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Abstract

One of the challenges in text generation is to
control text generation as intended by the user.
Previous studies proposed specifying the key-
words that should be included in the generated
text. However, this approach is insufficient to
generate text that reflect the user’s intent. For
example, placing an important keyword at the
beginning of the text would help attract the
reader’s attention; however, existing methods
do not enable such flexible control. In this pa-
per, we tackle a novel task of controlling not
only keywords but also the position of each
keyword in the text generation. To this end, we
propose a task-independent method that uses
special tokens to control the relative position
of keywords. Experimental results on summa-
rization and story generation tasks show that
the proposed method can control keywords and
their positions. The experimental results also
demonstrate that controlling the keyword posi-
tions can generate summary texts that are closer
to the user’s intent than baseline.

1 Introduction

One of the challenges in text generation is to gen-
erate text that is consistent with the user’s intent.
Many methods for specifying the keywords that
should be included in the generated text to reflect
the user’s intent have been proposed. As for sum-
marization, by providing the model with keywords
that should be included in the summary, it is pos-
sible to generate summaries that focus on specific
parts of the document (Fan et al., 2018; He et al.,
2022; Dou et al., 2021). As for story generation,
keywords are used to control the narrative story-
line (Jain et al., 2017; Fan et al., 2019; Yao et al.,
2019). As for other tasks, such as e-commerce
generation, review generation, and question gener-
ation, keywords are also used to control text gener-
ation (Chan et al., 2019; Shao et al., 2021; Ni and
McAuley, 2018; Chan et al., 2021; Zhang and Zhu,

2021). In addition, more-advanced methods that
specify the order of keywords to be included in the
generated text to control the rough storyline have
been proposed (Su et al., 2021; Shao et al., 2021).

The above-described methods, however, cannot
generate texts that reflect more fine-grained inten-
tions. Specifically, the user may want to reflect
the intended importance of each keyword in the
generated text. An effective way to reflect the in-
tended importance of each keyword is to adjust the
position of keywords within the text. For exam-
ple, important keywords such as topic words and
eye-catching words can be placed at the beginning
of the text to attract the reader’s attention, while
the keywords for supplementary information can
be placed in the middle or later in the text. By
controlling the specific position of each keyword
according to its importance, it is possible to gen-
erate appropriate text for each situation. That is,
controlling the specific position of keywords in the
generated text is a challenge in terms of reflecting
more-specific user intentions and generating texts
that attract readers. However, as far as we know,
no previous work has tackled this challenge.

In this paper, we tackle a novel task of con-
trolling keywords and the position of each key-
word in text generation. Inspired by previous work
that controlled text attributes by using special to-
kens (Iwama and Kano, 2019; Lakew et al., 2019;
Martin et al., 2020), we propose a task-independent
method that uses special tokens to control text gen-
eration. Specifically, the position of the keyword is
specified by providing the model with a special to-
ken that represents the target relative position of the
keyword (0-10%, 10-20%, etc.) and length of tar-
get text (20-24 words, 25-29 words, etc.). We use
relative positions (rather than absolute positions)
because it is more practical to specify relative posi-
tions such as “at the beginning,” “in the middle,” or
“at the end” of the target text. Moreover, length of
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Figure 1: Overview of proposed method. The model
is provided with control tokens: keywords in the target
text, positions of each keyword, and target-text length
to control text generation.

the target text is controlled because text length is
considered to be one of the important factors that
users want to control when considering where to
place keywords. During training of the model, the
model is provided with control tokens, including
keywords randomly extracted from the target text,
the positions of each keyword, and the length of
the target text. The model is trained with cross-
entropy loss in the same manner as conventional
text generation; as a result, the model can learn the
correspondence between the input control tokens
and the target text.

The proposed “task-independent text-generation-
control method” (“proposed method” hereafter)
was comprehensively evaluated by applying it to
summarization and story-generation tasks. The
results of the evaluation show that the proposed
method can control keywords and their positions
in both tasks (Section 3.2). They also show that the
proposed method can generate summary texts that
are more similar to the gold summary than the base-
line, indicating that text closer to the user’s intent
can be generated (Section 3.3). Case studies show
that a model specifying keyword position can re-
flect the user’s fine-grained intention (Section 3.4).

2 Method

2.1 Models

A BART model (Lewis et al., 2020) is used for
the summarization task, and a GPT model (Rad-
ford et al., 2018) is used for the story-generation
task. When the BART model is used, the source
document is combined with the control tokens (i.e.,
keywords in the text to be generated, positions of
each keyword, and length of the text to be gener-
ated) and given to the encoder as shown in Figure 1.
When the GPT model is used, the control tokens
are given to the decoder. As with regular text gen-

eration using BART and GPT models, the model is
trained to maximize the conditional probabilities
p(Yily<i, x) by using cross-entropy loss, where y
denotes the target text and = denotes the input to
the model, including the control tokens and the
source document used in summarization task.

2.2 Control tokens

Inspired by existing methods that control text
attributes by special tokens (Iwama and Kano,
2019; Lakew et al., 2019; Martin et al., 2020),
the model is provided with the position of each
keyword and text length as special tokens. For
example, if the keyword phrase “two dogs” is
located in the first 20-30% of the text and
text length is in the range of 50-54 words,
“[LENGTH5@] [SEP] two dogs [POSITION20]” will
be given to the model as the control token. Here,
[LENGTH50] and [POSITION20] are new tokens
added to the vocabulary, and the corresponding
word embedding is initialized randomly.

Note that control tokens that represent the ora-
cle information of the target text are given to the
model during both training and inference. This set-
ting is appropriate because we aim to generate the
intended text by providing additional information
to the model. It is also possible that the model auto-
matically determines keywords and their positions
(i.e., control tokens are not given to the model), but
that approach is left for future work.

Control tokens are extracted from the target text
as follows. More details are given in Appendix A.3.

Keywords Keywords in this paper are not limited
to important words in the target text; they can also
be any phrase consisting of one to three consecu-
tive words in the target text. For example, from
the target text “Marcia was looking forward to try-
ing hang gliding.”, the phrases “Marsha”, “was”,
“looking forward”, “to trying”, and “trying hang
gliding” are first extracted as keyword candidates.
However, frequent words with little meaning such
as “was” and “to trying” are excluded from the
keyword candidates, because they are considered
unlikely to be given as keywords by the user. Dur-
ing training, a random number of phrases from the
keyword candidates are given to the model as key-
words. During inference, the user has the flexibility
to give arbitrary keywords to the model. However,
for the experiments conducted in this paper, we
follow the same approach as during training: the
keywords are randomly selected from the keyword
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Control CNN/DM XSum ROCStories
Include Pos Include Pos Include Pos
One keyword
w/o Control 27.5 83 234 94 05 0.1
Keyword 713 18.7 86.4 28.7 53.0 143
+Len 727 204 85.8 30.8 509 13.5
+Pos 80.8 47.0 921 630 572 274
+Pos+Len  85.8 48.8 91.8 64.1 58.8 29.1
Two keywords
Keyword 524 51 741 141 229 1.6
+Pos+Len 759 28.6 859 464 31.1 7.9
Three keywords
Keyword 391 20 625 98 92 03
+Pos+Len  70.6 21.8 80.5 373 155 2.2

Table 1: Evaluation of the control of keywords and their
positions in terms of (i) accuracy of generating text
Including all of the target keywords and (ii) accuracy
of generating text in which all of the target keywords
are placed in each target Position.

candidates and given to the model.

Keyword Position The position of each keyword
is expressed as a relative position. Specifically,
the absolute position of the target keyword when
counted from the beginning of the text is divided by
the number of words in the text, and the quantized
position in units of 10% are given to the model.

Text Length Number of words in the target text
(quantized in 5 word units) is given to the model.

3 Experiment

3.1 Experiment setting

The proposed method was comprehensively evalu-
ated by applying it to well-established summariza-
tion and story-generation tasks. These two tasks
have different characteristics. As for summariza-
tion, the model extracts information from a source
document and compresses it into a short text by
using the given control tokens. As for story gener-
ation, the model generates text solely on the basis
of the given control tokens. For summarization, we
used the CNN/DailyMail (Hermann et al., 2015)
and the XSum (Narayan et al., 2018) dataset and
the BART ArGge model (400M parameters) (Lewis
et al., 2020). For story generation, we used the
ROCStories (Mostafazadeh et al., 2016) dataset
and the GPT2 model (120M parameters) (Radford
etal., 2018).

We extract candidate keywords from a target text
by using the method described in Section 2.2. Dur-

ing training, no more than three keywords were
randomly selected from the keyword candidates
for each epoch and given to the model. During in-
ference, one to three keywords randomly selected
were given to the model in the experiment of Ta-
ble 1, and one keyword randomly selected was
given to the model in the experiment of Table 2 and
Table 3.

In all experiments, training and inference were
performed three times, and the mean score was
reported. See Appendix A for more details on the
experimental setup.

3.2 Evaluation of keyword-position control

Whether the given keywords are placed at given
positions was evaluated first in terms of (i) the
accuracy of generating text including all target key-
words and (ii) the accuracy of generating text in
which all target keywords are placed in each tar-
get position. As shown in Table 1, the proposed
method using special tokens (+Pos and +Pos+Len)
can generate text that includes the target keyword at
the target position. Providing text-length informa-
tion along with position information (+Pos+Len)
improves the accuracy of keyword-position con-
trol, particularly in datasets with long text lengths
(CNN/DM and ROCStories). In other words, com-
bining relative position and length information en-
ables the model to place the keywords in appropri-
ate positions. The accuracy of the keyword inclu-
sion is also improved when the keyword position is
given. We suspect that the model was informed in
advance of where the keywords should be placed;
as a result, preventing the model from forgetting to
place keywords in the text. It is clear that control
accuracy is much lower in the case of story gen-
eration compared to summarization. This finding
may be because the model is not given the source
document and generates text from condition tokens
only, so the model is more likely to generate the
inappropriate context for keyword inclusion.

A more detailed evaluation is given in Table 2.
For each target relative position of the keyword,
the keyword position in the text was classified as
(i) located in the target position, (ii) located at a
positional deviation within 10%, (iii) located at a
positional deviation greater than 10%, or (iv) not
included in the text. It is clear from the results
in the table that at all target positions, the accu-
racy of the keyword-position control is improved
compared with that achieved using keyword-only
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Keyword position

Target-keyword position (relative position)

in the generated summary 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

Keyword only Control
Correct position 52.6 238 14.5 9.5 9.5 9.1 8.7 11.8 12.7 15.6
Keyword + Position + Length Control
Correct position 84.0 579 49.1 41.4 36.0 36.2 33.7 36.0 46.2 47.9
Within 10% diff 8.1 27.5 31.9 344 36.1 34.1 355 343 233 8.9
Over 10% diff 32 53 8.3 12.8 15.1 15.5 15.1 11.4 6.7 10.9
Not included 4.7 9.4 10.7 11.4 12.8 14.1 15.7 18.4 23.7 324

Table 2: Detailed evaluation of the control of the keyword and its position in the CNN/DM dataset. For each target
relative position of the keyword, the keyword position in the text was classified as (i) located in the target position
(Correct position), (ii) located at a positional deviation within 10% (Within 10% diff), (iii) located at a positional
deviation greater than 10% (Over 10% diff), or (iv) not included in the text (Not included).

Control CNN/DM XSum

Rl R2 RL Rl R2 RL
w/o Control 43.6 20.6 40.5 443 21.1 36.5
Keyword 444 214 413 459 227 384
+Len 457 22.1 425 47.0 235 393
+Pos 449 219 41.8 46.7 23.6 40.2
+Pos+Len 464 22.8 43.2 47.8 24.5 41.2

Table 3: Summarization evaluation by ROUGE score.
To reduce the effect on the ROUGE score due to giving
target keywords, target keywords are excluded from
both the target and generated summaries.

control, and that finding suggests the effectiveness
of the proposed method. The results also show a
high success rate of keyword inclusion and posi-
tional control near the beginning of the text, and
a low success rate in the middle and at the end of
the text. This may be because the closer to the end
of the text, the more difficult it becomes for the
model to generate text that contains the specified
keywords while maintaining consistency with the
context provided by the preceding words.

3.3 Evaluation of summary-content control

We show that controlling the text makes it eas-
ier for the user to generate the intended text in
summarization. The results of the evaluation
of summary-content control in summarization by
ROUGE score (Lin, 2004) are shown in Table 3.
Note that to reduce the effect on the ROUGE score
due to giving target keywords, target keywords are
excluded from both the target and generated sum-
maries. It is clear from the results in the table that
the score is improved by controlling keyword posi-
tions and text length, and that finding indicates that
such control makes it easier to generate text that is
close to the user’s intended content.
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3.4 Case study

To better understand how the proposed model be-
haved, representative examples of generated texts
are shown in Table 4 and Table 5 '. In these ex-
amples, the keywords and their positions were con-
trolled, although in some examples, the position
of the keyword deviates slightly from the target
position. It is clear from the table that by assigning
different positions for the keywords, it was possible
to generate several valid texts with different char-
acteristics. For example, in the example in Table 4,
placing the keyword “true miracle dog” at the 0%
position generates a text that draws the reader’s at-
tention with an eye-catching keyword at the begin-
ning of the text. In contrast, placing that keyword
at the 90% position generates a narrative-style text
that describes events in chronological order. It is
also clear that even when multiple keywords are
given, the order of the keywords can be adjusted
by controlling the position of each keyword.

We also show some cases in which the proposed
model produced errors. When a keyword position
near the end of the text is specified, the instruction
is often ignored, and the keyword is placed in a
completely different position or not included in the
text. As can be seen from the results in Table 2, the
model tends to be poor at placing keywords at the
back of the text.

When comparing the generated text of the sum-
marization task with that of the story generation
task, we observed that each of the specified key-
words is usually used only once in the generated
text of the summarization task, while each of the
specified keywords is sometimes used multiple
times in the generated text of the story generation

'A source document of summarization, gold texts, and ad-
ditional examples of generated texts are given in Appendix D.



Keyword & Position

Generated text

true miracle dog (0%)

“She’s a true miracle dog and she deserves a good Tife,” foster mother says. Theia was apparently hit by a car and buried in a
field. Four days later, she was found emaciated and dirt-covered by a farm worker. A fundraising page has raised more than
$10,000.

true miracle dog (40%)

A'stray dog apparently hit by a car and buried in a field survives. The dog, named Theia, is “a true miracle dog,” her foster
owner says. She suffered a dislocated jaw, leg injuries and a caved-in sinus cavity. A fundraising page has raised more than
$10.000.

true miracle dog (90%)

Stray dog apparently hit by a car and buried in a field survives. Four days later, she is found emaciated and dirt-covered on a
farm. She has a dislocated jaw, leg injuries and a caved-in sinus cavity. A good Samaritan has set up a fundraising page for
“the true miracle dog”

hit by (40%)

bully breed mix (60%)

A stray dog in Washington State apparently died after being hit by a car. Four days later, she was found emaciated and
dirt-covered in a field. Theia, a bully breed mix, has a dislocated jaw, leg injuries and a caved-in sinus cavity.

hit by (10%)
bully breed mix (0%)

Theia, a bully breed mix, was apparently hit by a car and buried in a field. Four days Iater, she was found emaciated and
dirt-covered by a farm worker. She suffered a dislocated jaw, leg injuries and a caved-in sinus cavity. A fundraising page has
raised more than $10,000.

Keyword & Position

Generated text (Error cases)

Stray dog apparently hit by a car, apparently killed and buried in a field. Four days later, the dog manages to stagger to a

buried in (80%) nearby farm. She was found by a farm worker, who took her to a vet for help. Theia is now receiving treatment.
A stray dog in Washington State apparently died after being hit by a car. Four days later, she was found emaciated and
whacked (70%) dirt-covered by a farm worker. She suffered a dislocated jaw, leg injuries and a caved-in sinus cavity. A fundraising page has

raised more than $10,000.

Table 4: Examples of generated texts from the CNN/DM dataset

Keyword & Position

Generated text

dealership (0%)

T went to the dealership to Iook at a car. T was very nervous about buying a car. I asked the salesman if T could try out a certain
car. The salesman told me that I could try out a blue car. I drove the blue car home and loved it so much, I bought it.

dealership (30%)

T went to the dealership to buy a new car. T was very nervous about the car and the price. T went to the dealership and Tooked at
the price. I decided to buy the car and I was very happy with it. I am glad I went to the dealership because it was a great deal.

dealership (80%)

T went to the dealership to Took at a car. I was very nervous because I didn’t know what T wanted. T asked the salesman if T could
pick out a car. The salesman told me that I could get a new car if I paid $40,000. I drove to the dealership and bought a new car.

drive to work (50%)
saved enough (70%)

I'was driving to work one day when I'saw a car in the road. T pulled over and asked if T could drive to work. The driver told me
that he had saved enough money to buy a new car. I drove to work and paid him back. I drove to work and paid him back and he
was very happy.

drive to work (20%)
saved enough (0%)

T saved enough money to buy a new car. I went to the car dealership to test drive my new car. I drove the car for a few hours
before I left. When I got home, I realized I had forgotten my wallet. I had to drive to work to get my wallet back, but I was

happy.

Keyword & Position

Generated text (Error cases)

began saving
money (90%)

T'was in a hurry to get to work. T had to hurry because I didn’t have my car keys. I Iooked everywhere for my keys, but couldn’t
find them. I finally found them under my coat, and I was relieved. I was able to grab my keys and walk to work without losing
my car keys.

local (0%)
Bob (40%)
enough (60%)

Bob was a local handyman. He was hired to fix up a leaky roof on his home. Bob was very handy and did a good job at it.
Unfortunately, the roof was too deep and the water would not come out. Bob had to call a local handyman to fix the leaky roof.

Table 5: Examples of generated texts from the ROCStories dataset

task. This may be because the story generation task
requires the model to generate text content condi-
tionally only on the specified keywords, causing
the model to become overly dependent on them.

4 Conclusion

A method for controlling keywords and the posi-
tion of each keyword in generated text is proposed
and evaluated experimentally by applying it to two
tasks: summarization and story generation. The
results of the evaluation show that the proposed
method, which uses special tokens, can control the
keyword positions in both tasks. They also show
that the method can generate summary texts that
are more similar to the gold summary than the base-
line, and that finding indicates that text closer to
the user’s intent can be generated.

Supplementary Materials Availability State-
ment
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Source code
* The source code is available at Github?.

Dataset
« The CNN/DM dataset is available at Github®.
* The XSum dataset is available at Hugging-
Face®.
 The ROCStories dataset is available at here?.
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