 0.89 81.2± 0.5% 0.39

Table 1: Order of magnitude accuracy (E-Acc) and Log Mean Absolute Error (LogMAE) on test sets.

Models: We compare against both notation-level
changes i.e. scientific and digit, with a padding
of 8 and 17 respectively. Among the approaches
that introduce architectural changes, we compare
against the SotA method of DExp (see previous sec-
tion). Finally, we compare against two variations
that introduce vocabulary level changes – both dis-
cretize the number line with logarithmically sized
bins (with base 10). The two variants differ in how
the mantissa is chosen – the arithmetic mean (5) or
the geometric mean (

√
10), named Vocab-AM and

Vocab-GM, respectively. 2

Implementation: Following the setup in Berg-
Kirkpatrick and Spokoyny (2020), our base lan-
guage model is 12-layer BERT-base and we fine-
tune all models with a batch-size of 32 for 10
epochs. We use early stopping with a patience
of three on the validation loss. We use two learning
rates 3e-5 and 1e-2 for all pretrained parameters
and newly added parameters respectively. Please
see Appendix 9.1 for more details.

4 Results
We bold-face the best and underline the next best
LogMAE scores in each column (dataset), and we
highlight exponent accuracies that are within 99%
confidence of the SotA E-Acc. NA denotes sub-
word models which were unable to emit valid num-
bers for at least 50% of the examples.

Intrinsic results (Table 1) We find that the
change of notation approaches are inferior to the
subword baseline. This is in contrast to prior work
on extrapolating the arithmetic abilities of language

2Note that Vocab-AM/GM are mere ablations to the DExp
methods – the regression head replaced by static mantissas.

models by notation changes (Nogueira et al., 2021;
Geva et al., 2020). It suggests that simple pre-
processing changes of notation are not sufficient for
contextual understanding of numbers for language
modeling. Next, we find that the vocabulary change
methods (Vocab-AM/GM) are at par or better than
the architectural change model (DExp). The im-
provement from subword to the DExp model, is
achievable (within statistical bounds) without mod-
elling the mantissa at all!

Downstream transfer (Table 2) Given such
trends in masked number prediction, we are inter-
ested in the utility of these models on a downstream
number prediction task. For this purpose, we eval-
uate on numerical fact estimation using the Fermi
Problems dataset (Kalyan et al., 2021)3, which con-
sists of challenging estimation problems such as

“How many tennis balls fit in a school bus?” Solv-
ing such questions require estimating numeric facts
e.g. volume of tennis ball & length of bus.

We evaluate our models (trained with different
number decoders on one of the three datasets) in
a zero-shot setting on such annotated facts pro-
vided as part of both the real and synthetic datasets
part of the Fermi problem dataset. The task setup
is of masked number prediction as before, e.g.,
“the size of a tennis ball is [MASK] cubic centime-
ters." We find similar trends as before i.e. change
of notation is insufficient while vocabulary-change
approaches are equal or better than architectural
changes – highlighting that most of the gains could
be retained by simply tokenizing in number space.

Comparing Mantissas (Figure 2). To study why

3Data URL: https://allenai.org/data/fermi
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Fermi-Real trained on FinNews trained on FinNews-$ trained on SciDocs
510 egs. E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓
Sub-Pad8 26± 5% 2.38 16± 4% 3.17 26± 5% 2.84
Dig-Pad17 19± 5% 2.58 NA NA 23± 5% 2.87
Sci-Pad8 25± 5% 2.93 NA NA 20± 5% 2.75
Vocab-AM 32± 5% 2.19 24± 5% 2.42 27± 5% 2.42
DExp 32± 5% 2.13 25± 5% 2.51 28± 5% 2.40

Fermi-Syn trained on FinNews trained on FinNews-$ trained on SciDocs
3437 egs. E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓
Sub-Pad8 29± 2% 2.89 19± 2% 3.25 39± 2% 2.83
Dig-Pad17 23± 2% 2.93 NA NA 41± 2% 2.87
Sci-Pad8 26± 2% 3.06 NA NA 27± 2% 2.76
Vocab-AM 39± 2% 2.61 41± 2% 2.42 48± 2% 2.52
DExp 39± 2% 2.44 41± 2% 2.44 48± 2% 2.48

Table 2: Downstream performance of main methods over fact estimation for solving Fermi Problems.

Figure 2: Histogram of mantissas for the 58K sentences
in FinNews dev set (true) and corresponding predictions
by DExp (pred). See Section 4 for details.

Vocabulary change is nearly as good as Regression,
we dig deeper into the only component that dif-
ferentiates our proposed Vocab-AM/GM models
from the state-of-the-art DExp: mantissas. We plot
the mantissas from DExp’s predictions against the
ground truth for FinNews dev set. We find that in
the naturally occurring datasets, the leading digit of
numbers is likely to be small (Benford’s Law) and
the mantissa peaks around 2, owing to the frequent
mentions of years since 2000 (Recency Bias). This
simple distribution of numbers in the real world
helps a static Vocab-AM/GM model perform at par
with state-of-the-art without making any architec-
tural changes to the underlying language model.

5 Related work
We restrict our analysis to the task of approximately
decoding numbers in MNP setting, which requires
different methods and metrics from the tasks that in-
stead evaluate their exact arithmetic skills (Thawani
et al., 2021b). The method we highlight in this
paper i.e. change of vocabulary to tokenize num-
bers on a log-scaled number line, has been previ-
ously used in different settings. Others have shown

the benefits of using such exponent embeddings as
number encoders for language models, whether it
be for the task of masked number prediction (Berg-
Kirkpatrick and Spokoyny, 2020) or masked word
prediction (Thawani et al., 2021a). Our work ex-
tends these results with further evidence of the rep-
resentational power gained by simply tokenizing
numbers on the number line.

Our simple intervention to improve approximate
numeracy in LMs is also related to other work
(Chen et al., 2022) which aims to improve exact
numeracy of LMs without any architecture change.

6 Conclusion
Subword tokenization, the standard approach to
representing numbers leads to inaccurate numeri-
cal understanding. In this work, we analyze num-
ber representation approaches that make notational
(e.g. scientific vs. decimal), vocabulary (i.e. to-
kenizing on the number line), and architectural
changes (i.e. regressing to the number). We find
that tokenization on the number line achieves near
or better than state-of-the-art results while requir-
ing minimal intervention to the language model.

This is a negative insight against recent results in
the community which suggest that language models
must be architecturally modified to gain numeracy.
It will allow language models to conveniently im-
prove their numeracy, including cases where users
may not have access to the model’s architecture and
are only provided a typical finetuning regime with
small changes to the tokenizer’s vocabulary. Fi-
nally, we find similar trends in the challenging set-
ting of numerical fact estimation for solving Fermi
Problems – indicating that vocabulary-change is
sufficient to represent approximate numbers effec-
tively with minimal effort.
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8 Ethics and Limitations

Our findings and recommendations may not apply
beyond the English language and the Hindu-Arabic
Numeral system, which are by no means the only
language / number systems in use today. We en-
courage follow-up work to take other systems into
consideration, on the lines of Johnson et al. (2020)
and Nefedov (2020). Our recommended method of
tokenizing on the number line is lossy by design. It
collapses several numbers into large discrete bins,
and is unlikely to be suitable for exact numeracy as
is required for, say, math word problems. We note
that an ideal number representation should capture
both approximate and exact numeracy.
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9 Appendix

9.1 Implementation Details

Each of our experiments took a few hours on
NVIDIA Quadro RTX 8000 GPU (one per experi-
ment). We report results on the same random seed
across models. We were able to reproduce DExp
result scores exactly up to 1 decimal place. For leg-
ibility in result tables, we skip variance estimates
(bootstrapped over 10 samples, each of size 75%
of the test set) in Table 1 – they range from 1e-7 to
1e-5. Note that we only compare number decoders
and not the encoders – therefore, when numbers are
present in the input, standard encoding schemes are
used. For approaches with changes to vocabulary
and architecture, we follow Berg-Kirkpatrick and
Spokoyny (2020) and use exponent embeddings to
encode numbers (with no shared parameters with
the decoder’s tokens) and for approaches with no-
tation changes, we use subword tokenization.

The key contribution of this work is to highlight
the possibility of achieving near state-of-the-art re-
sults from Berg-Kirkpatrick and Spokoyny (2020)
with a much simpler method. Thus, we used the
same hyperparameters and extend their code4 for
most of our experiments. Please refer to Section 3
in their paper for dataset details.

With scientific notation, a previous approach
NumBERT (Zhang et al., 2020) denotes 329 as
329 [EXP] 2. However, we find that representing
the same instead as 3x29 where ‘x’ is the common
English alphabet, works better in practice.

9.2 Example predictions

Table 3 shows some representative examples from
FinNews dataset where the Subword baseline’s es-
timate is far off from the ground truth, whereas pre-
dictions of both DExp and Vocab-GM are within
the correct order-of-magnitude.

9.3 Variable Length Binning

Motivated by the success of frequency-based
surface-level vocabulary, we further experiment
with an extension of the vocabulary change.

4https://github.com/dspoka/mnm

Instead of collapsing numbers into order-of-
magnitude or exponent bins which are equally
spaced on the log scale, we find bins such that
their overall frequencies in a corpus are more
uniform. By arranging all numbers from the
FinNews corpus in ascending order and dividing
them into equal sized (by frequency) bins, we
get the following variable length vocabulary:
1, 2, 3, 4, 6, 10, 14, 21, 30, 31, 70, 415, 2011, 2017,
2018, 5131, 30207, 252178, 1700000, 30000000,
1152337024. With these 21 bins5, we retrain the
Vocab-AM method and compare with our earlier
static bins which corresponded to powers of 10:
1, 10, 100, . . ..

Table 9.3 shows the results on both FinNews
and FinNews-$ datasets. We observe that this vo-
cabulary, despite having a more uniform distribu-
tion of numbers, does not do any better than the
original naive method (except on LogMAE over
the FinNews dataset). We note this as further ev-
idence of the robustness of merely tokenizing on
the number line. If variable sized bins were cru-
cial for strong performance, practitioners may have
had to relearn the model’s numeric vocabularies
based on different datasets and corpus frequencies.
On the other hand, the order-of-magnitude-10 vo-
cabulary is a simple, intuitive and robust method
that competes with performance of state-of-the-art
architectural-change number decoders.

9.4 Neuron Probing

In this subsection, we further probe how numeracy
is stored in the feed forward layers of language
models. Previous work along these lines (Geva
et al., 2021) have shown promise in interpreting the
knowledge stored in language models by finding
individual neurons in feed forward layers that are
triggered by specific patterns of input. We apply
this analysis to find some such neurons, if any,
which can effectively and efficiently capture the
magnitude of a masked number.

Figure 3 shows the Precision-Recall curves for
the state-of-the-art DExp model on the task of pre-
dicting masked numbers has an exponent of 3, i.e. it
is between 1000 and 10,000. We say a neuron has
been triggered if it is among the top 50 activated
ones (out of 3072) in that layer for the input mask
token. Recall is then defined as the fraction of times
when this neuron was triggered for all masked num-

5We manually tune this hyperparameter so as to obtain a
near-uniform distribution of number occurrences.
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Input FY2018 Earnings per share view Daniels maintains Cohen paid her $130000 via essential
$ [MASK] , revenue view . . . consultants to hush up a [MASK] s. encounter with Trump.

True 1.63 2006

Sub 1000000 1
DExp 2.695 2792.66
Ours 1-10 1k-10k

Table 3: Example predictions from FinNews dev set. Ours (Vocab-GM) and DExp estimate numbers in the same
order of magnitude as ground truth; but the subword baseline (Sub) is far off.

FinNews FinNews-$
Metrics E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓
Vocab-AM 74.40 0.65 57.14 0.93
Vocab-GM 73.70 0.60 56.99 0.92
DExp-21 72.2 0.51 47.6 1.04
DExp 74.56 0.50 57.50 0.89

Table 4: Comparing variable sized numeric vocabulary
(Vocab-21) with static variants and architecture change
(DExp) shows no gains, except in LogMAE over Finan-
cial News dataset. See §9.3 for details.

bers with an exponent of 3. Precision is defined as
the fraction of times when the exponent was 3 for
all the times that the specific neuron was triggered.
We find that some individual neurons, such as the
650th neuron in the 10th layer of finetuned DExp
has a very high precision and recall. It alone can
predict whether the order of magnitude is 3, with
an F1 score of above 0.7.

The presence of such precise individual neurons
that capture order-of-magnitude numeracy in DExp
model further suggests why tokenizing the number
line on the log scale is a naturally suited number
representation. This analysis shows promise in
interpreting results of number representations in
language models and possibly even causing inter-
ventions to update its beliefs (Dai et al., 2022).
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Figure 3: Precision Recall curve for the state-of-the-art (architecture-change) DExp model on the task of predicting
masked numbers has an exponent of 3, i.e. it is between 1000 and 10,000. See Section 9.4 for details.
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