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Abstract

In this paper, we propose a novel architecture
for multi-modal speech and text input. We
combine pretrained speech and text encoders
using multi-headed cross-modal attention and
jointly fine-tune on the target problem. The re-
sultant architecture can be used for continuous
token-level classification or utterance-level pre-
diction acting on simultaneous text and speech.
The resultant encoder efficiently captures both
acoustic-prosodic and lexical information. We
compare the benefits of multi-headed attention-
based fusion for multi-modal utterance-level
classification against a simple concatenation of
pre-pooled, modality-specific representations.
Our model architecture is compact, resource ef-
ficient, and can be trained on a single consumer
GPU card.

1 Introduction

Speech interfaces have seen wide adoption through
virtual assistants such as Siri and Alexa which have
rapidly become a part of our everyday lives. To
facilitate these applications, high quality automatic
systems which infer meaningful information from
speech input are essential. This inference is primar-
ily done in two forms, firstly, speech processing
(asr, speaker identification, speaker diarization) and
secondly, spoken language understanding (text nor-
malization, intent, sentiment). Speech processing
applications generally depend on acoustic infor-
mation derived by functionals or use of pretrained
acoustic encoders, however, a typical SLU, the Au-
tomatic Speech Recognition (ASR) system is used
to convert speech into transcription hypotheses fol-
lowed by a natural language understanding (NLU)
component which acts on those hypotheses to ex-
tract an actionable semantic representation. How-
ever, in spoken language, organization of acoustic-
prosodic cues within an utterance and in-between
utterances can resolve semantic, lexical and syntac-
tic ambiguities (Nagel et al., 1996; Snedeker and

Trueswell, 2003; Frazier et al., 2006).

Several methods have been proposed to exploit
acoustic-prosodic cues along with text for spo-
ken language inference. (Chuang and Wu, 2004;
Singla et al., 2018) show that feeding n-best to
text classifiers instead of 1-best can boost perfor-
mance for utterance-level text inference. Some
other works show that a speech encoder and text
encoders can be jointly optimized for utterance-
level multi-modal SLU (Siriwardhana et al., 2020).
Alternatively features for speech segments aligned
with word embeddings are fed to text based clas-
sifier for multi-modal SLU. Recently X combine
speech and text encoder using cross-attention be-
tween transformer layers of randomly initialized en-
coder. However, their work is limited to utterance-
level SLU (in form of emotion annotations).

In recent work, these encoders are first pretrained
on auxiliary tasks either taking speech or text as
input. They are then repurposed to further fine-tune
using annotations on either modality. We propose
to pretrain speech and text encoders before fine-
tuning them jointly used supervised data. We show
applying one-way cross attention between a text
and speech encoder can perform continuous multi-
modal tagging of text stream provided by an ASR.
As a result, every token in the text accounts for
speech variability surrounding it without the need
for an explicit alignment. We also show that com-
bining pretrained encoders using two-way cross
attention between encoders from multiple modal-
ities shows state of the results for utterance-level
emotion and intent prediction.

In this context, pretrained self-supervised en-
coders, which directly take the continuous input
in the form of raw speech, have shown promis-
ing results when fine-tuned for transcription tasks.
These encoders have also been successfully fine-
tuned end-to-end for a variety of SLU tasks (Tzi-
rakis et al., 2017; Chen et al., 2018; Ghannay
et al., 2018; Yadav et al., 2020). We start train-



ing from a pretrained Wav2vec2 model (Baevski
et al., 2020) for converting raw speech segments
into fixed-dimensional temporal embeddings. In
addition, we use a pretrained text encoder to con-
vert text into token embeddings. We then apply a
multi-headed attention between these embeddings
in both directions, similar to encoder-decoder atten-
tion (Bahdanau et al., 2015). or text-based tagging
only one-way cross-attention is applied where text
encoder attends to speech encoder for continuous
multi-modal tagging.
The contributions of our paper is as follows:

* We illustrate that off-the-shelf pretrained en-
coders when combined using cross-attention
shows state-of-the-art performance (2-6%
over text-only models on utterance-level in-
tent and emotion identification.)

* We propose a novel method to attend a pre-
trained speech encoder using one-way cross-
attention for continuous multi-modal text tag-

ging.

* We show that results for two text token tagging
tasks (punctuation insertion in ASR hypoth-
esis and speaker diarization based on ASR
hypothesis) improve by 2-4% over text-only
model.

2 Related work

We examine self-supervised methods for text and
speech encoders, note the rise of using pre-trained
speech encoders for superior SLU systems, and
touch on the advantages of our method over past
multi-modal SLU strategies.

2.1 Pre-trained Speech and Text Encoders

Recently, it has become common practice to first
pretrain text encoders using large amounts of un-
labeled text before fine-tuning them for a target
task (Peters et al., 2017, 2018; Devlin et al., 2018).
A popular method of learning text-based, self-
supervised encoders is to train a language model to
predict the next word in a sequence (Mikolov et al.,
2010; Radford and Narasimhan, 2018). BERT
(Devlin et al., 2018) introduced a Masked Lan-
guage Model (MLM) objective, where tokens are
randomly masked or perturbed and the model
must learn to reconstruct those portions, yield-
ing bidirectional representations. This type of
"self-supervision" has also been adopted to encode
speech signals (Oord et al., 2018; Pascual et al.,

2019; Chung et al., 2019; Baevski et al., 2019).
These encoders generally use training targets that
are derived from the input signal. For example, the
model may be tasked to recover the original input
signal given a version transformed through aug-
mentation techniques, recover masked inputs from
the future or randomly in the sequence, or separate
true inputs from synthetic samples. However, un-
like text-based encoders, speech encoders generally
need some amount of fine-tuning on a transcription
task before being useful for SLU (Chorowski et al.,
2015; Chan et al., 2016; Baevski et al., 2020).

2.2 SLU directly from speech

With the emergence of end-to-end ASR
(Chorowski et al., 2015; Chan et al., 2016)
and the successful pretraining of speech encoders,
methods for SLU directly from the speech signal
have recently shown comparable performance to
the conventional approach of cascading ASR and
text-based components in tasks such as named
entity recognition (NER), translation, dialogue act
prediction (DAP) (Vila et al., 2018; Dang et al.,
2020), as well as inference tasks like emotion,
intent or behavior understanding (Fayek et al.,
2015; Price et al., 2020; Singla et al., 2020).

2.3 Multi-modal SLU

The speech features for multi-modal systems are
generally provided either at the level of words or
utterances based on the underlying SLU task. Com-
bining speech and text features has led to improved
results for multiple tasks including: spoken text
parsing, emotion extraction and also for automatic
understanding of psychological disorders and hu-
man behavior (Yu et al., 2013; Kim and Shin, 2019;
Fraser et al., 2013). Unlike previous multi-modal
approaches (Kim et al., 2021; You et al., 2021; Tsai
et al., 2019), our proposed approach only needs
aligned corpora for fine-tuning, not for pre-training.
In the past, similar token-level tagging approach
has been proposed to spoken text parsing. They
perform feature fusion of text and speech features,
where speech features are simple functionals repre-
senting a word. sequence network for chunk-level
multi-modal fusion methods (Tran et al., 2017;
Sunkara et al., 2020). Additionally, this is the first
work, which performs multimodal token-level clas-
sification to improve over speech only and text only
approaches for diarization and rich transcription.
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Figure 1: Cross-stitched encoding: Separately pretrained speech and text encoders are combined using a two-way
multi-head cross-attention. Output of the attention-level gives token-level speech and text input which has attended
to relevant information to decode a token by a supervised fine-tuning task.

3 Cross-stitched Multi-modal Encoder

Cross-stitch! is a tiled, raster-like pattern X used
repeatedly to form a picture. It has become a
common trend to cross-stitch encoders for multi-
modal inference (Ye et al., 2019; Wei et al., 2020).
(Siriwardhana et al., 2020) apply cross-attention
between transformer blocks of randomly initial-
ized speech and text encoders. They then concate-
nate the pooled output of each encoder for only
utterance-level classification, thus not allowing
token-level multi-modal fusion. Not performing
any pre-training, means, they need a lot more data
for fine-training. We propose to combine pretrained
speech encoder embeddings with pretrained text
encoder embeddings by applying cross-attention
on the top of the encoders. We apply two-way
multi-headed cross-modal attention between pre-
trained speech and text encoders. This allows each
encoder to attend to the other modality’s encoder
in every time-step. Figure 1 gives an overview of
the architecture.

The speech and text encoders output K g and K7
respectively. Keys K; are either text or speech to-
kens, and query (); is output from the other modal-
ity. Following the typical Transformer decoder
approach, we first apply self-attention to the target
query. Keys and queries are then connected using
cross-attention similar to encoder-decoder multi-
headed attention (Vaswani et al., 2017). Queries
and keys of dimension [dg, di], and values of di-
mension d, become inputs to the attention function.
We compute the dot products of the query Q; with
all keys K; and divide each by /dj, where dy; is

"https://en.wikipedia.org/wiki/Cross-stitch

dimensionality of keys we are attending. We then
apply a softmax function to obtain the weights on
the values.

Qi*KSj
di.

J

Attention(Qi, K;,V;) = softmax( ) * V;

We then perform the attention operation A times
using different V' values where queries, keys and
values are low-order projections using W, creat-
ing different representations at different positions
in the other modality. We employ h = 8 paral-
lel attention heads. Multihead cross-attention is
formally defined as follows:

MultiHead(Q;, K;,V;) = [head, .., headp] * W; (1)

where

head, = Attn.(Qn * W3, Kn * Wi, Vo, x W) (2)

where W/ € RdmoderXd; are parameter matrices.
All heads [1 : h] are concatenated to represent each
multi-headed token-level cross-attention output for
both speech and text input. An additional weight
matrix W; then filters the information from these
cross-stitched representations. We use the resultant
multi-modal temporal outputs Hg and Hp for vari-
ous token-level tagging and utterance classification
tasks. While performing text tagging, our system
only uses Hr and attends to speech encoder via
cross-attention. Thus enabling near real-time con-
tinuous multimodal SLU. All of our models and
experiments are built with an open source library
for model exploration and development targeting
NLP.



3.1 Speech Encoder

For the speech encoder (SE), we use a Wav2vec2
model with 12 Transformer blocks with 12 at-
tention heads and a 768 dimensional hidden unit
size, similar to the base model in (Baevski et al.,
2020). Our convolutional feature encoder is
adapted for speech data sampled at 8kHz. The
model was pretrained on approximately 9450 hours
of anonymized speech data from a collection of
conversational Al applications where users interact
with an intelligent virtual agent (IVA) for customer
care over the phone. The model was subsequently
fine-tuned with a CTC loss on 900 hours of tran-
scribed data 2.

Our initial testing showed that the lower lay-
ers of the architecture contributed most of the in-
formation relevant to downstream applications in
the multi-modal setting. We found that removing
the final 4 Transformer layers from the fine-tuned
speech encoder resulted in very little change in per-
formance, but significantly sped up training and
inference, while reducing the overall memory foot-
print. Subsequently, we dropped the final 4 layers
of the speech encoder for all experiments.

3.2 Text Encoder

For the text-based encoder (TE), we pretrained an
8-layer Transformer, with 8 attention heads using
an MLM loss on a corpus of online data includ-
ing all of English Wikipedia, around 700 million
conversations from Reddit (Al-Rfou et al., 2016;
Henderson et al., 2019), 3.3 million online forums,
and 8.2 million online reviews for restaurants and
hotels. The majority of the dataset contains full con-
versations between multiple users, and the turns are
demarcated with a special end-of-utterance token.
Following (Shaw et al., 2018), we use relative po-
sitional representations which are not conditioned
on the global position of the token but instead use
a local relative offset embedding at every layer as
part of the self-attention computation. Previous
literature has shown that placing the layer norm
at the front of each sub-layer in the Transformer
simplifies training and can improve performance
(Nguyen and Salazar, 2019; Xiong et al., 2020;
Wang et al., 2019), so we also follow this approach
in our model.

We empirically observed in initial testing that the
last 4 layers of the text encoder could be dropped

2We saw consistent results with publicly available check-
points.

in the downstream multi-modal application without
significant performance degradation. As a result,
we truncate our text encoder to only the lower 4 of
the original 8 layers.

3.3 Training Details

Our fine-tuning system is compact and lightweight
and we are able to train with a single GPU — even
on a consumer card. For most experiments, we
use a single NVIDIA GTX 1080ti GPU. We use
Adam with a fixed batch size of 2 with a fixed
learning rate of 1.0e — 5, for all experiments except
for IVA intent detection, where we trained with a
batch size of 16 on a single A100 GPU 3. For all
experiments, we keep the speech encoder frozen
for the first 2000 steps of training. We calculate
the cross-entropy loss of a final projection to the
number of labels. For tagging, this translates to
token-level (word-level in our experiments) loss.
We use early stopping on a validation set for all
experiments.

4 Utterance-level fine-tuning

For spoken utterance classification we compare two
fusion methods. First we adopt shallow fusion sim-
ilar to (Siriwardhana et al., 2020) by first pooling
each individual encoder’s output (()g) for speech
and (Qr) for text. The speech and text pooled
output is then concatenated along the embedding
dimension. For audio, we use max pooling, and
for text, following BERT, we use the special start
token ([CLS]). Some datasets contain samples with
only text. For these samples, we sum along embed-
ding dimension instead of concatenation to enable
smooth training. SE-TE refers to shallow fusion
and XSE refers to the cross-stitched encoder model
in Table 5. The unimodal systems using pooling
from either Qg or Q.

We train three variants of cross-stitched en-
coders:

* Pretrained (XSE-P): Pretraining is done as
described in section 3 before supervised fine-
tuning.

* Scratch (XSE-S): No pretraining is done.
Speech and text are encoders initialized from
scratch. Cross-attention is applied on both en-
coders and then output is pooled. This pooled

3We used a larger batch size due to the large size of the
dataset, to compare against internal benchmarks, and because
a grid search yielded significantly better results for that dataset.



outputs are used for joint optimization on su-
pervised corpus.

* Scratch-T (XSE-T): Following (Siriwardhana
et al., 2020) we apply cross-attention between
speech and text transformer blocks and con-
catenate the pooled output.

4.1 Emotion Identification

Creating a scalable general purpose solution for
emotion extraction comes with the challenge of
limited data annotations. Emotion which captures
behavioral information has been primarily studied
in the form of continuous or discrete perceived
sentiment (negative, positive, neutral) (Zadeh et al.,
2018; Chen et al., 2020), 7 discrete emotions (anger,
disgust, fear, joy, sadness, surprise) (Li et al., 2017;
Busso et al., 2008) or more granular annotations
of behavioral emotion (Demszky et al., 2020). We
study emotion as discrete annotations for utterances
which have both speech and text available.

Youtube monologues: We report results for
widely used CMU-MOSEI (Zadeh et al., 2018)
dataset which contains 23,453 annotated video seg-
ments from 1,000 distinct speakers and 250 topics,
in total approximately 65 hours of speech along
with transcriptions. Final sentiment annotated cor-
pora contains 20k sentences annotated by 3 annota-
tors marking discrete sentiment ranging from —3
to 3. We follow the same data setup first as used by
(Tsai et al., 2019).

Two-sided telephony conversations: The
Switchboard corpus (Godfrey et al., 1992), with
2400 phone conversations from 543 US speakers,
was converted to mono-channel audio. Utilizing
LDC-provided segmentation, we selected samples
with unanimous sentiment labels (positive, nega-
tive, neutral), excluding 15% of the data. We allo-
cated 44k segments for training and 2.5k for both
development and testing.

Intelligent Virtual Assistant: We also use spo-
ken utterances marked with discrete 7-way senti-
ment annotated data from an Intelligent Virtual As-
sistant (IVA) system in the customer care domain.
We collect 10K unstructured spoken customer ut-
terances from human-machine dialogue. These
utterances/sentences are then coded for sentiment
by 3 human annotators, with an agreement of about
75%. We use 8K for training, 1K for development
and 1K for testing purposes. We mix data from all
annotators for train and test.

Neutral (0) is the dominating label in all datasets,

which is also the majority class performance shown
in Table 1. Our fusion approaches shallow fusion
(SE — TF) and cross-stitched fusion (X S E) both
outperform text only baselines. X SE performs
better than S FE — T'F for both the MOSEI and IVA
dataset. Our shallow fusion system SE — T'E is
similar to (Siriwardhana et al., 2020) as both con-
catenate the pooled encoder outputs before classifi-
cation, however, we use a conversationally-trained,
compact MLM instead of the original BERT en-
coder. On MOSEI dataset (Tsai et al., 2019) report
50.4% vs 53.4% accuracy for our system on 7-way
sentiment prediction.

4.2 Intent Detection

Intent detection — attempting to understand a user’s
goal in a task-oriented dialogue — is a typical prob-
lem in SLU. It has primarily been treated as an un-
structured prediction problem, applied either inde-
pendently, or jointly with a separate task to collect
specific named entities specific to a conversation
(also referred to as slot-filling). For text modal-
ity, following (Pressel et al., 2022) we input text
encoder a list of the top transcription hypotheses
from the ASR system (referred to as N-best lists).
We found this yields better results results for text-
only system which uses only 1-best provided by an
ASR.

We also perform an ablation study to see impact
of using additional speech information for few-shot
SLU in the form of understanding emotions and
intent prediction. We randomly sample N shots for
each intent type for training, and use the same de-
velopment and test datasets. We perform 5 indepen-
dent runs for both text-based and our multimodal
SE —TFE and XSE — P setup. Table 2 shows
avg. performance across runs.

Intelligent Virtual Assistant We use a large
dataset collected from a real-world virtual assis-
tant applications in the customer care domain. It
contains approximately 1.1 million anonymized ut-
terances for training. Due to the size of the training
set and the cost associated with obtaining human
transcription of the spoken utterances and intent
labels, N-best hypotheses for the spoken text are
taken from a production ASR system consisting
of a hybrid DNN-HMM acoustic model and an N-
gram language model. Word accuracy of this ASR
system is estimated to be in the mid to upper 80%
range for this data. The intent labels for training
come from two sources. The labels are either gener-
ated automatically by an existing production SLU



Accuracy (%) \

Dataset | Mk oo CS,;’E“I‘W(EE)CT cl Text (TE) SE-TE XSE-P XSE-S XSE-T
MOSEI 407 409 468 46.8 517 534 481 507
SwitchBoard 48.5  50.2 68.1 69.2 733 736 681 705
IVA 57 612 76.7 795 802 805 796  80.0

Table 1: Results on emotion identification comparing our text-only approach against proposed multi-modal

approaches.
Dataset Speech (SE) Text (TE) SE-TE XSE-P
IVA 82.34 83.07 84.01 84.23
| IVA-5shot 281 224 339 381 |
IVA-10shot 45.1 50.1 50.7 50.4
FSC 99.58 99.34 99.53  99.63
| FSC-5shot 83.4 868 902 |
FSC-10shot 92.3 95.6 97.3

Table 2: Intent detection on IVA and FSC dataset with
different modalities.

system when the confidence of the system is very
high, or the utterances are sent to a human agent
in-the-loop to be manually labeled when the con-
fidence of the automated label is low. The test set
consists of approximately 11K utterances that are
manually labeled and verified. A development set
of approximately 38K noisily annotated utterances
is used for early stopping. The dataset has 2 sets of
labels indicating intent and entity predictions and,
for classification, we use a multi-headed classifier
to predict both. The joint accuracy is used to indi-
cate overall performance. For the text modality, the
N-best hypotheses are concatenated using a special
end of utterance demarcation token (the same end-
of-utterance token seen in text pre-training) and
passed into the text encoder. While the complete
120 different intent types, for few-shot experiments
(5shot, 10shot) we only use 30 most frequent intent
types in the training set.

Fluent Speech Commands: We use the pub-
licly available Fluent Speech Commands (FSC)
dataset (Lugosch et al., 2019) to train and evalu-
ate our model and compare with models tested on
the same dataset. In total, there are 248 different
distinct phrases in the FSC dataset and 5 distinct do-
mains. The data are split into 23,132 training sam-
ples from 77 speakers, 3,118 validation samples
from 10 speakers and 3,793 test samples from 10
speakers. Using human transcriptions our text en-
coder alone can achieve 100% accuracy. However
automatically generated transcripts using ASR are
generally noisy. We use the two most likely tran-
scripts generated using an end-to-end ASR model
trained with NeMo toolkit. We then use these tran-

scriptions as input to our text encoder.

For the FSC dataset, we observe that, while sim-
ple concatenation of the embeddings does not out-
perform the audio-only encoder, our cross-attention
method does better despite a much lower accuracy
for the text-only modality (Table 2).

5 Token-level fine-tuning

Our proposed cross-stitched network can be used
for multi-modal token-level fine-tuning for both
text and speech based classification tasks. In this
paper, we focus on doing token-level classification
of text tokens where it attends to temporal speech
embeddings using multi-headed attention. Figure
2 portrays the multi-modal token-level tagging of
text. Rich transcription makes ASR results more
readable and valuable for human users. We pro-
pose two rich transcription tasks as post-processing
on ASR output: 1) Punctuation insertion & capi-
talization and 2) Speaker diarization in role-based
conversations.

5.1 Punctuation insertion & capitalization

We collect 165K English sentences and correspond-
ing speech from Tatoeba* to examine if speech aids
in punctuation and capitalization. We split this
into 141K training, 12K validation, and 13K test-
ing samples. We train our multi-modal system to
insert punctuation, specifically, comma (Cm), pe-
riod (Pr) & question-mark (Qus) and also perform
first-letter capitalization (Cp) of words. Our study,
focused on the Tatoeba corpus, involves training on
normalized text with word-level punctuation and
capitalization tags (see sample below).
Input thank you i understand  do  you

Word tags Cp:0  0:Pr Cp:0 O:Pr Cp:0  0:Qus
Output Thank you. I understand. Do you?

Our system predicts 8 different tags (shown in
Table 3) for each word input. Table 3 shows word-
level Fl-scores for this task and illustrates the
improvement in scores using the multi-modal ap-
proach (XSE) over text-only approach.

*https://tatoeba.org/en/
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Figure 2: Word-level tagging using cross-attention mechanism. For each word-level prediction in text it takes
cross-attn over the corresponding speech segment, thus, doing a soft alignment

Word-level tag % F1
Text XSE
Punctuation Capitalization

Yes 83 87

Comma (. No 8 88

. Yes 97 98
Period () No 100 100

Yes 90 94

s (7

Qus () No 9 99
None Yes 100 100
None No 100 100

Macro-average 93 95

Table 3: Results for Punctuation insertion and capitaliza-
tion task comparing text-only vs proposed multimodal
approach (XSE) on Toteba corpus.

5.2 Diarization for role-based conversations

Speaker diarization detects and clusters speaker
segments by initially dividing speech into fixed-
length frames and then applying hierarchical clus-
tering with a set similarity measure. Alterna-
tively, supervised methods learn to identify speaker
changes or apply end-to-end diarization using these
frame embeddings.

Our study treats speaker diarization as a task of
token-level speaker tagging, focusing on dual-role
call-center conversations in the food industry. We
use 56 hours of these transcribed and annotated
conversations for training, 10 hours for validation,
and another 10 hours for testing. The evaluation in-
volves 198 dialogues, encompassing 3.6K speaker
turns and 19K words, which our model tags to
generate diarized outputs. We hypothesize that
because of assigned speaker roles there is a bias
between speakers in terms of language use. Below
is a sample encoding for two-person role-based
conversations.

Minibateh A0 Al A2 €O CL C2 C3 C4 A0 Al
DA co c1 2 A0 Al A2 A3 CO ClI 2
Word tags 1 1 0 0 0 0 0 1 1

0 0 o0 1 1 1 1 0 0 0

Here Agent (A0 — A2) words are coded as 1 and

client (C0 — C'4) words as 0. We train the system
to predict 0’s and 1’s in a continuous stream of
words from ASR.

Speaker diarization performance is generally
measured using Diarization Error Rate (DER), com-
puted as a sum of false alarms (FA): silence be-
ing recognized as speech, missed detections (MD):
speech being recognized as silence, and Speaker
Error Rate (SER), the % of incorrect speaker tags.
In our speech-based results (upper part of Table 4°),
we report error rates using a typical state-of-the-
art speaker diarization approach. We first identify
speech and non-speech regions using a Time De-
lay Neural Network (TDNN) classifier (Bai et al.,
2019). Each window of 1.5s length with an overlap
of 0.5s is converted into 128-dimensional X-vector
(Snyder et al., 2018) by passing through an em-
bedding network trained to classify the speakers
of switchboard corpus (Godfrey et al., 1992). We
then measure similarity between x-vectors using
Probabilistic Linear Discriminant Analysis (PLDA)
(Ioffe, 2006; Prince and Elder, 2007). We found
using additional unsupervised in-domain corpora
(460 hours) translates to improved diarization per-
formance. After measuring the similarity score
between all pairs of x-vectors using PLDA, they
are clustered until we arrive at two clusters, one
for each speaker in the recording. In our work, we
found spectral clustering yields better performance
than using standard Agglomerative Hierarchical
Clustering (AHC) (Lin et al., 2019).

The last two rows of Table 4 shows results for
our text-based speaker diarization approach using
the cross-stitched encoder which improves over
text based role tagging. For token-level word tag-
ging based diarization, we treat word-level error
as token error. Our cross-stitched multi-modal ap-
proach (XSE) shows improvements over text only

SWe ignore FA errors (at least 6%) as they only account
for silence regions in speech.



Approach % Token error
SER+MD SER
Speech time-series clustering
VAD + Generic PLDA + AHC 17.1 14.4
VAD + Generic PLDA + Spectral 10.7 7.7
VAD + In-Domain PLDA + Spectral 7.4 4.5
| In-Domain PLDA + Spectralx 54 29 |
Token-level role tagging
Text (TE) - Scratch 16.1
Text (TE) - Pretrained 8.1
XSE - Scratch 14.5
XSE - Pretrained 7.6

Table 4: Token error rates for speaker diarization in
2-person call-center conversations. * is the result with
speech vs non-speech segmentations provided by hu-
mans.

baseline. Our text based diarization system shows
similar performance when compared to a fully au-
tomated speech based unsupervised state-of-the-
art approach without any in-domain unsupervised
data. Best results are achieved for speech-based
approach when human provided speech segment
information is used instead of automatic voice ac-
tivity detection (VAD) system.

Turn-level F-score

10 20 30 40 50

Annotated data in hours

® XSE = - VAD + PLDA + Spectral
== * PLDA appaorch. + Addn. 460 hrs speech

Figure 3: Comparison of multi-modal speaker diariza-
tion approach vs typical speech based diarization ap-
proach.

Evaluation Metric: Speech-based diarization
performs global clustering of speech time frames
versus token-level tagging of words which only
uses local context. Therefore, we are unable to
compare thse approaches directly at the token level.
We propose a turn-level evaluation metric for two-
person dialogues as high quality transcriptions also
implies accurately the whole turn correct. We de-
fine Recall (R) as a ratio of number of correct turns
to actual turns and Precision (P) is defined as the
ratio of number of correct turns to detected turns.
F-score is defined as 2PR/(P + R) irrespective
of length of the segment. Figure 3 shows varia-
tion of annotated data (speaker role and boundary
information) along with turn-level diarization per-

formance. Figure 3 shows results for multi-modal
system using different sizes of annotated corpora.
Our proposed approach performs similar to speech-
based unsupervised PLDA approach with 14 hrs
of annotated corpora. Text-only model shows 65%
turn-level F-score compared to 69% for X SE.
Below is a sample output for our cross-stitched
embedding (XSE) which takes normalized text and
speech as input. It shows combined output of punc-
tuation insertion & capitalization system and also
diarization output by performing token-level role

tagging.

Input

may i start with your phone number um five one
four three eight three remo crescent road

nine yes um let’s see five one nine four two one
uh i don’t phone myself so i don’t know my damn
phone number um five three nine five three nine
four one two nine five three nine four one two
nine okay so is it pick up or delivery it’s a delivery
A: May I start with your phone number?

C: Um five one nine.

A: Yes.

C: Um let’s see five one nine four two one. Uh I
don’t phone myself so I don’t know my damn
phone number. Um five three nine five three

nine.

A: Four one two nine five three nine four one

two nine. Okay, so is it pick up or delivery?

C: It’s a delivery.

6 Conclusion

Our results show that cross-stitching speech and
text encoders using multi-headed attention pro-
duces strong results on a diverse set of datasets.
Our proposed method supports continuous multi-
modal tagging for speech and text input streams.
We believe our results can be improved further by
including task specific data into unsupervised pre-
training of speech and text encoders and exploiting
context in dialogue for utterance classification. We
plan to explore these directions and evaluate our
approach on additional tasks in the future.

We believe our system can be made more ro-
bust for near real-time streaming by training with
longer sequence lengths and/or by exploiting the
context. We plan to extend our approach to more
tasks including inverse text normalization, named
entity recognition and sentiment tree parsing. Pro-
posed architecture could enable applications such
as smart prompting for speech encoders.
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